Apptopinv
User’s Guide

Timo Poranen
Department of Computer Sciences
P.O. Box 607
FIN-33014 University of Tampere, Finland
tpQcs.uta.fi
http://www.cs.uta.fi/ tp/apptopinv/

21st October 2003



Abstract

The maximum planar subgraph, maximum outerplanar subgraph, the thickness
and outerthickness of a graph are all NP-complete optimization problems. App-
topinv is a program that contains different heuristic algorithms for these four
problems: algorithms based on Hopcroft-Tarjan planarity testing algorithm, the
spanning-tree heuristic and various algorithms based on the cactus-tree heuris-
tic. Apptopinv contains also a simulated annealing algorithm that can be used
to improve the solutions obtained from other heuristics. Most of the heuristics
have also a greedy version.

We have implemented graph generators for complete graphs, complete k-
partite graphs, complete hypercubes, random graphs, random maximum planar
and outerplanar graphs and random regular graphs. Apptopinv supports three
different graph file formats.

Apptopinv is written in C++4 programming language for Linux-platform and
GCC 2.95.3 compiler. To compile the program, a commercial LEDA algorithm
library (version 4.3 or newer) is needed.
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Chapter 1

Introduction

1.1 What is apptopinv?

Apptopinv (approximation algorithms for the topological invariants of graphs)
is a software that can be used to approximate the following four topological
invariants of graphs:

e maximum planar subgraph (MPS),
e maximum outerplanar subgraph (MOPS),
e thickness (TH) and

e outerthickness (OTH) of a graph.

Apptopinv contains implementations of different algorithms for these opti-
mization problems. The program can be used also for testing the planarity and
outerplanarity of a graph.

Apptopinv is written in C++ programming language for Linux platform. It
can be compiled with GCC 2.95.3 compiler. You also need LEDA 4.3 (or newer)
algorithm library [23] to compile it successfully. LEDA is commercial, but it
has inexpensive academic versions for research purposes. Apptopinv uses the
Hopcroft-Tarjan [18] planarity test algorithm that is implemented in LEDA.

1.2 Why?

The aim of this work is to improve the reproducibity [20] of the experimental
comparison of various algorithms for MPS, MOPS, TH and OTH problems.
This also makes it possible to implement new algorithms for these optimization
problems with less work than starting from the scratch. This manual answers
how apptopinv can be used, for detailed description of implemented algorithms
and their analyses we give only references. An excellent survey concerning graph
planarization is written by Liebers [24]. For the thickness we recommend a
survey by Mutzel et al. [26]. Different algorithms and experiments for maximum
outerplanar subgraph problem can be found from [29] and theoretical results for
the outerhickness can be found from [14, 15, 16, 33].



1.3 History

Apptopinv was originally written for the graph thickness [25, 28] problem. Then
it was modified to approximate the maximum planar subgraphs [32, 31] and
maximum outerplanar subgraphs [29]. On summer 2003 these different pro-
grams were combined in a single program, since many data structures, algo-
rithms and other functions were same for all these optimization problems. Fi-
nally, the thickness and outerthickness problems were approximated with new
heuristics during the implementation phase of apptopinv [30].

1.4 Web page and updates

The newest version of apptopinv is downloadable from the url http://www.
uta.fi/~tp/apptopinv/. Also this user’s guide can be found from the same
address. The current version number of apptopinv is 1.0.

1.5 User rights

You may use and modify the source codes of apptopinv freely for any research
and testing purposes. But notice, you need LEDA version 4.3 or newer to
compile and run apptopinv.



Chapter 2

Compilation

2.1 Distributed files and compilation
After unpacking apptopinv-1.0.tar.gz file, you should have files and directories

listed in Table 2.1 in the same directory. Since apptopinv uses LEDA, check be-
fore compilation that your LEDAROOT is set correctly (see LEDA’s manual).

Table 2.1: Apptopinv v. 1.0 - distributed files

README.txt usage information

Makefile makefile for compilation

apptopinv.cpp main file

sa_graph.h headers

sa_graph.cpp initialization, algorithms for MPS and MOPS
sa_alg.cpp simulated annealing algorithms

sa_thickness.cpp algorithms for the TH and OTH
bounds_th.cpp upper and lower bounds for the TH and OTH

graph_gen.cpp graph generators

graphs/ directory for different graphs
scripts/ directory for scripts

docs/ directory for documentation

sa_parameters.txt parameter file for the SA algorithm

Now you can compile apptopinv with the GCC 2.95.3 compiler just by typ-
ing:

make

in the root directory. Now there should be one executable file (a.out) and
seven object files (apptopinv.o, graph_gen.o, sa_alg.o, sa_thickness.o, bounds_th.o,
max_outerplanar.o and sa_graph.o).

LEDA 4.3 did not work with GCC 3.0.* compiler in our platform (one pro-
cessor AMD Athlon 1GHz computer with 256 megabytes memory (1992 Bo-
goMips) running under Linux Mandrake 8.1), so it is possible that there are
also other problems with LEDA and newer compilers.



2.2 Simple example

After compilation there should be a file named a.out. Try the following com-
mand to test how apptopinv works:

./a.out 1 res.txt -th -cal -no -c 100
Here is a sample printing what should happen if everything is fine:

[timo@drill verl] ./a.out 1 res.txt -th -cal -no -c 20
Complete 20 -partite graph: K20

Vertices: 20 Edges: 190

thickness

expl cactus-tree heuristic

found subgraph of size: 37 / 190
found subgraph of size: 35 / 153
found subgraph of size: 33 / 118
found subgraph of size: 32 / 85
found subgraph of size: 27 / 53
found subgraph of size: 19 / 26

found subgraph of size: 7 / 7

Degree: 4 Euler : 4 <= thickness <= Alekseev: 4 / Dean: 9 / Halton: 10
/ Edge conj. :3+c

SOLUTION: 7

REPEATS: 1

WORST SOLUTION: 7

BEST SOLUTION: 7

AVERAGE SOLUTION: 7

Total running time: 0.01 seconds.

Next we look at this example a little closer. The first parameter, “1”, is the
number of distinct runs of the algorithm. The second parameter, “res.txt”, is
the name of the output file. The graph’s name and the best found result (and
average result, if more than one runs of the algorithm is used) are reported in the
output file. The third parameter, “-th”, chooses the optimization problem. Here
-th stands for the thickness. The fourth parameter, “-cal”, specifies the used
algorithm and the fifth parameter “-no” checks whether we want to optimize
further the obtained solution by a simulated annealing algorithm. The sixth
parameter describes the graph for which we are applying the algorithm. The
last parameter, “-c 20”7, stands for the complete graph with 20 vertices.

After the command is entered, apptopinv starts. It prints data (graph,
problem and used algorithm) to the stdout. Then it shows how large subgraphs
are extracted from the input graph (Ksg). Then the algorithm prints lower and
upper bounds for the input graph (see also section “Used bounds in SA” for the
origin of these bounds) and the obtained solution (SOLUTION 7). Next the
number of repetitions, the best and worst solutions found, and the average of
all solutions with the total running time is reported.



Chapter 3

Usage

To get help about the usage of the algorithm write a.out (same message is also
printed if you give an illegal parameter):

[timo@drill verl] ./a.out

Approximation algorithms for the topological invariants of graphs v. 1.0
University of Tampere, Department of Computer Sciences, 2003

Usage: a.out REPEATS RESULT_FILE PROBLEM ALGORITHM SA GRAPH_SOURCE [PARAMETERS]

REPEATS number of repetitions of the algorithm
RESULT_FILE file where results are written
PROBLEM
-mps maximum planar subgraph
-mops maximum outerplanar subgraph
-th thickness
-oth outerthickness
-planar planar
-oplanar outerplanar
ALGORITHM
-e empty set initialization
-g greedy initialization
-ca cactus-tree initialization
-gca greedy cactus-tree initialization
-cal expl. version of cactus-tree heuristic
-gcal greedy expl. version of cactus-tree heuristic
-ca2 exp2. version of cactus-tree heuristic (mps/th)
-gca2 greedy exp2. version of cactus-tree heuristic (mps/th)
-ht dfs+HT planarity test initialization
-st spanning tree
SA
-sa simulated annealing algorithm
-no only initial solution
GRAPH_SOURCE
-f FILENAME graph is read from file. File in edge-list format

-f1 FILENAME graph is read from file. File in rmf format

-fgml FILENAME graph is read from file. File in gml format

-c V1 V2 ... Vk complete k-partite graph with vertex set sizes V1,V2...
-ch k complete hypercube with 27k vertices



-p1 VE max plan graph with V nodes and E additional edges

-opl V E max oplan graph with V nodes and E additional edges
-r VE random graph with V vertices and E edges
-rr VD random D-regular graph with V vertices

OPTIONAL SAVEOPTIONS
-gml FILENAME (random) graph is saved in gml-format

-f FILENAME (random) graph is saved in edge-list format
Examples: ./a.out 1 res.txt -th -cal -no -c 20
./a.out 1 res.txt -mps -ca -no -fgml graphs/random/r100_1508.gml
./a.out 1 res.txt -oth -g -sa -r 80 350 -f graphs/r80_350.gml
./a.out 1 res.txt -mops -gca -no -f graphs/data/gl9.dat

Notice that the order of parameters matters! See also README.txt.

Next we look closer at the different parameter settings their combinations.
Finally we give more examples on the usage. The order of command line pa-
rameters is as follows:

Usage: a.out REPEATS RESULT_FILE PROBLEM ALGORITHM SA GRAPH_SOURCE [PARAMETERS]

3.1 Repetitions and the result file

The number of repetitions of the used algorithm should be greater than or equal
to 1, there is no upper limit. In RESULT _FILE the best, worst and average
results of the run are reported. If RESULT _FILE already exists, new results are
appended in the end of the file. A result file obtained with the command line

./a.out 100 resl.txt -th -cal -no -c 20
could be like this:
K20 7 6.86 6

It simply says that for the complete graph with 20 vertices the worst result
over all runs is 7, the average result is 6.86 and the best result is 6. The problem
and used algorithm is not mentioned here, since this format made it easier to
analyze and use the results. It is very easy to modify the source code (only file
apptopinv.cpp needs modifications) to get additional information in the result
file.

3.2 Supported optimization problems

Apptopinv can be used to approximate the following four topological invariants
of graphs:

e maximum planar subgraph problem (-mps),
e maximum outerplanar subgraph problem (-mops),
e thickness (-th) and

e outerthickness (-oth) of a graph.



It is possible to check whether the input graph is planar or outerplanar by
using the following parameters instead of supported problems:

e -planar to test planarity, and
e -oplanar to test outerplanarity.

Here is an example to test the outerplanarity of a graph:
./a.out 1 rest.txt -oplanar -no -no -f graphs/data/g3.dat

The problem type is -planar or -oplanar. Algorithm type is set -no and
simulated annealing is set -no. Graph source options can be used normally (see
the following sections for details). The result file and number of repeats are
still needed in the parameter list. Planarity test is performed only once, and no
information about the run is written in the result file (modify file appropinv.cpp,
if you like to change this).

Basically, it is possible to add other optimization problems, but depending
on your problem, there might be more or less difficulties. These four problems
are very similar, although in problems MPS and MOPS we try to maximize and
in problems TH and OTH the aim is to minimize the solutions.

3.3 Different algorithms and solution optimiza-
tion

Next we describe the use of different algorithms. In Table 3.1 there is a list of
heuristics that can be used with different problems. We have also listed refer-
ences for the origin of the algorithm and reported experiments. Also some re-
marks on the running time (time) and relative performance (sol’n) of algorithms
are reported. There might be graphs for which the suggestions are completely
wrong.

Table 3.1: Supported algorithm and problem types.

Algorithm ‘ MPS MOPS TH OTH time sol’s references
-g -sa/-no X X X X slow  average/poor 8, 29]
-ca -sa/-no X X X X fast good [7, 29, 30]
-gea -sa/-no X X X X slow good [29, 29, 30]
-cal -sa/-no X X X X fast very good [31, 29, 30]
-geal -sa/-no X X X X slow good /best [29]
-ca2 -sa,/-no X X fast good? [31, 30]
-gca2 -sa/-no b'e X slow  good?/average (30]
-ht -sa/-no X X X X slow good [21, 25, 26, 8, 9]
-st -sa/-no X X X X fast poor [10, 30]
-e -sa X X slow  average/good [28, 32, 29]

After you choose an algorithm to get initial solution, you have to decide
whether you try to optimize your solution with simulated annealing (-sa / -no).
Usually simulated annealing (SA) improves the solutions (this depends of course



on the used annealing parameters and the input graph). The running time of
the SA is very slow for large graphs.

If you take only the initial solution, ca, cal, ca2 and st are very fast even
if you consider large graphs. Greedy algorithms (g, gca, gecal, gca2 and ht) are
slow in general for large instances, but very useful for small and sparse graphs
(depends also on the problem type).

All algorithms are randomized by choosing vertices and edges randomly
whenever it is possible.

3.4 SA parameters and SA algorithm

The parameters for the simulated annealing are read from the file sa_parameters.txt.
Only the first four lines of this file are read. The first value is the initial tem-
perature (t0), the second value is the frozen temperature (t1), the third value

is the cooling ratio (alpha) and the last value is the equilibrium detection rate
(innerloop). Here is a sample parameter file. Values are taken from experiments
reported in [29] for the maximum outerplanar subgraph problem.

[timo@drill verl] more sa_parameters.txt

t0 0.25
tl 0.20
alpha 0.999

innerloop 5

//0nly first four lines are read by sa algorithm
// inner-loop parameters:

// innerloop 0 - vertices

// 1 - 2xvertices

// 2 - vertices*vertices
// 3 - vertices*vertices/2
// 4 - edges/2

// 5 - edges

// 6 - 2xedges

The initial and frozen temperatures should be greater than zero and the
cooling ratio should be more than 0 and less than 1. There are seven possible
parameters for the equilibrium detection rate. Different options are listed in the
previous parameter file.

Usually many experiments are needed to find out good cooling parameters.
General guidelines on how good parameters can be detected are given in [2, 19].
More specific examples related on apptopinv are reported in [29, 28, 32]

If simulated annealing is used, optimization starts after the construction of
the initial solution. Simulated annealing prints information on how the current
solution changes during cooling process. Below is such a printing example for
the graph thickness (printouts for outerhickness are similar).

Simulated annealing algorithm started
Reading parameter file!

58 / 105 subgraphs: 4 smallest: 2 dev: 14.0446
59 / 105 subgraphs: 4 smallest: 2 dev: 14.0268



60 / 105 subgraphs: 4 smallest: 2 dev: 14.0268
61 / 105 subgraphs: 4 smallest: 2 dev: 14.0089
62 / 105 subgraphs: 4 smallest: 2 dev: 14.0089

The leftmost numbers are the number of iterations before reaching equilib-
rium detection rate (58 / 105). Third number, subgraphs: 4, shows the current
solution, smallest: 2 is the size of the smallest subset (if this gets zero, the num-
ber of subsets decreases to 3) and dev: 14.0446 shows the standard deviation
of the sizes of planar subgraphs. The number of subgraph can only decrease.

The printings for the maximum planar and outerplanar subgraph problems
are slightly different:

[timo@drill verl]./a.out 1 res.txt -mps -e -sa -f graphs/data/gl.dat
graph: graphs/data/gl.dat

Vertices: 10 Edges: 22

maximum planar subgraph problem

Empty set initialization

Simulated annealing algorithm started

Reading parameter file!

1 / 22 current: 1 best: 1

2 / 22 current: 2 best: 2

3 / 22 current: 3 best: 3

Also the leftmost number is the number of iterations before reaching the
equilibrium detection rate (second number). Current solution is current: 1 and
the best solution obtained so far is best: 1. Since empty-set initialization is
used, optimization starts from an empty subgraph. The current solution and
best found solution are printed since the current solution may decrease during
the annealing process.

Descriptions of the simulated annealing algorithm and suitable cooling pa-
rameters for the maximum planar subgraph and maximum outerplanar sub-
graph problems can be found from [32, 29] and for the thickness from [28].

3.5 Supported graph formats

Apptopinv can read three different file formats. It supports Graph Modelling
Language (-fgml) format [13], that is also used in LEDA [23]. The other two
formats are edge-list format (-f) used in the experiments of Resende and Ribeiro
[34] and rmf-format (-f1) used by Petit [27] for the optimal linear arrangement
problem. See Table 3.2 for a list of these file formats and their references.
Methods for different graph formats are implemented in file apptopinv.cpp.

Table 3.2: Supported file formats.

Parameter ‘ Format description

fgml GML [23, 13]

-f “edge-list” (see source codes by Resende and Ribeiro [34])
-f1 rmf (see source codes and graphs used by Petit [27])

10



3.6 Graph generators

Apptopinv can generate different graphs for testing purposes. Implementations
of graph generators can be found from the file graph_gen.cpp.

Complete graphs can be generated with parameters -c V, where V is the
number vertices. Complete k-partite graphs can be generated with parameters
-¢ V1 V2 .. Vk, where Vi is the number of vertices in set i. To generate complete
hypercubes, use parameter -ch k to get hypercube with 2% vertices. If k > 12,
then the construction of the hypercube gets very slow.

There are four different types of random graph generators that are imple-
mented. The first random graph class is the class of “normal random graphs”,
where each edge has the same probability to exist. Using parameter -r V E a
random graph with V vertices and E edges is generated using LEDA’s function
[23] random_graph(G,V,E,true,true,true).

The second class is the class of random maximum planar graphs. It is
also possible to randomly add edges that violate planarity for the constructed
maximum planar graph. Using parameters -p! V E a random maximum planar
graph with V vertices and 3V — 6 edges is generated first and then E additional
edges randomly chosen edges that violate planarity are added. If E is set to be
0, no planarity violating edges is added. Third, to construct random maximum
outerplanar graphs, use parameters -opl V E.

The fourth class is the class of random regular graphs. We have implemented
an Las Vegas algorithm given by Steger and Wormald [36]. It can be used with
parameters -rr V D, where V' is the number of vertices and D is the degree of
the graph. The algorithm runs very fast in practice.

Table 3.3: Graph generators.

parameter ‘ graph description

<V complete graph with V vertices

-¢ V1 V2 ... Vk | complete k-partite graph sets V1 V2 ... Vk

-ch k complete hypercube with 2F vertices

T VE random graph with V vertices and E edges [23]

-pl VE random planar graph with E edges that violate planarity

-opl V E random outerplanar graph with E edges that violate outerplanarity
-t VD random D-regular graph with V vertices [306]

3.7 Saving random graphs

It is possible to save all randomly generated graphs by giving the saving format
and the name of the target file after graph generating parameters. File is saved
in edge-list (-f) or gml (-gml) format.

If you generate random graphs and you like to make some experiments with
them, it is a good idea to generate them first and then save. Now you can use -f
or -fgml option to load it. See the following example for saving random graphs.

[timo@drill verl] ./a.out 1 res.txt -mops -cal -no -opl 20 10 -gml gopll.gml
creating maximum outerplanar graph...

11



Maximal outerplanar graph with 20 vertices and 10 edges that violates outerplanarity created
Vertices: 20 Edges: 47

maximum outerplanar subgraph problem
expl cactus-tree heuristic

SOLUTION: 35

graph file saved in file gopll.gml
REPEATS: 1

WORST SOLUTION: 35

BEST SOLUTION: 35

AVERAGE SOLUTION: 35

Total running time: 0.08 seconds.

[timo@drill verl] ./a.out 1 res.txt -mops -cal -no -fgml gopll.gml
graph: gopll.gml

Vertices: 20 Edges: 47

maximum outerplanar subgraph problem
expl cactus-tree heuristic

SOLUTION: 36

REPEATS: 1

WORST SOLUTION: 36

BEST SOLUTION: 36

AVERAGE SOLUTION: 36

Total running time: O seconds.

In this example a random graph with 20 vertices and 47 (2 % 20 — 3 + 10)
edges containing a maximum outerplanar subgraph with 37 (2 % 20 — 3) edges
is constructed and saved in file gopll.gml. Then this new graph is loaded with
option -fgml gopll.gml. In this example the second try gave result 36 instead
of 35 as in the first run (cal is a randomized algorithm).

We have noticed that it is preferable to use -f format for large graphs instead
of gml, since the reading of a gml-graph takes much longer time.

3.8 Experiments and scripts

There are many possible ways to automatize computational experiments. Next
we describe a possible way for performing many testruns with apptopinv. This
example works only with Linux platform.

The basic idea is to create a script file that tells to computer what to do and
what information about testruns is saved. All runs are performed as background
processes and for the timing it is better to use time command (this can save
running time correctly, or almost correctly, even if you have great number of
background processes running at the same time). The timing mechanism pro-
grammed inside apptopinv fails if many background processes are running at the
same time. See the script-file testl below for an example on how experiments
can be automatized.

[timo@drill verl] more testil

#!/bin/sh
echo gl7 > times.txt

12



time ./a.out 25 tmpres/resgl7.txt -oth -cal -no -f graphs/data/gl7.dat 2>>times.txt

echo gl18 >> times.txt

time ./a.out 25 tmpres/resgl8.txt -oth -cal -no -f graphs/data/gl8.dat 2>>times.txt

echo gl19 >> times.txt

time ./a.out 25 tmpres/resgl9.txt -oth -cal -no -f graphs/data/gl9.dat 2>>times.txt

This script performs 25 runs of the heuristic cal for graphs gl7, gl18 and
g19. The problem is OTH. All running times are saved in file times.txt and
results for graph gl7 are saved in file tmpres/resgl7.txt, results for graph g18
are saved in file tmpres/resgl8.txt and so forth. Here is a sample times.txt file.

[timo@drill verl] more times.txt

gl7

0.96user 0.05system 0:01.06elapsed 95%CPU (Oavgtext+Oavgdata Omaxresident)k
Oinputs+Ooutputs (785major+5515minor)pagefaults Oswaps

gl8

1.03user 0.07system 0:01.30elapsed 84%CPU (Oavgtext+Oavgdata Omaxresident)k
Oinputs+Ooutputs (785major+5519minor)pagefaults Oswaps

gl9

1.52user 0.13system 0:01.74elapsed 94%CPU (Oavgtext+Oavgdata Omaxresident)k
Oinputs+Ooutputs (785major+7991iminor)pagefaults Oswaps

The user time is the exact running time of your experiment. To get the
average time of one run, it is enough to divide the user time by the number of
repeats. For example, the average time of one run of heuristic cal for graph g19
is 1.52/25 = 0.0608 seconds.

Here is a sample result file:

[timo@drill verl] more tmpres/resgl9.txt
graph: graphs/data/gl9.dat 7 6.88 6

This file shows that for graph graphs/data/gl9.dat the worst result is 7,
average result is 6.92 and the best found result is 6. Using files times.txt and
result files it is quite simple to produce different diagrams, tables and figures
on experiments. To modify the contents of the result files only source file app-
topinv.cpp need changes.

3.9 Used bounds in SA

In the SA algorithm we have added a test to recognize the optimal solutions. It
is well known that a maximum planar subgraph of n-vertex graph could contain
at most 3n — 6 edges and the maximum outerplanar subgraph could contain at
most 2n— 3 edges. If the corresponding bound is reached for the MPS or MOPS
problems, cooling process is stopped.

If the thickness or outerthickness is approximated using simulated annealing,
then the optimal solutions for the complete graphs, complete bipartite graphs
and hypercubes are recognized by using the results given in [1, 3, 4, 22] for the
thickness and [15, 16] for the outerthickness.

If the thickness is approximated, the following lines are printed:

[timo@drill verl] ./a.out 1 tmpres/res.txt -oth -cal -no -c 20

13



Degree: 4 Euler : 4 <= thickness <= Alekseev: 4 / Dean: 9 / Halton: 10
/ Edge conj. :3+c
SOLUTION: 7

Also these lower and upper bounds are derived using the previously referred
results with the lower and upper bounds given in [11, 17, 37, 38].

If the outerthickness is approximated, bounds are taken from the results
given in [33, 11, 17]. This is illustrated in the following example.

[timo@drill verl] ./a.out 1 tmpres/res.txt -oth -cal -no -c 20
Degree: 5 Euler : 6 <= outerthickness <= Guy: 6 / Halton: 10 / Dean: 9

/ Edge conj. : 4+c
SOLUTION: 7

14



Chapter 4

More examples

4.1 Is a graph planar or outerplanar?

In the first example we just check whether input graph is planar or outerplanar:

[timo@drill verl] ./a.out 1 rest.txt -planar -no -no -f graphs/data/g3.dat
graph: graphs/data/g3.dat

Vertices: 10 Edges: 24

Input graph is planar

[timo@drill verl] ./a.out 1 rest.txt -oplanar -no -no -f graphs/data/g3.dat
graph: graphs/data/g3.dat

Vertices: 10 Edges: 24

Input graph is not outerplanar

4.2 Cactus-tree heuristic example

The second example approximates maximum planar subgraph of a graph loaded
from the file graphs/random/r100-1508.gml using the cactus-tree heuristic. The
solution is not optimized. To get exact running time of the algorithm time
command is used.

[timo@drill verl] time ./a.out 1 res.txt -mps -ca -no -fgml graphs/random/r100_1508.gml
graph: graphs/random/r100_1508.gml
Vertices: 100 Edges: 1508

maximum planar subgraph problem
Cactus-tree heuristic

SOLUTION: 147

REPEATS: 1

WORST SOLUTION: 147

BEST SOLUTION: 147

AVERAGE SOLUTION: 147

Total running time: 0.12 seconds.

0.12user 0.03system 0:00.15elapsed 96%CPU (Oavgtext+Oavgdata Omaxresident)k
Oinputs+Ooutputs (791major+1027minor)pagefaults Oswaps

15



4.3 Thickyr heuristic for the graph thickness

The third example approximates the thickness of K15. To get the initial solu-
tion, depth-first-search with Hopcroft-Tarjan planarity test is used (-ht). This
heuristic is similar to Thickpyr heuristic reported in [9, 26]. The initial solution
is 4 and it is decreased to 3 (this is the optimal solution) by using simulated
annealing.

[timo@drill verl] time ./a.out 1 res.txt -th -ht -sa -c 15
Complete 15 -partite graph: K15

Vertices: 15 Edges: 105

thickness

dfs+(outer)planarity test initialization
found subgraph of size: 39 / 105

found subgraph of size: 32 / 66

found subgraph of size: 22 / 34

found subgraph of size: 12 / 12

Simulated Annealing algorithm started

Reading parameter file!

1 / 105 subgraphs: 4 smallest: 12 dev: 10.2103
2 / 105 subgraphs: 4 smallest: 12 dev: 10.2103
3 / 105 subgraphs: 4 smallest: 12 dev: 10.2103

48 / 105 subgraphs:
49 / 105 subgraphs:

smallest: 1 dev: 14.6202

smallest: 1 dev: 14.6202
50 / 105 subgraphs: smallest: 1 dev: 14.6544
51 / 105 subgraphs: smallest: 33 dev: 1.63299

Algorithm ended. Got 3 sets

Degree: 3 Euler : 3 <= thickness <= Alekseev: 3 / Dean: 7 / Halton: 7
/ Edge conj. :2+c

SOLUTION: 3

REPEATS: 1

WORST SOLUTION: 3

BEST SOLUTION: 3

AVERAGE SOLUTION: 3

Total running time: 1.69 seconds.

w o

1.68user 0.05system 0:02.59elapsed 66%CPU (Oavgtext+Oavgdata Omaxresident)k
Oinputs+Ooutputs (828major+329minor)pagefaults Oswaps

4.4 Greedy vs. running time

Finally we give an example on how the usage of the greedy heuristic affects
the running time and solution quality. First we approximate the maximum
outerplanar subgraph of a given graph by using cal [31].

[timo@drill verl] time ./a.out 1 res.txt -mops -cal -no -f1 graphs/opt/cly.rmf

Reading graph from file graphs/opt/cly.rmf
graph: graphs/opt/cly.rmf
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Vertices: 828 Edges: 1749

maximum outerplanar subgraph problem

expl cactus-tree heuristic

SOLUTION: 1186

REPEATS: 1

WORST SOLUTION: 1186

BEST SOLUTION: 1186

AVERAGE SOLUTION: 1186

Total running time: 0.06 seconds.

0.10user 0.00system 0:00.09elapsed 101%CPU (Oavgtext+Oavgdata Omaxresident)k
Oinputs+Ooutputs (785major+369minor)pagefaults Oswaps

The running time is quite short (0.1 seconds) since the algorithm is linear
and no planarity test is performed. This algorithm can be made greedy by
adding as many new edges as possible to the graph obtained using cal heuristic.
Now planarity test is performed 563 times (outerplanarity can be tested using
planarity testing algorithm [39]).

[timo@drill verl] time ./a.out 1 res.txt -mops -gcal -no -fl1 graphs/opt/cly.rmf
Reading graph from file graphs/opt/cly.rmf
graph: graphs/opt/cly.rmf

Vertices: 828 Edges: 1749

maximum outerplanar subgraph problem
Greedy expl cactus-tree heuristic
SOLUTION: 1302

REPEATS: 1

WORST SOLUTION: 1302

BEST SOLUTION: 1302

AVERAGE SOLUTION: 1302

Total running time: 94.53 seconds.

94.43user 0.14system 1:39.75elapsed 94/CPU (Oavgtext+Oavgdata Omaxresident)k
Oinputs+Ooutputs (807major+491iminor)pagefaults Oswaps

The running time of gcal was approximately 940 times the running time of
the cal heuristic! To test the planarity of a planar graph (graph/opt/crack.rmf)
with 10240 vertices and 30380 edges it takes 20.81 seconds using LEDA, so any
algorithm described in this manual that performs planarity test numerous times
(all greedy algorithms and simulated annealing) may have very long running
time.
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Chapter 5

Future plans

The current version of apptopinv uses LEDA, so one goal is to have a version
that does not need any commercial algorithm library. To drop LEDA out, pla-
narity test algorithm should be implemented. The algorithms of Shih and Hsu
[35] and Boyer and Myrvold [5, 6] seem to be good choices. Also new imple-
mentations of data structures and algorithms for sets and their manipulation
are needed. Since apptopinv was originally a combination of different (but very
closely related and similar) programs, some of the data structures and functions
of this version can be implemented and designed in better way. The code is not
very readable, and the documentation of functions and algorithms need tuning.
There exist two linear time algorithms [12, 35] that can be used to search a
maximal planar subgraph in linear time. It would be very interesting to compare
these algorithms against different cactus-tree heuristics for very large graphs.
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Chapter 6

Bugs and known features

Probably apptopinv contains some bugs, so if you meet problems using this
program, please report them to Timo Poranen by email (tp@cs.uta.fi). Also all
kinds of comments are warmly welcome!

Next we give a list of known features of apptopinv:

It takes much longer time to read a graph in gml format than in edge-list
format (the size of the gml file is usually much bigger).

All data that is written to results files is now appended in the end of the
file. In the earlier versions old result file was overwritten.

If a random graph is saved, then the old file is overwritten (if it exists).

The annealing parameters are read every time when the SA is applied. Do
not modify sa_parameters.txt -file between repeats.

The maximum number of (outer)planar subsets for the thickness and out-
erthickness is limited to 1000 (if needed, change the statement
“MAX_PARTITIONS=1000" in file sa_alg.cpp).

It is not any more possible to save traces about the runs as in the earlier
version (see for example [32]). In file sa_alg.cpp the source codes for saving
traces are left, so you if you need them, you have to modify a little a bit
the main file (apptopinv.cpp) and the algorithm files.
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