

University of Tampere

Department of Computer and Information Sciences

HAUTAMÄKI, JUHA: Task-Driven Framework Specialization – Goal-Oriented Approach

Licentiate thesis, 98 pp.

January 2002

Abstract
The importance of reusing approved design solutions is widely recognized in software

engineering. Object-oriented frameworks, design patterns, etc., are ways to reuse ex-

isting knowledge. However, some problems remain, particularly how to guide the ap-

plication developer to reuse so that the design is eventually implemented in a software

project.

FRED (FRamework EDitor) is a prototype of a task-driven architecture-oriented

programming environment that can be used to implement architectural solutions. Ar-

chitecture-specific instructions are given to the tool as specialization patterns; these

formal specifications make it possible to automatically compute how to implement

design solutions during the software development process. FRED manages the im-

plementation process as a gradually progressing work, where each step is recorded

and may have effects to the steps to come. This enables, for instance, documentation

and source code generation that uses application-specific names familiar to the appli-

cation developer. Further, the application developer can be instantly notified if he vio-

lates the architectural rules embodied by the given specialization patterns.

This thesis describes the FRED environment. A goal-oriented approach is intro-

duced to model design solutions as a set of specialization patterns. We also explain

the mechanism to produce a sequence of programming tasks to implement the solu-

tion. To experiment with the environment, an industrial framework was annotated

with thirteen specialization patterns.

Keywords: development environment, framework, framework adaptation, framework
specialization, pattern, software architecture, software engineering, software reuse.

Acknowledgements
The FRED tool and methodology is a result of prolonged co-operation between aca-

deme and industry. First versions of the FRED tool were released during the FRED

project (FRamework Editor for Java – Support for Framework Development and Use)

1997-1999. The project was carried out at the University of Tampere and the Univer-

sity of Helsinki. The project was financially supported by Finnish National Technol-

ogy Agency (TEKES) and several industrial partners: Dycom, ICL Data, Major Blue

Company, Necsom, Nokia Telecommunications, Nokia Research Center, Novo

Group, Profit, Stonesoft, Sun Microsystems, Sonera, TietoEnator, and Valmet Auto-

mation.

Since then, the environment and the concept of representing and implementing

architectural solutions have been further evolved. The current version, FRED 1.2, has

been developed in the JavaFrames project between the Tampere University of

Technology, and the University of Helsinki. The financiers of the JavaFrames project

are TEKES (National Technology Agency of Finland), Nokia Networks, Necsom,

Sensor SC, and SysOpen.

This thesis is closely related to other thesis and papers written during the current

project. Antti Viljamaa [Viljamaa 2001] gives a survey of patterns and frameworks

and explores the use of FRED when systemically defining the layered specialization

interface of the JHotDraw framework [Gamma 2001]. Markku Hakala [Hakala 2000,

2001], in turn, illustrates the core of the FRED system, namely the details of the spe-

cialization patterns and the pattern engine. Developing the FRED methodology and

tool has been intensive and interesting teamwork [Hakala et al. 1997, 1998, 1999a,

1999b, 2001a, 2001b, 2001c, 2001d].

The author would like to thank professor Kai Koskimies and the FRED team,

especially Markku Hakala, for their comments and advices.

i

Contents

1 INTRODUCTION ... 1

2 PROBLEMS IN THE USAGE OF FRAMEWORKS................................. 4

2.1 Development Phase: Creating Framework... 5

2.2 Usage Phase: Deriving Application ... 7

2.3 Evolution and Maintenance Phase... 9

3 SPECIALIZATION WIZARD.. 11

3.1 About Patterns and Piecemeal Growth... 11
3.1.1 Formal Pattern Specification Languages... 12
3.1.2 Tasks and Piecemeal Growth .. 14

3.2 Architecture-Oriented Task-Driven System... 15

3.3 Usage with Frameworks ... 19
3.3.1 Identifying Extension Points ... 19
3.3.2 Goal-Oriented Approach ... 20

4 SPECIALIZATION PATTERNS... 24

4.1 Basic Concepts ... 24
4.1.1 Roles, Contracts, and Program Elements .. 25
4.1.2 Dependencies and Multiplicity ... 26
4.1.3 Properties: Constraints and Templates.. 27

4.2 Casting Process.. 28
4.2.1 Pattern Graph... 28
4.2.2 Generating Tasks... 29
4.2.3 Casting Example ... 32

4.3 Notation .. 35
4.3.1 Role Table ... 35
4.3.2 Pattern Diagram... 36
4.3.3 Example... 38

4.4 About Writing Patterns .. 40
4.4.1 Pattern Modeling and Specialization Patterns... 40
4.4.2 Outlining Specialization Patterns .. 42

ii

5 FRED ENVIRONMENT.. 46

5.1 Overview .. 46

5.2 Pattern Tools.. 49
5.2.1 Pattern Editor... 49
5.2.2 Pattern Catalog .. 50
5.2.3 Architecture View ... 51
5.2.4 Task View ... 52

5.3 Using Frameworks: Patterns across Architectures 54
5.3.1 Specialization Architecture ... 54
5.3.2 Framework Project: Pattern Organization Phase 55
5.3.3 Application Project: Continue Casting.. 57

5.4 Pattern Definition Language (PDL) .. 59
5.4.1 Role Types... 59
5.4.2 Functions ... 61
5.4.3 Expressions.. 65
5.4.4 Tags ... 67

5.5 Experiences .. 68
5.5.1 Benefits.. 69
5.5.2 Problems.. 70
5.5.3 Integrating FRED .. 73

6 CASE STUDY.. 75

6.1 Studying the Framework.. 75

6.2 Constructing Specialization Patterns .. 77
6.2.1 Application Patterns .. 77
6.2.2 Controller- and View Patterns... 78
6.2.3 Service Patterns ... 79
6.2.4 Other Features ... 80

6.3 Constructing and Using Specialization Wizard ... 81

7 RELATED WORK AND CONCLUSION.. 84

References .. 87

 1

1 Introduction
In computer science, architecture, in general, is the conceptual structure and overall

logical organization of a computer or computer-based system from the point of view

of its use or design [Oxford 1989]. Focused on software engineering, software archi-

tecture is the design of the subsystems and components of the software system and

relationships between them [Buschmann et al. 1996]. Further, product line architec-

ture is a collection of patterns, rules, and conventions for creating members of a given

family of software products [Jacobson et al. 1997; Bosch 2000; Jazayeri et al. 2000].

Despite the usefulness of these concepts, there are some problems when implementing

the architectural solution; adapting such an abstract design to the concrete software

system may be error-prone and requires substantial amount of programming skills and

experience.

Object-oriented frameworks [Fayad et al. 1999] can be used to help reusing

software architectures as they implement the crucial parts of product line architec-

tures. A such framework captures the programming expertise necessary to solve prob-

lems in a particular problem domain; it implements the parts of the design that are

common to all applications in that domain, and makes explicit the pieces that need to

be customized by the application developer. Though the frameworks have many bene-

fits when reusing architectural design, some problems remain. The framework devel-

oper must define and implement the architecture for the intended domain and struggle

to make the arising framework flexible and easy to use. The application developer, in

turn, must know which framework(s) to use and how to eventually implement the ap-

plication's logic in terms of the framework.

In the object-oriented community it has been widely noticed that patterns [Alex-

ander 1979; Lea 1994; Gamma et al. 1995; Coplien 1996; Vlissides et al. 1996; Ja-

cobson and Nowack 1999] or similar abstract structures can be used to represent de-

sign solutions and how they should be implemented. In addition, many authors have

stressed the formal specification of this information (see, e.g., [Holland 1993; Alencar

et al. 1996; Meijler et al. 1997; Florijn et al. 1997; Froehlich et al. 1997; Mikkonen

1998; Eden et al. 1999]). Provided with formal specifications, a tool can be used to

 2

support and partially automate the adaptation process of the architecture and the spe-

cialization process of the framework.

Specialization patterns [Hakala et al. 2001a, 2001b] are one approach to for-

mally describe architectural design and how this design should be used during the

software development process. This includes, for example, the intended usage of

frameworks, design patterns, idioms, and other architectural conventions, like how to

comply with some company-specific rules. FRED (FRamework EDitor) is a prototype

of a tool that helps the application developer to reuse the design; it provides architec-

ture-oriented task-driven programming environment that uses specialization patterns

to generate a dynamic sequence of programming tasks to implement the solution.

With a set of specialization patterns, FRED becomes a specialization wizard for the

described architecture.

Particularly, in case of object-oriented frameworks, a set of specialization pat-

terns can be used to map the necessary specialization actions needed to customize the

framework. Augmented with suitable constraints, documentation, and default imple-

mentations for the required code elements, the constructed specialization patterns are

given to the FRED environment. Based on the given information, FRED generates a

dynamically updated task list to actually implement the design. During the normal

software development, the environment keeps track of the progress of the pattern-

related tasks, verifying that the specialization patterns are bound to the context in the

required manner. By doing these automatically generated tasks, step-by-step, the pro-

grammer eventually specializes the framework. This kind of task-driven framework

specialization also agrees with the idea of piecemeal growth [Alexander et al. 1975],

in which the whole emerges from local acts.

The aim of this thesis is to present an idea of general architecture-oriented task-

driven programming environment that provides support for the application developer

when reusing and implementing design solutions. It is also explained how this support

can be created in terms of formal specifications, namely specialization patterns. To

illustrate the concept, it is described how to create a set of specialization patterns for a

framework and how the implemented tool (FRED) is used to specialize the frame-

work. However, the purpose is not to present metrics or principles about what is a

good specialization pattern for a specific framework or how to design frameworks.

 3

We assume a basic knowledge of object-oriented concepts and frameworks. Experi-

ence in an object-oriented programming language or method is helpful but not re-

quired.

To give some background and motivation, the problems of the traditional frame-

work development and usage are shortly discussed in Chapter 2. The concept of spe-

cialization wizard is presented in Chapter 3. Specialization patterns are explained in

Chapter 4. The FRED environment is discussed in Chapter 5. A case framework and

its specialization goals and obtained specialization patterns are covered in Chapter 6.

Due to the confedential nature of the case framework, detailed descriptions are given

in a separate appendix [Hautamäki 2001]. Related work and conclusion are discussed

in Chapter 7.

 4

2 Problems in the Usage of Frameworks
Object-Oriented frameworks reuse domain-specific architectural design. However,

from the standpoint of the application developer, it may be difficult to understand and

use the encapsulated design when specializing the framework. Similarly, from the

standpoint of the framework developer, it is difficult to provide efficient reusable so-

lutions that are easy to use and cover essentials of the application domain. For in-

stance, Fayad et al. [1999] enumerates the following challenges dealing with frame-

works: development effort, learning curve, integratability with other frameworks,

maintainability, validation and defect removal of the framework and derived applica-

tions, efficiency, and lack of standards. In addition, the framework-centered software

development can be divided into the following phases: framework development phase,

framework usage phase, and evolution and maintenance phase, where each phase is

affected by other ones making the process iterative. People have different viewpoints

to the problems depending on the phase they are involved in and if they are actually

developing the framework or using it to derive applications.

To motivate the need of tool-support, an overview of the problems is given. The

framework development phase is discussed in Section 2.1; the problems of this phase

mainly concern the framework developer dealing with domain analysis and imple-

mentation alternatives. During the development phase a tool could be used to imple-

ment general design solutions and coding conventions, or even to utilize other frame-

works. Also, formal specifications could be created to map the intended usage of the

framework itself. The problems of the framework usage phase are discussed in Sec-

tion 2.2; these are encountered by the application developer trying to specialize the

framework. To reduce the learning efforts and speed up the application development,

a tool with framework-specific specifications could be used to guide the application

developer through the specialization process. Finally, the problems of the evolution

and maintenance phase are discussed in Section 2.3. Again, a tool with framework-

specific architectural descriptions could be used as additional technical documenta-

tion.

 5

2.1 Development Phase: Creating Framework

Over and over again it has been noticed that developing extensible and reusable ob-

ject-oriented frameworks for complex application domains is an iterative process,

which requires both domain and design expertise. For instance, Johnson, Foote, and

Russo have discussed how to create frameworks [Johnson and Foote 1988; Johnson

and Russo 1991; Johnson 1997]. Usually the process starts with domain analysis try-

ing to find the reusable design and the extension points, sometimes called "hot spots"

[Pree 1995], making the framework flexible. Identifying the key abstractions and ex-

tension points may be difficult if the framework developers are not familiar with the

problem domain; inexperienced developers should examine applications written by

others and consider writing application in the domain. To help the framework devel-

opment process, a tool may contain a catalogue of high-level solutions and perhaps

more company-specific design decisions that can be used over and over again in dif-

ferent software projects. Otherwise the developers can recall their past experience and

former designs.

The first version of the framework is usually a whitebox framework meaning that

it is mainly specialized by deriving new subclasses and overriding member functions.

The term "whitebox" refers to visibility; due to inheritance the internals of parent

classes are often visible to subclasses. Derived applications point out faults in the

framework and experience leads to improvements, making the development process

iterative. Usually the improvements make the framework more blackbox meaning that

it can be customized by using different combinations of classes in the framework's

component library [Roberts and Johnson 1996; Aksit et al. 1999]. This is due to the

fact that the design of a particular framework system gradually becomes better under-

stood, which leads to components with higher functionality.

In case of frameworks, the iteration is inevitable as changes are motivated by try-

ing to reuse the framework. According to Johnson and Russo [1991] all software re-

quires iteration before it becomes reusable. This follows from the general observation

that software never has a desirable property unless the software has been carefully

examined and tested in terms of the property. The ultimate test for whether the soft-

ware is reusable is to reuse it. It is not possible to reuse software until it has been writ-

ten and it is working, so iteration is inevitable. The only exception is that software

 6

that is a reimplementation of existing reusable software might not need iteration; this

kind of software is actually just a version of the old one, and the iteration took place

already when the old version of the software was designed. Similarly, reusing archi-

tectural design with a supporting tool can be seen as a proven way to implement de-

sign solutions in a domain-specific context.

Because frameworks require iteration and deep understanding of the application

domain, it is hard to keep the framework development phase on schedule. Thus,

framework design should never be on the critical path of an important project. On the

other hand, a use of a framework validates it when the use does not require any

changes to the framework, and helps improve the framework when it points out

weaknesses in it. Hence, designers of a framework should collaborate closely with

application developers. Also, the efforts to create documentation should not be under-

estimated; frameworks are powerful and complex, making them hard to learn and use

without good documentation. For instance, Booch [1994] says that the framework will

never be reused unless the cost of understanding it and then using its abstractions is

lower than the programmer's perceived cost of writing the application from scratch.

From this point of view, it may be very beneficial to use specialization patterns or

similar architectural specifications to map the extension points (or hot spots) of the

framework.

At some point, the framework seems to be good enough to be released. However,

the decision to release the framework may be a risk because no general metrics exist

to explicitly determine if the framework has enough reusability, stability, and docu-

mentation [Poulin 1994]. Releasing an immature framework may have severe conse-

quences; if the framework is not stable, it is difficult to specify the intended usage of

its specialization interface. As a result, this leads to a situation where the derived ap-

plications become obsolete or, at least, need additional maintenance when the frame-

work is modified. Unfortunately, it is not possible to beforehand completely test the

framework against all possible applications that may be derived from it. This is

known as a problem of verifying abstract behavior [Fayad et al. 1999].

 7

2.2 Usage Phase: Deriving Application

Methods to analyze the application domain and to implement object-oriented applica-

tions have been widely discussed by number of authors (see, e.g., [Rumbaugh et al.

1991; Coad and Yourdon 1991; Jacobson et al. 1999]). Briefly, analysis builds a

model of the real-world situation with domain-specific concepts. Based on this infor-

mation, a high-level decision is made about the application's overall architecture and

subsystems. Object-oriented frameworks implementing product line architectures can

help this process as they store experience; problems are solved once and the business

rules and design are used consistently. By providing an infrastructure, the framework

decreases the amount of architectural decisions that the application developer has to

make. Also, when implementing the application there is less code to program, test,

and debug, as the application developer writes only the code that extends or specifies

the framework behavior to suit the requirements of the application. Application de-

velopment with object-oriented frameworks has been discussed, for instance, by

Mattsson [1996] and Fayad et al. [1999].

While frameworks have many advantages when reusing architectural design,

some new problems arise. Application development is seldom based on a single

framework; a typical framework usually provides the design for only a part of a soft-

ware system, such as its user interface, though application specific frameworks some-

times describe an entire application. Thus, the use of frameworks is increasingly

based on the integration with other frameworks, together with class libraries, legacy

systems, and existing components [Fayad et al. 1999]. However, the integration proc-

ess may not be straightforward because the architectural styles [Buschmann 1996;

Shaw and Garlan 1996] of two or more frameworks are too different. These integra-

tion problems arise at several levels of abstraction, ranging from documentation issues

[Hamu and Fayad 1998] to the event dispatching model and other framework-specific

decisions. This is sometimes referred to as architectural mismatch [Garlan et al.

1995].

Using a framework requires substantial amount of knowledge. The application

developer must know which frameworks to use, is there any integration problems be-

tween them, and how they should be specialized. This means that the application de-

veloper must realize that a particular framework is already implementing a part of the

 8

required application-specific solution and identify the similarities between the archi-

tecture of the framework and the architecture of the application. Information is re-

quired about the intended domain of the framework and its appropriateness for the

application under consideration as well as how to actually customize the framework to

create the required functionality.

One of the reasons why learning and using a framework is hard, is that compre-

hending an object-oriented design as such is difficult. Software architecture level of

design is concerned with the description of elements from which systems are built,

their interactions, patterns that guide their composition, and constraints on these pat-

terns [Shaw and Garlan 1996]. But, for instance, Demeyer et al. [1997] has noticed

that the inheritance hierarchy of a software system tells only little about its architec-

ture; inheritance describes relationships between classes, not objects. Although the

features of the implementation language can be used to state some aspects of the

software architecture in the interface-level (e.g., abstract and final methods in Java)

they can express only a fraction of the rules associated with the architecture.

Clearly, conventional object-oriented language structures consisting of class dec-

larations and operation signatures is not enough to explicitly describe the flow of con-

trol and rules between the framework and the specialization. For instance, whitebox

frameworks based on inheritance, require application developers to create many new

subclasses with a substantial amount of code [Johnson and Foote 1988]. While most

of these new subclasses may be simple, their number and interactions can make the

task difficult for an inexperienced programmer. Blackbox frameworks based on object

composition require less coding, but still the rules behind the component composition

may be hard to understand. Thus, in the software development process, a practical

system that smoothly integrates the architectural design with the concrete software

products, and verifies that the programmer obeys implicit architectural rules, could be

very beneficial.

In any case, both novice and advanced programmers will make errors when us-

ing the framework. They may read instructions from the documentation, write the re-

quired source code, and then go on to the next problem without checking or knowing

whether the code is correct. Finding these errors later may be tricky as the frame-

work(s) hides the flow of control, making it hard to trace. With suitable architectural

 9

specifications, a tool can be used to verify the static structure of the source code and

to remind the programmer if some architectural violations are detected. Also, bindings

between the framework and the application become more explicit as they can be

tracked by the tool.

2.3 Evolution and Maintenance Phase

Because of its importance to other applications and software projects, a framework

requires routine maintenance to fix errors, assist clients, and respond to their problems

and requests. Even if the framework itself is robust and accurate, the surrounding

world may change affecting to the architecture and rules of the framework. Alto-

gether, this evolves changes to the framework, its documentation, and tool-support.

These modifications, in turn, may cause serious problems for the clients using the

framework. Thus, after releasing the framework it should be as stable as possible. On

the other hand, it is hard to know if the framework is stable enough without use cases

that verifies its specialization interface and functionality.

During the maintenance and evolution phase of the framework, the framework

developer must understand the application domain, the overall architecture and its ra-

tionale, the reasoning behind the solutions, which part of the overall architecture pro-

vides flexibility at each extension point, and why each design alternative was selected.

This makes a good technical documentation essential as the person maintaining the

framework may not be the original developer. Information is needed at both a high

level of abstraction and at a concrete level of detail. In addition, besides frameworks,

also applications evolve [Lehman and Belady 1985] making it necessary to modify

the framework-related parts of the application. Again, without good documentation it

is hard to get the overall picture and locate and understand the involved software

components or pieces of code. And, of course, if it is noticed that the framework is

functioning incorrectly or lacking some essential features, it causes pressure to change

the framework entirely or implement the required functionality from scratch.

A tool with framework-specific formal specifications, like specialization pat-

terns, may help the maintenance process as it explicitly describes the intended usage

of the framework and its relations to the derived applications. Particularly, maintain-

ing the application becomes easier because the tool can be used to make the bindings

 10

between the framework and the application more explicit. Also, augmented with more

informal documentation, the tool may be useful for the person trying to understand the

framework more deeply. In addition, new ideas and proposals to improve the frame-

work may arise as the system with formal architectural specifications concretizes the

encapsulated design and gives common vocabulary to the framework developers and

clients. On the other hand, efforts are needed to maintain these framework-specific

specifications, too.

 11

3 Specialization Wizard
Influenced by the the experiences gathered from the existing FRED prototype [Hakala

et al. 2001a, 2001b, 2001c, 2001d; Viljamaa 2001] and the ideas of formally describe

and gradually implement architectural design, we propose architecture-oriented task-

driven system that supports incremental, iterative, and interactive use of architectural

design. With a set of formal specifications to specify the architecture and its intended

implementation, the system constitutes a specialization wizard for the architecture.

Using the given specifications as input, the environment is able to generate program-

ming tasks that guide the application developer step-by-step to adapt the encapsulated

design. Besides frameworks, a specialization wizard can be constructed for architec-

tural- and coding convention, like enforcing the use of certain design patterns

[Gamma et al. 1995] or idioms [Coplien 1992; Vlissides et al. 1996].

The general concept of pattern as the basis of formal architectural specifications

and the advantages of applying patterns gradually rather than with one isolated action

are discussed in Section 3.1. As a result, the architecture-oriented task-driven envi-

ronment to manage and partially automate the implementation process of design solu-

tions is presented in Section 3.2. Finally, to demonstrate the outlined system, an over-

view of the framework specialization with the FRED environment is given in Section

3.3.

3.1 About Patterns and Piecemeal Growth

Deploying architectural design to concrete software products means that the applica-

tion developer must provide the individual building blocks that bring the architectural

structure into existence. Rather than implementing the plan at once as an isolated ac-

tion, this can be seen as task-driven, incremental, and iterative process where the ap-

plication developer pursues a set of goals by creating and modifying program ele-

ments like classes, methods, and so on. If the required steps and participants could be

formally specified a generic tool can be used as a specialization wizard that automati-

cally supports this gradual implementation process. Specifying patterns, in general, is

discussed in Subsection 3.1.1. The idea of gradually adapt patterns by executing small

programming tasks is illustrated in Subsection 3.1.2.

 12

3.1.1 Formal Pattern Specification Languages

Architectural design can be expressed as design patterns or similar structures. Origi-

nally, architect Christopher Alexander developed the idea of design patterns to enable

people to design their own homes and communities [Alexander et al. 1977; Alexander

1979]. His pattern language was a set of patterns, each describing how to solve a par-

ticular kind of design problem. The pattern language starts at a very large scale, ex-

plaining how the world should be broken into nations and nations into smaller re-

gions, and goes on to explain how to arrange roads, parking, shopping, places to

work, homes, etc. The patterns focus on finer and finer levels of detail where each

pattern was written in a particular format, leading into the next one(s). Thus, the pat-

terns in the pattern language were generative; besides describing the architecture they

also described how to implement the architecture in practice.

Obviously, as widely embraced in the object-oriented community [Lea 1994;

Gamma et al. 1995; Coplien 1996; Vlissides 1996; Jacobson and Nowack 1999], the

concept of patterns is suitable to describe software architectures, too. For instance,

Gamma et al. [1995] defines a design pattern as a description of communicating ob-

jects and classes that are customized to solve a general design problem in a particular

context. Each design patterns should have a name and it should also describe the

problem and its context, the solution, and the consequences; this suits best for com-

municating generic design alternatives. However, when emphasizing the generativity

of patterns one can describe patterns as a rule or step-by-step instructions like Busch-

mann et al. [1996]. Riehle and Züllighoven [1996], in turn, propose a more general

pattern definition based on separation of the pattern's finite form and its potentially

infinite context. To get a good overview of patterns, see, for instance, Appleton

[1997].

Patterns have many benefits. A pattern is an essay that describes a problem to be

solved, a solution, and the context in which that solution works. It names a technique

and describes its costs and benefits giving software developers a common vocabulary

for describing their designs and also a way of making design trade-offs explicit.

Shortly, patterns describe recurring solutions that have stood the test of time. In prac-

tice, instead of re-inventing architectural design and possible implementation alterna-

tives, patterns allow the solution of problems by providing time-tested combinations

 13

that work. In addition, a framework can be designed, documented and used in terms

of patterns, where each pattern describes how to solve a small part of the larger design

problem. For instance, patterns have been used for documentation of frameworks

[Johnson 1992] and for describing the rationale behind design decisions for a frame-

work [Beck and Johnson 1994]. As long as the patterns are powerful enough to de-

scribe most initial uses of the framework, it will meet some of the needs of the appli-

cation developers.

Though patterns have many advantages, their descriptions and specifications

seem to be rather informal. This makes it hard to provide automatic tool-support and

error recovery. Typically, the documentation of a design pattern uses abstract terms

and fixed set of examples while the application developer tries to understand how the

documentation is related to the current application-specific problem. In addition, there

is no support for error recovery and iteration though the application developer most

probably will make errors and wants to change some decisions.

To automatically support the use of patterns, they must be given with a specific

tool-oriented formalism. We call such formalism a formal pattern specification lan-

guage. Based on the current stage of the application project and the patterns expressed

by the formalism, computations can be made to guide the application developer

through the implementation process. However, like with all non-trivial formalisms,

essential aspects of the original pattern description may become cluttered with many

details making it hard to understand without the tool. Thus, the purpose of the formal

pattern specification language should be to enable pattern-specific computations, like

a generic specialization wizard tool that fills the gap between the pattern and the con-

crete code-level implementation, not to displace the more general documentation.

In general, specifying patterns unambiguously with some formalism is hard with-

out losing their universal applicability; the informal description of the pattern may be

advisedly ambiguous to propose multiple implementation alternatives. Usually, the

constructed specification is not as general as the original pattern description and it

may be necessary to create a set of specifications to cover the most important

alternatives. In addition, if the formalism is not expressive enough, the essential as-

pects and vital information of the pattern may be lost. Altogether, this means that a

 14

single specification given by the formal pattern specification language may represent

only a subset of possible implementation alternatives of the original pattern.

The process to create pattern specifications to express architectural design re-

sembles the process to create reusable software discussed by Johnson and Russo

[1991]. Like with reusable code, the iteration may be necessary as changes are moti-

vated by trying to implement the design in practice. It seems that the specification for

a particular pattern is never accurate enough unless the design has been carefully ex-

amined. In addition, the design may be ambiguous making it even more difficult to

create a complete set of specifications with the used formalism. The ultimate test for

whether the pattern specification is sufficient is to carry out the design with it.

3.1.2 Tasks and Piecemeal Growth

While a formal pattern specification language can be used to specify patterns, a

mechanism is needed to adapt these specifications to the concrete code-level software

implementations. Working with small and meaningful tasks to achieve complex re-

sults seems to be the strategy that people adapt spontaneously. For instance, Carroll

[1990] noticed that rather than reading a manual and trying to understand the whole,

people are more interested in trying to work on real programming tasks to solve

meaningful problems. In addition, when learning and using a new system, users often

skip over crucial material if it does not address their current task-oriented concern or

they try to read several manuals, composing their own instructional procedure on the

fly. It has also been noticed that it is difficult to understand a complex design until it

has been used [Johnson 1992]. Therefore, from the application developer's standpoint,

trying to implement the design in small pieces is more beneficial than studying the

theory at once.

Affected by this kind of intuition, we believe that to be useful and easy to use,

the mechanism to adapt pattern specifications should be based on the idea of piece-

meal growth [Alexander et al. 1975]. Alexander says that a process, which allows the

whole to emerge gradually from local acts, will guide planning and construction. This

piecemeal growth is evolutionary, dynamic, and continuous. Instead of each act of

design or construction being an isolated event creating a "perfect" element, every sys-

tem is changing and growing all the time, in order to keep its use in balance. The acts

 15

to implement the design can be seen as a dynamic sequence of tasks. This task list

cannot be simply expressed by static and linear step-by-step list because a choice

made during the adaptation process may change the rest of the required implementa-

tion completely, making it difficult to outline the process.

Thus, rather than concretizing patterns at once, with a single action, they should

be adapted with dynamically updated task list containing meaningful programming

tasks with task-specific documentation and source code suggestions, guiding the ap-

plication developer through the implementation process. In addition, during imple-

mentation, circumstances may change causing new tasks or making it necessary to

revisit the old ones. This can be seen as a goal-directed and iterative activity, where

the main priority of the application developer is to know how to do something, rather

than to clearly understand why it is done that way. A tool generating a such task list

and tracking the bindings between the pattern specifications and the actual code ele-

ments could be used to speed up the development process and to improve the quality

of the software system. Such a tool would also correspond peoples tendency to work

with trial and error when learning new systems.

3.2 Architecture-Oriented Task-Driven System

A formal pattern specification language can be used to represent architectural design

and the way of this design should be implemented. Particularly, with a suitable for-

malism, an architecture-oriented task-driven system may be used to support and par-

tially automate the adaptation process. The system is architecture-oriented because it

manages and implements software products in terms of architectural specifications.

The system is task-driven because integrating and adapting architectural design is

based on dynamically generated programming tasks; to enable this kind of intelligent

assistance, the system keeps track on the bindings between the given pattern specifi-

cations and the source code. Together the system and the given pattern specifications

form a specialization wizard for a particular architecture. The concept is illustrated in

in Figure 1.

 16

 Application DeveloperSystem Architect
(e.g., Framework Developer)

Patterns

Specialization Wizard

Pattern Engine

�
Tasks
�

�

User actions

Figure 1. Architecture-oriented task-driven system.

The architecture-oriented task-driven system has two kinds of users. System architects

are interested in modeling architectural design in terms of the formal pattern specifi-

cation language to enforce coding conventions and design solutions. For instance, the

framework developer or expert may create a set of pattern specifications to construct a

specialization wizard that enforces the intended usage of the framework across soft-

ware projects. The application developer, in turn, may be searching a suitable solution

for his current problem and adapts the most relevant pattern specifications by execut-

ing the generated programming tasks. From the standpoint of the application devel-

oper, the specialization wizard to adapt a particular design has the following benefits

[Hakala et al. 2001a]:

• Support for incremental, iterative and interactive specialization process. The spe-
cialization wizard provides the application developer a dynamically adjusted list
of fine-grained programming tasks. The application developer should be able to
execute these specialization tasks in small portions, see their effect in the pro-
duced source code, and go back to change something, if needed. In this way, the
application developer has better control and understanding of the process and of
the produced system.

• Specialized instructions. The problem with traditional documentation is that it has
to be given beforehand using abstract terms and fixed set of examples. However,
in an incremental adaptation process the specialization wizard can gather applica-
tion-specific information and adjust the documentation as well. This makes the in-
structions much easier to follow as the documentation adapts to the terms and
structures of the application.

• Architecture-sensitive source-code editing. The architectural rules that must be
followed in the adaptation process can be seen much like a higher level typing
system. In the same sense as the code must conform to the typing rules of the im-
plementation language, it must conform to the architectural rules encapsulated by
the used pattern specifications. Thus, immediate response can be provided as tasks
to fix any violations of these architectural rules.

 17

• Open-ended adaptation process. The adaptation of architectural design should be
open-ended in the sense that it can be resumed even for an already completed ap-
plication. This is important for the future maintenance and extension of the appli-
cation.

The core of the architecture-oriented task-driven system is the pattern engine; actually

it is an interpreter [Aho et al. 1986] for the formal pattern specification language that

takes pattern specifications as input and generates tasks as output. Thus, it is the pat-

tern engine that maintains the dynamic “things-to-do”-list. The application developer

proceeds through the generated tasks while the pattern engine gets notified of the user

actions and generates new tasks to indicate errors and missing pieces of code. If the

application developer completes a task it can be removed from the task list. Corre-

spondingly, if a required program element is missing or the application developer vio-

lates some of the architectural rules implied by the pattern specifications, a new task

is generated to fix the situation. In that way, the design is instantiated gradually and

each task may affect the tasks to come.

The formalism behind pattern specifications must be able to describe the partici-

pants and interactions of the design. Based on this information, the pattern engine

verifies that the application developer obeys the pattern-specific constraints and im-

plements the required participants. Further, because the system continuosly tracks the

bindings between the given pattern specifications and the actual program elements,

the application developer can be instantly informed if a specific program element con-

forms to the pattern. Thus, the environment is able to enforce certain pre-defined cod-

ing conventions and architectural solutions, which can be seen as an advantage when

describing, for instance, the intended usage of a framework.

The pattern engine may also include rules and heuristics to determine if a task

can be completed automatically. For example, tasks to provide method parameters can

be resolved implicitly by analyzing the signature of the method. Usually however, the

system cannot rely on such heuristics alone. By requiring explicit commitment from

the application developer, the specialization wizard may behave in a more predictable

way.

Besides the pattern engine to manage the task list, the environment should pro-

vide source code and project handling facilities to enable normal software develop-

ment. To enable instant feedback and dynamically updated task list, the pattern engine

 18

must be integrated to the other development facilities. For instance, it should receive

notifications from the source editor to calculate violations and errors against pattern

specifications. Thus, as mentioned before, the specialization wizard can be seen as a

higher level typing system.

Another important benefit that comes with the integrated pattern engine is that

documentation can be modified and generated runtime. Consider, for example, in-

structions for framework specialization. The problem with traditional documentation

is that it has to be written before the specialization takes place. Therefore, the docu-

mentation has to be given in terms of abstract concepts of the framework, not with the

concrete concepts of the application. By providing tasks incrementally, the pattern

engine gathers information about the application and customize the documentation

with application-specific terms, reflecting the choices the application developer has

already made. At the same time, when adapting the design to the concrete implemen-

tation, the application developer sees the process step-by-step making it easier to un-

derstand the architectural implications of the design.

Similarly, the source code can be generated that is particularly customized to the

current application-specific context. The interactive nature of the specialization wiz-

ard makes it natural to show the coding suggestions immediately to the application

developer so that he can tailor the code according to the instructions given by the pat-

tern engine. Thus, while the application developer can use the task list and adaptive

documentation to learn the design, he can also concentrate on implementing more

complicated features letting the environment to generate much of the non-interesting

source code. Finally, if the user follows the ever-changing task list, a point is reached

where there is no mandatory tasks left and the design has been bound to the context.

Finally, the development process should be open-ended in the sense that it can be

resumed even for an already completed application. Thus, the specialization wizard

environment must be able to save the current stage of the development process and

the bindings between the pattern specifications and concrete software elements. This

supports the iterative nature of software development.

 19

3.3 Usage with Frameworks

A framework without supporting tools and documentation is often hard to use. There-

fore, to reduce learning efforts and to effectively support the specialization process, a

framework usually comes with manuals and toolkits supporting application develop-

ment. Johnson and Foote [1988] define a toolkit as a collection of high-level tools that

allow a user to interact with a framework to configure and construct new applications.

Ideally, one should be able to construct an application almost without programming,

for instance, by selecting icons representing standard components and application

structures, connecting them graphically and letting the system generate an executable

program. The problem is that there is no general platform to create framework-

specific tool-support. Instead, toolkits are created from scratch, requiring considerable

development and implementation efforts and consuming limited resources of the

framework developers. However, we argue that a suitable formal pattern specification

language and the architecture-oriented task-driven system discussed in the previous

section can be used to constitute a specialization wizard for any object-oriented

framework.

Typically, a framework has a set of extension points (or "hot spots"). The proc-

ess to find these extension points and figure out the intended usage of the framework

is illustrated in Subsection 3.3.1. From the application developer's standpoint, the

framework specialization can be seen as a goal-oriented activity; this is discussed in

Subsection 3.3.2.

3.3.1 Identifying Extension Points

The architecture of a framework contains a set of classes and the way instances of

those classes collaborate that embodies an abstract design for solutions to a family of

related problems [Roberts and Johnson 1996; Johnson and Foote 1988]. Specializing a

framework means that the application developer must finalize the adaptation of the

architectural design partially implemented by these framework elements. Our empiri-

cal experiences with large frameworks have shown that there are two different ap-

proaches to create pattern specifications to describe how the framework should be

specialized; we call these goal-oriented and method-oriented approaches.

 20

The method-oriented approach [Viljamaa 2001, Hakala et al 2001b] assumes that the

framework has a layered structure and its basic concepts are implemented on the

highest layer as abstract interfaces; this kind of white-box framework uses inheritance

and method overriding as a means to provide extensibility. For a such framework, the

method-oriented approach enables systematic mapping of the specialization interfaces

and it also allows automated support to create pattern specifications, as some heuris-

tics (see, e.g., [Krämer and Prechelt 1996]) can be used to identify and specify the us-

age of these interfaces. For instance, template and hook methods can be identified

when trying to inspect the extension points of an object-oriented framework [Pree

1995; Schauer et al 1999]. As a result, the method-oriented approach produces a set of

pattern specifications describing the interfaces of the framework.

The goal-oriented approach, in turn, is based on an analysis of the expected

behavior of the application developer. It assumes that the application developers try to

use the framework by setting meaningful goals that they pursue by doing sequence of

programming tasks. From the system architect that creates the pattern specifications

this requires identification of these application-specific goals and how they should be

achieved by the application developer. Thus, rather than mapping the specialization

interface as such, the goal-oriented approach provides solutions to practical speciali-

zation problems addressing the current task-oriented concern of the application devel-

oper. In this thesis, we concentrate on the goal-oriented approach.

3.3.2 Goal-Oriented Approach

When starting to use a framework, one usually has a particular objective in mind or at

least a hint of the desired outcome. We call such objectives pursued by the application

developer as specialization goals. The solution to achieve a specialization goal may

be well known and documented, or it can be found by examining existing applications

based on the framework and by interviewing the framework developers. This resem-

bles an implementation case [Pasetti and Pree 2000; Pasetti 2001] that describes how

functionality for an application in the framework domain can be implemented using

the constructs offered by the framework.

Achieving a specialization goal means that some of the framework's extension

points must be satisfied. In case of specialization goals, these hot spots are not neces-

 21

sarily isolated from each other; instead, when pursuing the goal, the application de-

veloper may struggle with a number of derived subclasses and methods and their

complex interactions. The informal framework documentation does not necessarily

describe these steps precisely, but has a more general view about the framework and

its use.

As an example, Figure 2 presents specialization goals of a framework that is used

to derive MVC (Model-View-Controller) applications. The MVC paradigm was first

used in Smalltalk environment, and it aims at making a standardized separation be-

tween the graphical user interface and the rest of the application [Krasner and Pope

1988]. It divides the user interface into three kinds of components: models, views, and

controllers. A view manages a region of the display and keeps it consistent with the

state of the model. A controller converts user actions into operations between the view

and the associated model. The example framework provides a skeleton to create such

a system and the framework expert has identified the specialization goals that most

probably will interest the application developer. Note that the example is slightly sim-

plified; new goals may be identified and the goals shown in the figure may be further

divided into more specific sub goals.

ApplicationFactory
Provide factory class to create
application instances. Controller

Create controllers.

View
Implement views.

MVCApplication
Make the application a standard
MVC-application.

Figure 2. Set of specialization goals.

To create goal-oriented pattern specifications the framework expert must recognize

typical specialization goals, analyze the architectural aspects involved in these goals,

and find the required tasks expected to be carried out by the application developer.

Typically, from the standpoint of the application developer, specialization goals con-

stitute a linked structure where achieving one goal leads to another. The order, in

 22

which the specialization goals are pursued, is a recommendation only; the application

developer may revisit the solutions during the framework specialization, providing

more functionality, or undoing previous specialization choices.

Figure 3 illustrates the goal-oriented approach for task-driven framework spe-

cialization. In the figure, the framework expert has used the formal pattern specifica-

tion language to create a set of pattern specifications describing solutions for the iden-

tified specialization goals. The architecture-oriented task-driven system takes these

specifications as input, thus constructing a specialization wizard to specialize the

framework. The pattern engine computes the given specifications against the current

situation, generating tasks to construct or modify application elements. The task list is

updated automatically according to the stage of the application's source code, in

which violated constraints and missing participants are indicated as new tasks. When

doing tasks, the system allows the application developer to select actual code ele-

ments or it may generate default code as instructed in the pattern specifications.

Specialization goals

Framework

Identification

Input

Construction

Patterns

Task-driven framework specialization

Application

Specialization Wizard

Figure 3. Goal-oriented approach for task-driven framework specialization.

One method to construct pattern specifications for a particular specialization goal is to

first derive an example specialization that achieves the goal. This example specializa-

tion helps the pattern modeler, usually the framework expert, to identify the required

program elements and their interactions. This process is similar to object-oriented

analysis on the architecture level: central concepts of the example solution are identi-

fied and associated with pattern elements. Participants to represent object-oriented

concepts like classes and methods are easy to find. However, the solution includes

 23

interactions and other elements, like required method calls, that may not be seen di-

rectly from the example specialization. The construction of pattern specifications is

discussed more precisely in Chapter 4.

 24

4 Specialization Patterns
The concept of specialization patterns [Hakala et al. 2001a, 2001b] can be seen as one

approach to formally describe parts of software architecture and how these parts

should be implemented and integrated in real software products. Constructed speciali-

zation patterns are like formal generative patterns [Alexander 1979] that can be used

systematically under the guidance of the architecture-oriented task-driven system

(FRED) to produce a number of implementations based on the encapsulated design.

Hence, a set of specialization patterns composes a tool-supported pattern language for

a particular system. Currently the concept of specialization patterns has been used for

Java programs, but in principle, they could be used to express design solutions for

other languages like C++ [Stroustrup 1991] and XML [W3C 2001].

The basic concepts of the specialization patterns are introduced in Section 4.1.

The mechanism to automatically generate programming tasks to implement the en-

capsulated design is discussed in Section 4.2. To facilitate the presentation of the spe-

cialization patterns, a textual representation format is given in Section 4.3. The proc-

ess to create specialization patterns for a specific design is discussed in Section 4.4.

The actual implementation of specialization patterns is explained in Section 5.4 when

we are talking about the FRED environment.

4.1 Basic Concepts

To understand specialization patterns and their use, the essential concepts are ex-

plained here. We call the basic building blocks of specialization patterns as roles; they

are used as blueprints for the actual program elements. Associations between roles

and program elements are called contracts. Relations between roles are affected by

dependencies and multiplicity settings. Each role may have a set of properties; con-

straint properties can be used as the basis of structural validation while template prop-

erties enable adaptive documentation and code generation.

Roles, contracts, and program elements are discussed in Subsection 4.1.1, de-

pendencies and multiplicity in Subsection 4.1.2, and properties in Subsection 4.1.3.

 25

4.1.1 Roles, Contracts, and Program Elements

The application consists of program elements. In case of Java, a program element

may be a class, method, field, constructor, or just an arbitrary piece of source code. A

specialization pattern consists of roles where each role represents a program element

or a set of elements in the intended solution; a role is an abstraction of the required

program element(s). By using the given role specifications, the pattern engine (recall

Section 3.2) generates tasks for the application developer. When executing tasks, the

application developer implicitly creates connections between the roles and the pro-

gram elements.

The commitment of a program element to play a particular role is called a con-

tract; hence, the parties of the contract are the role and the program element associ-

ated to that role. If a program element violates its contract(s), the pattern engine may

ask the application developer to fix the element. Whether the program element vio-

lates the contract is determined automatically by checking that the element obeys the

role specification.

When a program element has a contract to play a particular role, that program

element is cast in the role (or the role is cast to the program element). Alternatively,

we can say that the program element is bind to the role. Similarly, creating connec-

tions between the roles of the specialization pattern and the program elements of the

application is called casting or instantiating the specialization pattern. The collection

of contracts is called a cast. Figure 4 illustrates these definitions.

Program
ElementsContracts Roles

Specialization Pattern Cast Software

Figure 4. Roles, contracts, and program elements.

Note that a role may have several contracts, as there can be multiple program ele-

ments bind to the same role. For instance, a role may represent a base class requiring

 26

that the application developer provides that particular base class and casts it in the

role. Another role, in turn, may represent all subclasses of that base class.

4.1.2 Dependencies and Multiplicity

Program elements are not self-contained entities. For instance, when implementing a

Java method it usually requires the return type and the enclosing class. Equally, roles

representing these program elements are not isolated from each other; pre-condition to

cast a program element in a specific role may require that another program element

has been cast in some other role. Intuitively, there is a dependency between two roles

if the one needs the other in some way. To go back to the previous example, a role

representing a Java method may need the required return type expressed by another

role; the method is not syntactically correct until its return type has been specified, so

the other role must be cast first. This leads to the mechanism in which the casting

process is not carried out in one go but dependencies affect the order in which the

casting process proceeds and contracts are made.

Another important concept that affects how the pattern engine generates tasks is

multiplicity. As shown in Figure 4, roles may have multiple contracts, as there can be

multiple program elements cast in the same role. To indicate the number of required

contracts each role has the multiplicity property that defines the minimum and maxi-

mum number of contracts for that role in relation to its dependencies. At this point, to

avoid confusion, we may just think that multiplicity denotes if the role stands for a

single program element or a set of elements. This is more clarified in Section 4.2

when we discuss the casting process.

According to the dependencies and multiplicity, if there is not enough program

elements cast in the role, the pattern engine advises to provide the missing elements.

Practical limits for multiplicity are: one to one (1), zero to one (?), one to infinity (+),

and zero to infinity (*). A specialization pattern with a collection of roles with de-

pendencies and multiplicity settings makes the environment capable of representing

and implementing a complicated architectural design having infinite number of re-

lated program elements.

 27

4.1.3 Properties: Constraints and Templates

A role is usually representing a particular kind of program element. Accordingly, we

discuss of class roles, method roles, field roles, and so on. For each kind of role, there

is a set of properties that can be associated with the role; the meaning of the role is

defined with these properties. Without this additional semantics, the specialization

pattern could only describe the design and the solution in the level of abstract partici-

pants and their dependencies without knowing the actual meaning of those partici-

pants and how they should be implemented.

A property may specify a requirement for the concrete program element cast in

the role; the property is violated if the provided element doesn't fulfill this require-

ment. We call such properties as constraints. For instance, a specific "inheritance"

property may be used to denote that a Java class should extend a particular base class.

Other constraint properties could be, for example, "overriding" and "return type" for

method roles. To provide structural validation, the pattern engine must keep track of

broken constraints and notify the application developer to correct the situation.

Some properties, in turn, can be used for code generation or documentation

rather than specifying requirements for program elements. We call these properties as

templates. For instance, a role may have a "default name" property that specifies the

name of the represented program element; this name can then be used when the spe-

cialization wizard generates a default implementation for that program element. Other

properties could be, for instance, "task title" to generate a text that notifies the

application developer when a new program element should be cast in the role,

"description" to generate role-specific documentation, and "default implementation"

to generate implementation for a new program element.

Roles with template properties enable context-sensitive documentation and

source code generation that adapt to the terms and structure of the application. This is

possible because a template may refer to another role (making the owner role depend

on that other role) and the pattern engine can use the implementation context to gen-

erate text. That is, the previously cast program elements are known by the environ-

ment, making it possible to use this knowledge to generate dynamically updated in-

structions, where changes in the casting process affect the documentation.

 28

4.2 Casting Process

So far, it has been discussed that specialization patterns consist of roles having de-

pendencies, multiplicity settings, and properties. When a specialization pattern is

used, its roles are cast to the program elements. However, during the casting process,

the complexity and terminology of specialization patterns is not shown to the applica-

tion developer; instead, he proceeds step-by-step by doing small application-specific

programming tasks.

The pattern engine considers the given specialization pattern as a pattern graph;

this is discussed in Subsection 4.2.1. Based on the given graph, the pattern engine

generates tasks to guide the application developer during the casting process; this is

explained in Subsection 4.2.2. To illustrate the mechanism a short example is given in

Subsection 4.2.3.

4.2.1 Pattern Graph

Roles of the specialization pattern can be organized into a pattern graph [Hakala et al.

2001a, 2001d]. In this graph roles are denoted by nodes while directed edges are used

to denote the dependencies between them. The multiplicity setting (1, ?, +, *) is

shown after the role name indicating if the role stands for a single program element or

a set of elements. For instance, in Figure 5, there is a pattern graph of a simple spe-

cialization pattern called Inheritance. This specialization pattern specifies a common

situation where the application developer derives subclasses from a particular base

class and wants to override the methods of the base class. The required program ele-

ments, namely the base class and its subclasses, overriding methods, and methods to

be overridden are represented as roles. To demonstrate different kind of roles, the field

and implementation roles have been added to the specialization pattern, too.

DerivedClass * BaseClass

operation field *

implementation

operation +

Figure 5. Pattern graph of the lnheritance pattern.

 29

The pattern graph in Figure 5 has enough information to demonstrate the casting

process and the overall structure of the given specialization pattern. However, as dis-

cussed in Subsection 4.1.3, roles themselves have no fine-grained semantics. Instead,

roles must be augmented with constraint- and template properties. The role-specific

properties of the Inheritance pattern are shown in Figure 6. References to other roles

are indicated with <# r> tags, where r is the name of the referred role. Note that the

reference also implies a dependency between the roles; a role with a property that re-

fers to another role cannot be cast until another role is cast and provides the required

program element for the property. In addition, if the role is referred within a template

property, the tag is replaced by the name of the program element(s) cast in the re-

ferred role; this enables the adaptive documentation. More convenient notation to pre-

sent specialization patterns is given in Section 4.3.

 DerivedClass *
kind=class
description="Subclass of <#BaseClass>. This class should
override the methods of the <# BaseClass> class."
task title="Provide a new subclass for <#BaseClass>."
default name="Derived<#BaseClass>"
inheritance=<#BaseClass>

BaseClass
kind=class
description="The base class."
task title="Provide the base class."
default name="BaseClass"

operation
kind=method
description="Overrides <#BaseClass.operation>."
task title="Override <#BaseClass.operation>."
overriding=<#BaseClass.operation>
default implementation=" /* #Implementation */"

field *
kind=field
description="Field
demonstrating the
use of field roles."
task title="Provide
a new field"

implementation
kind=code
description="Method body for <#DerivedClass.operation>. The body can be generated after the given insertion tag."
task title="Give implementation for the <#DerivedClass.operation> method."
insertion tag="Implementation"
default implementation="//TODO: Create your implementation."

operation +
kind=method
description="The method to be overridden."
task title="Provide a method to be
overridden."

Figure 6. Pattern graph with role-specific properties.

4.2.2 Generating Tasks

The pattern engine uses the given specialization patterns to generate tasks. In case of

Java programs, typical tasks include creation of new program elements, like classes

and methods, as well as modifying their source code to obey the constraints. Figure 7

illustrates the mechanism; computation to automatically update the tasks list is possi-

ble because the pattern engine knows the existing contracts, roles, and program ele-

ments. It also gets notified if the program elements are modified by the application

developer. Tasks are generated role-basis; if a constraint is violated a task is generated

 30

to fix the situation. Similarly, based on the multiplicity settings, a task is generated to

point out or create a suitable program element if there is not enough program elements

cast in the role.

Program
ElementsContracts Roles

Specialization Pattern Cast Software

Fix violation

Fix violation

Provide element

Pattern Engine

Figure 7. Tasks are generated by the pattern engine.

Tasks are either mandatory, optional, unworkable, or complete. A mandatory task

must be completed, optional task may be completed, and unworkable task cannot be

completed until its state changes to mandatory or optional. The order in which the

tasks can be done is defined by dependencies (recall Subsection 4.1.2). For instance,

if the role s depends on the role r, the task to provide a program element for s is un-

workable until the task to provide a program element for r is done; if the role r defines

a specific return type for a Java method, the method cannot be cast in the role s until

the return type is fixed.

The mechanism ensures that when starting the casting process for a specializa-

tion pattern, the first mandatory or optional tasks are based on the roles that are not

depending on any other role. After completing some of these first tasks, other tasks to

cast the depending roles become available; thus, properties in those depending roles

are requiring some information and when that information becomes available new

tasks can be shown in the task list. By using the dependency information and multi-

plicity settings, the pattern engine can determine the order in which the tasks can be

done and if the task is optional or mandatory.

The casting graph, illustrated in Figure 8, can be used to represent the state of

the casting process. In this graph, nodes denote tasks. Directed edges between the task

 31

nodes denote dependency instances corresponding the dependencies defined in the

pattern specification. Labels of the task nodes are ordered pairs, where the first part

denotes the corresponding role the task is based on and the second part identifies the

task among other tasks based on the same role. The state of the task (mandatory, op-

tional, or complete) is placed after the label; for convenience, unworkable tasks are

not shown.

(DerivedClass, 1)
complete (BaseClass, 1)

complete

(operation, 1) mandatory (field, 1)
optional

(DerivedClass, 2) optional

DerivedClass * BaseClass

operation field *

implementation

operation +

Pattern graph Casting graph

Figure 8. A pattern graph and a casting graph of the Inheritance pattern.

In the figure above, there is a casting graph of the Inheritance pattern. In the example

situation, the application developer has already completed the tasks to provide the

base class and a new subclass. In the casting graph, one can see that there is a manda-

tory task to provide at least one operation for the created base class. In addition, there

are optional tasks to provide another derived class and a field for the created subclass.

Note that the task based on the DerivedClass.operation role is unworkable, as this role

depends on BaseClass.operation; the application developer must first provide the

method to be overridden before he can complete this task.

To use pattern specifications effectively, the pattern engine needs a development

environment that works in the interaction with the user. For instance, the FRED envi-

ronment is interactive, notifying the pattern engine whenever the application devel-

oper manipulates the source code. The pattern engine compares the current stage of

the source code to the given pattern definition and updates the casting graph by

changing states of the tasks and adding new ones. FRED shows this casting structure

as a task list related to the current problem; by doing the tasks in the task list, the ap-

plication developer generates or modifies the source code, thus enforcing the pattern

 32

engine to evaluate again. Descriptive names, as well as task-specific adaptive docu-

mentation and source code suggestions are obtained from the properties belonging to

the role that the task is based on.

4.2.3 Casting Example

To demonstrate how the pattern engine casts roles and generates tasks, we use the

FRED environment to adapt the Inheritance pattern step-by-step in figures 9 – 12.

(BaseClass, 1)
mandatory

Task list
Cast program elements

Adaptive documentation

Figure 9. Casting the roles of the Inheritance pattern: Provide the base class.

(DerivedClass, 1)
optional (BaseClass, 1)

complete

(operation, 1) mandatory

Animal

Figure 10. Casting the roles of the Inheritance pattern: Derive a new subclass from Animal.

 33

(DerivedClass, 1)
complete (BaseClass, 1)

complete

(operation, 1) mandatory (field, 1)
optional

(DerivedClass, 2) optional

Animal Rabbit

Figure 11. Casting the roles of the Inheritance pattern: Provide a method to be overridden.

(DerivedClass, 1)
complete (BaseClass, 1)

complete

(operation, 1) complete (field, 1)
optional

(DerivedClass, 2) optional

(operation, 2) optional (operation, 1)
mandatory

Animal Rabbit

getName

Figure 12. Casting the roles of the Inheritance pattern: Implement getName().

In Figure 9, the application developer has started to use the Inheritance pattern; the pat-

tern engine takes the pattern definition and notices that all other roles depend on the

BaseClass role directly or indirectly (recall the pattern graph in Figure 5). Thus, the

algorithm creates a new task (BaseClass,1) to enforce the application developer to pro-

vide the base class. The task is mandatory because of the multiplicity settings of the

role. FRED shows this task in the task list; the descriptive title is obtained from the

 34

"task title" property of the role. In addition, the kind of the required element (class)

and its proposed default name are specified by the properties, too. Note that it is up to

the user interface how the specialization pattern and tasks are presented to the applica-

tion developer; FRED 1.2 uses a simple tree view that shows the cast program ele-

ments on the left and the task list and adaptive documentation on the right.

In Figure 10 the application developer has completed the task (BaseClass,1) by

providing a new base class. The state of this task has been changed from mandatory to

complete. Next, he can complete the tasks (DerivedClass,1) and (operation,1). Again,

FRED shows these tasks in the task list; by selecting a cast program element on the

left, the tasks to continue casting are shown on the right. As shown in the figure, the

adaptive documentation uses the name of the actual base class provided by the appli-

cation developer.

As the casting process continues, the application developer completes the op-

tional task (DerivedClass,1) and derives a new subclass from the base class, as shown

in Figure 11. Again, the pattern engine evaluates and adds a new optional task

(DerivedClass,2) to the casting graph. This is because the role DerivedClass has

multiplicity from zero to infinity; so, there is a chance that the application developer

may create another subclass. Note that the pattern engine is continuously notified for

the changes in the source code; if the application developer modifies the source code

of the subclass and violates the "inheritance" property, a new task is added to the

casting graph to enforce the application developer to fix the situation.

In Figure 11, the application developer prepares to create a new method for the

base class by executing the mandatory task (operation,1). The situation continues in

Figure 12, where the application developer has created the getName method for the

base class. The pattern engine generates a new mandatory task to enforce the applica-

tion developer to override the created method. In addition, because of the multiplicity

settings, an optional task appears to create another method for the base class. At some

point, when doing the tasks in the evolving task list, the application developer has

completed all mandatory tasks and the design has been integrated to the concrete

code-level implementation.

 35

4.3 Notation

To facilitate the presentation of specialization patterns in terms of roles and properties

a textual notation is needed. To keep the presentation simple and readable, we use

role tables explained in Subsection 4.3.1. In addition, to illustrate the overall structure

of specialization patterns, a simple graphical notation called pattern diagram is given

in Subsection 4.3.2. To demonstrate the notation and framework-specific specializa-

tion patterns, an example is given in Subsection 4.3.3. However, this is not a thorough

specification of a complete modeling language like UML [Rumbaugh et al. 1999], but

a more simple notation that is adequate to present the structure of specialization pat-

terns.

4.3.1 Role Table

Usually specialization patterns are managed by the pattern engine, but to discuss and

explain patterns we need an understandable textual notation. In this thesis, to give

specialization patterns a textual format, we use role tables. The notation is illustrated

in Role Table 1; the given role table specifies the Inheritance pattern discussed in the

previous sections.

Inheritance
This specialization pattern describes how to create a base class and derive new subclasses from it.

Role Kind Properties
BaseClass class description: The base class.

task title: Provide the base class.
default name: BaseClass

operation + method description: The method to be overridden.
task title: Provide a method to be overridden.

DerivedClass * class description: Subclass of <#BaseClass>. This class should override the
methods of the <#BaseClass> class.
task title: Provide a new subclass for <# BaseClass>.
default name: Derived<#BaseClass>
inheritance: <#BaseClass>

operation method description: Overrides <#BaseClass.operation>.
task title: Override <# BaseClass.operation>.
overriding: <#BaseClass.operation >
default implementation:
 /* #Implementation */

implementation code description: Method body for the <# DerivedClass.operation> method. The
body can be generated after the given insertion tag.
task title: Give implementation for the <# DerivedClass.operation> method.
insertion tag: Implementation
default implementation:
//TODO: Create your implementation.

field * field description: Field demonstrating the use of field roles.
task title: Provide a new field

Role Table 1. Role table for the Inheritance pattern.

 36

With role tables, each role must be described in terms of its kind and properties. Mul-

tiplicity is indicated after the role name (1, ?, +, *); for convenient, if not explicitly

marked, the multiplicity is one to one indicating that there must be exactly one pro-

gram element cast in the role. Nesting of roles can be used to specify containment re-

lations, which can be seen as a constraint establishing an implicit dependency be-

tween the roles. For instance, if the role r contains the role s, the program element cast

in the role s must be enclosed by the program element cast in the role r. Other proper-

ties are explicitly enumerated.

The values of constraint- and template properties may refer to other roles; in a

role table, such references are of the form <# r>, where r is the name of the referred

role. Note that this reference establishes a dependency (recall Subchapter 4.1.2) be-

tween the roles. By convention, if <# r> appears within a template property, it is con-

sidered as a macro and it is replaced by the name of the program element(s) cast in the

role r. In case of constraint properties, references to other roles imply relationships

that must be satisfied by the program element(s) cast in the role having the constraint.

For instance, <#BaseClass> refers to the Java class cast in the BaseClass role; inside a

template this tag is replaced with the name of the base class, while when used with the

"inheritance" constraint the pattern engine checks the source code against this refer-

ence.

4.3.2 Pattern Diagram

From a pure textual representation, it may be difficult to figure out the overall struc-

ture of the specialization pattern. Pattern graphs (recall Subchapter 4.2.1) may help to

outline the structure, but a lot of the information, like which roles are enclosing other

ones, is not explicitly shown. To make the structure of a specialization pattern more

illustrative, the overall composition of roles can be given as a pattern diagram shown

in Figure 13. Note that the example diagram corresponds the pattern definition graph

shown in Figure 5, but some of the constraints are denoted by visual indicators or with

name conventions.

 37

DerivedClass *

operation

BaseClass

operation +

implementation

field *

Figure 13. The pattern diagram for the Inheritance pattern.

The symbols used in the pattern diagram are summarized in Table 1. In a pattern dia-

gram, roles to represent common language elements, like classes, constructors, meth-

ods, and fields are quite apparent, but roles can also be used to represent an arbitrary

piece of code and issues that have no direct analogy with the current programming

language; for instance, to remind that the application developer should update a par-

ticular configuration file. In the pattern diagram, class roles have thick, method roles

thin, and field roles dashed border. A code role is shown as a box with a bent corner.

Dependencies are denoted by different arcs, name conventions, or visual composition,

where enclosed roles depend on enclosing ones.

Class role. This role represents a Java class.

Method role. This role represents a Java method (or constructor).

Field role. This role represents a Java field.

 Code role. This role represents a piece of code (e.g., a method body).

Issue role. This role can be used to remind important steps or to group other roles.

Inheritance dependency between class roles. Corresponds the "inheritance" con-
straint.

 Dependency between roles.

1, ?, +, * Multiplicity symbols. Multiplicity defines the minimum and maximum number of
program elements that can be cast in a single role in respect to its dependencies.
Practical combinations are: one to one (1), zero to one (?), one to infinity (+), and
zero to infinity (*). For convenient, if no multiplicity symbol is attached to the role,
the multiplicity is one to one.

Table 1. Symbols for pattern diagrams.

 38

4.3.3 Example

To demonstrate the use of role tables and pattern diagrams, we have constructed the

ApplicationFactory pattern shown in Role Table 2. It describes a solution for the cor-

responding specialization goal that was presented in Figure 2. This particular speciali-

zation pattern specifies how the application developer should create a factory class

that is needed to launch applications using the example MVC framework.

Naturally, before the specialization pattern in Role Table 2 can be used, the es-

sential framework elements must be pointed out by the pattern modeler; otherwise it

may be difficult for the application developer to find out the required base classes or

methods to be overridden. Thus, the framework developer creates the specialization

pattern and casts the essential program elements in the framework-specific roles. The

application developer, in turn, must provide the application-specific elements. To

make this division among the roles more explicit, they have been accordingly grouped

in the role table. In addition, we have followed the naming convention that we have

found useful in framework-specific specialization patterns; if a role is assumed to be

cast to a unique program element of the framework, it has the same name as the ele-

ment.

As explained in the previous sections, the casting process begins as the pattern

engine generates tasks based on the given pattern specification. In case of the Appli-

cationFactory pattern, the first tasks are pointed to the framework expert to provide

the base classes and the methods to be overridden. When using the framework, the

application developer continues the casting process and executes the tasks to create

suitable subclasses and to override the required methods. All the time, the environ-

ment keeps track of the bindings between the roles and the program elements, adjust-

ing the documentation and augmenting the task list. The mechanism to deliver spe-

cialization patterns from the framework project to the application is explained in Sec-

tion 5.3, when we are discussing the FRED environment.

 39

AbstractFactory

This specialization pattern describes how to create product classes and a factory class to instantiate them.

 AbstractFactory

createProduct

AbstractProduct

My Factory

getProducts

MyProduct +

createProduct (type)

Instantiation

getProducts

getName

getName

ProductType

Roles played by program elements in the framework

Role Kind Properties
AbstractFactory class description: Base class for factory classes.

createProduct method description: Creates and returns the given product. Override in subclasses.

getProductTypes method description: Creates a new array containing a class object for each product

class. Override in subclasses.

AbstractProduct class description: Base class for products.

getName method description: Returns the product name. Override in subclasses.

Application-specific roles

Role Kind Properties
MyFactory class description: The factory class. This class is used to create products and it

must extend <# AbstractFactory>.
task title: Provide the factory class.
inheritance: <# AbstractFactory>

createProduct method description: Implements <# AbstractFactory.createProduct>.
task title: Implement <# AbstractFactory.createProduct> to create products.
overriding: <# AbstractFactory.createProduct>
default implementation:
/* #Instantiation */
throw new ClassNotFoundException("Unsupported product type " + <# type>);

type parame-
ter

description: The parameter expressing the required type.
type: Class

Instantiation code description: Within the <# MyFactory.createProduct> method create and
return the <# MyProduct> product.
task title: Instantiate the <# MyProduct> product.
default name: Instantiate <# MyProduct>
insertion tag: Instantiation
default implementation:
if (<# type> == <# MyProduct>.class) {
 return new <# MyProduct>();
}

 40

getProductTypes method description: Implements <# AbstractFactory.getProductTypes>.
task title: Implement <# AbstractFactory.getProductTypes> to return available
product types.
overriding: <# AbstractFactory.getProductTypes>
default implementation:
return new Class[] {
 /* #ProductType */
};

ProductType code description: Within the <# MyFactory.getProducts> method add the product
class <# MyProduct> to the class array. This array contains all available appli-
cation types.
task title: Add the product class <# MyProduct> to the class array.
default name: Type <# MyProduct>
insertion tag: ProductType
default implementation:
<# MyProduct>.class,

MyProduct + class description: The product class. This class must extend <# AbstractProduct>.
task title: Provide a new product class.
inheritance: <# AbstractProduct>

getName method description: Implements <# AbstractProduct.getName>.
task title: Implement <# AbstractProduct.getName> to return the product
name.
overriding: <# AbstractProduct.getName>
default implementation:
//TODO: Return the product name.

Role Table 2. ApplicationFactory pattern.

4.4 About Writing Patterns

Though the purpose of this thesis is not to be a comprehensive reference manual or

style guide for pattern writing, it is relevant to give a short introduction to the pattern

modeling. Subsection 4.4.1 illustrates how the common process to write patterns is

related to the process to create specialization patterns. Subsection 4.4.2, in turn, pre-

sents a simple method to outline specialization patterns. To read more about method-

ologies and conventions to write (design) patterns see, for example, Meszaros and

Doble [1998]. The actual formalism to construct specialization patterns is given in

Section 5.4.

4.4.1 Pattern Modeling and Specialization Patterns

Like developing object-oriented frameworks, writing good patterns is difficult; pat-

terns should not only capture the experience they are trying to convey but also explain

how the design could be reused in different circumstances [Appleton 1997]. Creating

patterns is an iterative process that requires deep understanding of the problem. The

validity of patterns is testified by their use; the pattern must be revisited or rejected if

it fails to explain the intended solution and how this solution should be achieved.

 41

According to Gamma et al. [1995], a pattern has four essential elements: The pattern

name that unambiguously identifies the pattern, the problem describing when to apply

the pattern, the solution explaining the elements and relationships that make up the

design, and the consequences describing the results and trade-offs of applying the pat-

tern. In a way, also specialization patterns have these elements; particularly each spe-

cialization pattern has a solution in terms of roles and their interactions. In addition,

specialization patterns may also have problem and consequence descriptions as tem-

plate properties or some other informal documentation attached to them. However, it

should not be forgotten that specialization patterns are formal representations making

them difficult to use without a tool-support, though a tool may be used to generate, for

instance, informal HTML documentation from the role specifications. After all, con-

verting an informal pattern specification, like a design pattern, into some fomalism

usually requires trade-offs of the universality of the original pattern.

Specialization patterns are represented with a formal pattern specification lan-

guage and evaluated with the pattern engine; this makes the process to write and test

specialization patterns to resemble more like a programming project. However, the

general issues taking into consideration when writing patterns hold also with speciali-

zation patterns. For instance, Buschman et al. [1996] summarizes the following crite-

ria that patterns should meet:

• Focus on practicability. Patterns should describe proven solutions to recurring
problems.

• Aggressive disregard of originality. Pattern writers do not need to be the original
inventor or discoverer of the solutions that they document.

• Non-anonymous review. The interested persons trying to use the patterns should
contact the pattern author(s) and discuss with them how the patterns might be
clarified or improved upon.

• Writer's workshops instead of presentation. Patterns should be discussed inside
the development group and attending peoples to seek what is good about the pat-
terns as well as the areas which they are lacking.

• Careful editing. The pattern authors have the opportunity to incorporate all the
comments and insights during the user feedback and writer's workshop before pre-
senting the patterns in their finished form.

In case of specialization patterns, the architecture-oriented task-driven system pro-

vides tools to create and evaluate them in practice. During this process, non-

anonymous review and writer's workshop can be seen as a group of testers or clients

 42

trying to use the constructed specialization patterns with the environment. Specializa-

tion patterns – particularly the framework-specific ones – are not necessarily very

general but try to describe a practical solution for a specific programming problem.

Particularly, if a set of specialization patterns is going to represent the specialization

interface of a framework, they should be thoroughly tested and evaluated before pub-

lication. Feedback from other framework experts and the application developers is

essential to provide a comprehensive specialization support.

4.4.2 Outlining Specialization Patterns

When creating specialization patterns, the pattern modeler should think the design in

terms of roles representing the required program elements. To demonstare the model-

ing process, Figure 14 presents a simple framework that can be used to draw figures.

The framework provides an user interface where the user can select among figure

types and draw them by pressing the "Draw" button. Creating new figure types can be

seen as a specialization goal; the application developer creates new figure classes by

subclassing the Figure base class. These new figure types are provided to the frame-

work system by deriving a manager class from the FigureManager base class and by

overriding the initFigures method.

*
draw the selected figure

manager to get available figures

MainFrame
_manage
_drawBt
_figuresCmb
_canvas

MainFrame(FigureManager fm)
draw()

Figure

draw(Graphics g, int x, int y)
getName()
toString()

FigureManager

_figure
FigureManager
addFigure(Figure f)
getFigures()
initFigures()

MyCircle

draw(Graphics g, int x, int y)
getName()

MyRectangle

draw(Graphics g, int x, int y)
getName()

MyManager

initFigures()

Figure 14. Example specialization and its essential participants.

In the figure above, the pattern modeler has identified the need of new figure types as

a specialization goal; to analyze the participants he has made an example specializa-

 43

tion with couple of figure types and the manager class. By examining this example

specialization, the pattern modeler has marked the program elements as participants

that should be represented when the solution is described. Note that this includes both

the existing program elements provided by the framework and the program elements

that must be provided by the application developer. Usually the application-specific

part must be abstracted to support a variety of possible implementations. For instance,

the MyCircle and MyRectangle classes obviously require a common role in the final

specialization pattern.

After figuring out the participants, the skeleton of the specialization pattern can

be outlined, for instance, by drawing a pattern graph or a pattern diagram as described

in Subsection 4.2.1 and Section 4.3. In Figure 15, the pattern modeler has drafted the

overall structure of the Figure pattern. Roles of the pattern graph are based on the ob-

servations made during the example specialization.

MyFigure + MyManager

addFigure

draw getName

Figure

draw getName initFigures

FigureManager

initFigures

FigureManager

initFigures

Figure

MyManager MyFigure +
initFigures

addFigure

draw

getName

getName

draw

Figure 15. Pattern graph and pattern diagram for the Figure pattern

To make the pattern graph in Figure 15 more illustrative, gray nodes are used to rep-

resent the roles cast to the framework elements. If a participant in the example spe-

cialization needs another participant, a dependency is drawn between the correspond-

ing roles. Similarly, if the role is representing a single program element or a set of

program elements, its multiplicity must be set accordingly. In this way, the structure

of the specialization pattern emerges from the given example specialization. By using

code roles, like addFigure, it is also possible to generate source code dynamically. For

instance, the required piece of code to register new figure types is generated inside the

 44

initFigures method whenever a new figure type is added to the framework system. De-

tails of the casting process are managed by the pattern engine as discussed in the pre-

vious chapters.

Finally, after modeling the overall structure of the Figure pattern, properties are

set for each role (recall Subsection 4.1.3). For instance, constraints are added to en-

force the inheritance and override relations. In addition, template properties are used

to provide adaptive documentation and code templates; for example, the addFigure

role representing a piece of Java code may have the "default implementation" prop-

erty that produces the registration code for new figure types. Thus, the example spe-

cialization can be used to figure out the static structure of the specialization pattern(s)

in terms of roles. The pattern modeler then completes this structure with more detailed

documentation and constraints by augmenting the obtained roles with a set of proper-

ties. The outcome can be tested by giving the specialization pattern to the pattern en-

gine and trying to reproduce the example specialization.

Finding roles and their interaction is not always straightforward. Roles must be

obtained from examples, informal documents, diagrams, discussions with the domain-

experts, or just from the source code of existing applications. This leads to a situation

where we have ambiguous information about how to model the specialization pattern.

It may be necessary to provide multiple pattern variations to model a single design.

Altogether, this makes the pattern modeling iterative; it is common that the pattern

modeler (or the application developer using the pattern) notices that some parts of the

specialization pattern should be modified. This may be dangerous as the existing role

casts may become obsolete. The problem of changing a specialization pattern resem-

bles the problem that occurs if the specialization interface of a framework is changed

so that existing specializations become outdated. Therefore specialization patterns

should be adequately tested before they are utilized in large scale.

Usually a single specialization pattern is not enough to specify a complicated so-

lution. Instead, multiple specialization patterns may be needed to cover various im-

plementation alternatives and subsystems. The outcome is a kind of pattern language

with tightly interrelated specialization patterns. Composing the pattern language to

represent, for instance, the specialization interface of a framework, requires the group-

ing of specialization patterns and determining the order in which they should be used.

 45

The pattern modeler must identify the underlying principles and systems to organize

the specialization patterns together into useful configurations.

 46

5 FRED Environment
FRED (FRamework EDitor) is a prototype of architecture-oriented task-driven devel-

opment environment that utilizes specialization patterns to model and implement de-

sign solutions. FRED has been implemented in Java for Java, and it has been used as a

specialization wizard for large frameworks. First versions of FRED were released in

1998 and 1999 [Hakala et al. 1997, 1998, 1999a, 1999b]. Since then, the environment

and the concept of formalizing and implementing architectural design have been fur-

ther evolved [Hakala 2000; Hakala et al. 2001a, 2001b, 2001c; Viljamaa 2001]. The

current version, FRED 1.2, has been developed in a joint research project between the

Tampere University of Technology, and the University of Helsinki. The project has

been funded by TEKES (National Technology Agency of Finland) and several soft-

ware companies.

The aim of this chapter is to demonstrate FRED as a concrete prototypical envi-

ronment that experiments with the ideas of specialization patterns, specialization wiz-

ards, a pattern engine, architecture-oriented programming, and task-driven framework

specialization, discussed in the previous chapters. An overview of FRED is given in

Section 5.1. FRED has tools to create and use specialization patterns; these are briefly

introduced in Section 5.2. Annotating frameworks with specialization patterns and

specializing them with FRED is explained in Section 5.3. The actual formalism to de-

clare specialization patterns is presented in Section 5.4. Encountered problems and

benefits are discussed in Section 5.5.

5.1 Overview

One of the constituting ideas of FRED is to provide an architecture-oriented task-

driven programming environment that allows the precise specification of architectural

design and its use. In practice this means that the system architect or domain expert

creates a set of specialization patterns to describe how to implement design solutions;

this includes, for instance, the use of design patterns, coding conventions, and frame-

work extension points. Based on the given specialization patterns, the application de-

veloper is then guided with small and context-sensitive programming tasks to achieve

a specific goal. Thus, FRED supports both the implementation of high-level design

solutions – like design pattern [Gamma et al. 1995], architectural conventions [Ven-

 47

ners 1998], and the MVC paradigm [Krasner and Pope 1988] - and low-level domain-

specific design solutions like how to use a particular framework.

As mentioned in Chapter 4, specialization patterns consist of roles having

dependencies, properties, and multiplicity settings. When using a specialization

pattern, its roles are cast to program elements. The use of specialization patterns is

integrated into the FRED environment, so that pattern-based verifications are made

simultaneously with the software development. As a specialization wizard for a

particular architecture, FRED maintains a task list in which missing program elements

and violated constraints are indicated as tasks. All along, the environment ensures the

consistency of the (Java) source code according to the given pattern specifications.

The complexity and terminology of specialization patterns is not shown to the

application developer; instead, the system architect (e.g., the framework expert)

creates the specialization pattern and the application developer follows this

encapsulated solution step-by-step by doing ordinary programming tasks appearing in

the task list. As an integrated development environment, FRED contains a number of views

or tools. Some of the tools are used to manage the creation, selection, and casting of

specialization patterns (Architecture View, Task View, Pattern Catalog, Pattern Editor).

Other tools are needed to provide traditional Java development facilities, like tools to

manage Java projects, source code editing, and compilation (Project View, Packaging

View, Class Outline, Java Editor, and so on). Using specialization patterns with these

tools is closely integrated to the software development process, making FRED an ar-

chitecture-sensitive typing system in which violations against the architecture are in-

stantly notified to the application developer.

A typical user interface of FRED is shown in Figure 16. As an example, the ap-

plication developer has opened a new Java project called PersonManagement to create

a Java application that stores personalia. At some point, the application developer has

noticed that a particular framework, in this case the Red framework [Hakala et al.

2001d; Pree and Koskimies 1999], could be used to provide the user interface facili-

ties to manage the information (this framework is used as an example in Subsection

5.3.2). The selected framework and its specialization patterns – provided by the

framework developer - are shown in the Architecture View (see Subsection 5.2.3). One

of the specialization patterns associated with the selected framework is the RecordType

 48

pattern that helps the application developer to integrate application-specific data struc-

tures to the framework system; in the figure, the application developer has opened this

specialization pattern in the Task View (see Subsection 5.2.4). By doing the tasks in the

task list (recall the casting example in Subsection 4.2.3), either by pointing out the

required program elements or by letting the FRED environment to generate default

implementations, the application developer eventually specializes the framework and

creates a person data structure compatible with the framework system.

Figure 16. The user interface of FRED 1.2.

Note that we call the user interface in Figure 16 "typical", because the user can

customize FRED by opening and closing tools and dragging them around. In addition,

the FRED environment can be extended with plug-in extensions, making it easy to

test new ideas and conventions. In fact, the pattern engine and the current tools are

implemented as plug-ins. Similarly, it sounds very interesting to explore the possibil-

ity to integrate the pattern engine plug-in and the pattern tools with some commercial

Java development environment (e.g., Visual Cafe, JBuilder, or VisualJ++). This is

shortly illustrated in Subsection 5.5.3. However, the FRED API goes beyond the sub-

ject of this thesis.

 49

5.2 Pattern Tools

FRED 1.2 has four tools to manage specialization patterns. The Pattern Editor is a

semi-graphical programming tool that is used to give the exact pattern specifications.

The Pattern Catalog is used to browse the created specialization patterns in the pattern

repository. The Architecture View manages the specialization patterns used in the cur-

rent project; it can also be used to import partially cast specialization patterns from

other (framework) projects. The casting process is completed with the Task View. Ad-

vanced editors and tools may be implemented as the development of FRED continues.

The Pattern Editor is presented in Subsection 5.2.1. The Pattern Catalog is discussed in

Subsection 5.2.2. The Architecture View is introduced in Subsection 5.2.3. The Task

View is presented in Subsection 5.2.4.

5.2.1 Pattern Editor

To give exact specialization pattern declarations, FRED includes a special program-

ming language that is discussed more precisely in Section 5.3. To make it convenient

to create specialization patterns with the language, some kind of editor or program-

ming tool is needed; currently, specialization patterns are created with the semi-

graphical Pattern Editor shown in Figure 17.

Dependency

Constraints

Templates

Utility functions

Figure 17. Pattern Editor.

In Figure 17, the framework developer is creating a specialization pattern called

RecordType. This pattern is used to cover a particular specialization goal; namely, how

the application developer could made his data structures compatible with the user in-

 50

terface facilities provided by the framework. Roles of the specialization pattern are

shown as tree-like structure on the left pane. On the right, there are the dependencies

and properties associated with the selected role. These are used to define the role-

specific constraints and documentation. For instance, the "description" property is a

template that defines the documentation for the role.

Using the Pattern Editor is simple; roles are created with a popup-menu while

properties are set by clicking a corresponding property and writing or selecting a suit-

able expression (expressions are explained in Subsection 5.4.3). Creating a role under

a particular parent role implicitly establishes a containment constraint between the

represented program elements. In addition, multiplicity and dependencies between

roles are given with the popup-menu. As a technical detail, note that in the current

FRED version a dependency must have a name. This differs from the pattern graph

presentation discussed in Subsection 4.2.1 as, in FRED 1.2, the edges in the pattern

graph must be named and references to other roles are made by using these depend-

ency names; however this will be changed in the future, as it is possible to determine

unambiguously the referred program element by using the role names directly. Cre-

ated specialization patterns are stored into the pattern repository; they can be browsed

with the Pattern Catalog tool discussed in the next subsection. Stored specialization

patterns are employed to a particular project with the Architecture View discussed in

Subsection 5.2.3.

Currently, as the development of the pattern engine and the used pattern

specification language has been evolved, we have noticed that XML [W3C 2001]

could be used as a file format for the specialization patterns. A converter has been

implemented that transforms specialization patterns into XML-files and back. This

approach enables XML-based tools to create and manage pattern specifications. It is

also possible to create specialization patterns by writing XML-files without using any

dedicated programming tool, though this may be tedious.

5.2.2 Pattern Catalog

Created specialization patterns are stored into the pattern repository; Figure 18 shows

the Pattern Catalog tool, which is used to browse this repository. Currently there is no

support to categorize or search specialization patterns; instead, they are shown as a

 51

simple alphabetically ordered list. This becomes a problem when the number of spe-

cialization patterns increases; we need a system that structures the specialization pat-

terns in the repository and guides the application developer to select the most relevant

specialization patterns.

Figure 18. Pattern Catalog.

One possible solution to the categorization problem is to group specialization patterns

in the same way than the Java classes are grouped under packages. Pattern providers

could publish their specialization patterns under certain "pattern packages". Another

approach is to attach some kind of selection criterias to the specialization patterns

enabling the use of intelligent pattern selection wizards. Also, as the file format to

store specialization patterns is going to be changed into XML, browsers supporting

XML become available to inspect the repository.

5.2.3 Architecture View

When employing a specialization pattern from the pattern repository, it is natural to

think that the pattern is used as a part of the current software architecture. In FRED, to

represent the software architecture and its subsystems, each Java project is considered

to have a specialization architecture (see Subsection 5.3.1). The specialization archi-

tecture may contain other specialization architectures and employed specialization

patterns. To manage this logical container we use the Architecture View shown in

Figure 19. It gives overall representation of the specialization architectures () and

the employed patterns ().

Figure 19. Architecture View

 52

In the figure above, the application developer has opened the Architecture View for the

PersonManagement project. RedSpecialization is a specialization architecture that has

been imported to the application project from an existing framework project; it con-

tains the specialization patterns provided by the framework developer that can be used

to specialize the framework. In addition, one could import more specialization archi-

tectures to utilize other frameworks and, of course, employ specialization patterns di-

rectly from the pattern repository. To start the casting process, the application devel-

oper opens the Task View that is discussed in the next subsection. Working with

frameworks is explained more precisely in Section 5.3.

Like other pattern tools in FRED, also the Architecture View could be further de-

veloped. The structure of specialization architectures and employed specialization pat-

terns evolves during the development process as the application developer adds or

removes specialization patterns and subsystems (like frameworks). To support this

process, the Architecture View could provide more information about the purpose of

various specialization architectures, specialization patterns, and their intended interac-

tions. In addition, it would be useful to get an overall picture of specialization archi-

tectures in terms of participating program elements and their relationships to the em-

ployed specialization patterns.

5.2.4 Task View

To cast the roles of the employed specialization patterns to actual program elements,

the pattern engine generates tasks for the application developer. The Task View, shown

in Figure 20, is a tool to support this process. The tool represents the opened speciali-

zation pattern in terms of dynamically updated task list, adaptive role-specific docu-

mentation, and program elements that has been cast in the roles so far. The pattern

engine of FRED updates the task list repeatedly as explained in Section 4.2. Typi-

cally, a tool to complete a task is the source editor but it could also be more dedicated

task-specific tool. The source editor is used to write the required code, or the code can

be automatically generated, if possible. The FRED development environment is

tightly integrated with the casting process and the consistency of the (Java) source

code according to the role-specific constraints is verified simultaneously with the

normal software development. Violated constraints and missing program elements

 53

cause new tasks until the whole pattern is instantiated to the application-specific con-

text.

Figure 20. Task View.

As an example, in Figure 20, the application developer has opened the employed Re-

cordType pattern that comes with the imported framework-specific specialization ar-

chitecture. By doing meaningful and relatively small programming tasks, the applica-

tion developer has already created the Person and PersonManager classes. Different

visual indicators can be used to illustrate optional and mandatory tasks, as well as to

even more clarify the casting process. For instance, red circles in the left pane indicate

that there are still some tasks to do with the created classes.

To further develop the Task View, it could be augmented with features that help

the application developer to estimate the required amount of work. For instance, the

tool could estimate the number of required tasks. Also, advanced users may need

more information about the underlaying specialization pattern and its roles. For the

pattern modeler it would be nice if he could modify the underlaying specialization

pattern during the casting process. This approach probably leads, in some level, to the

integration of the Pattern Editor and Task View.

 54

5.3 Using Frameworks: Patterns across Architectures

By definition, software architecture is the design of the subsystems and components

of the software system and relationships between them [Buschmann et al. 1996]. Pat-

terns can be seen as parts or building blocks of this entity, describing and encapsulat-

ing architectural rules and implementation instructions. In FRED, the concept of

software architecture and its subsystems is represented in terms of specialization ar-

chitectures. Each project is considered to have a specialization architecture that, in

turn, may contain other specialization architectures and employed specialization pat-

terns. The concept of specialization architecture is essential in order to understand

how a set of partially instantiated specialization patterns can be passed through the

framework project to the application.

Specialization architectures are discussed in Subsection 5.3.1. Organizing specializa-

tion patterns in framework projects is explained in Subsection 5.3.2. Using the organ-

ized specialization patterns in the application project is discussed in Subsection 5.3.3.

5.3.1 Specialization Architecture

Specialization patterns are used to implement design solutions in software projects.

To group the employed specialization patterns inside the project, FRED uses speciali-

zation architectures. Roughly, the specialization architecture can be seen as an ex-

pression of the actual software architecture or its subsystem. However, in FRED, their

function is to be logical containers for other specialization architectures and employed

specialization patterns; thus, they are not necessarily a comprehensive or accurate im-

age of the actual software architecture. When a specialization pattern is employed

from the pattern repository, it is attached to the selected specialization architecture in

the Architecture View (recall Subsection 5.2.3).

Each project creates its own system of specialization architectures with em-

ployed specialization patterns. If the project is a framework, it may have specializa-

tion patterns that will guide the application developer during the specialization proc-

ess. Hence, to enable the use of specialization patterns originally employed in the

framework project, specialization architectures can be imported from one project to

another. Now, if the application project imports specialization architectures from the

framework one, the contained specialization patterns are imported, too. Thus, for each

 55

specialization architecture, the employed specialization patterns act as an interface to

adapt the architecture. The principle is illustrated in Figure 21.

 Application's architecture

Framework A

Employed
pattern

Program
elements Framework B

Employed
pattern

Imported
architecture

Imported
architecture

Figure 21. Specialization patterns across specialization architectures.

The use of specialization architectures is a kind of architectural composition. When

utilizing a framework, its specialization architectures become a part of the applica-

tion's architecture. With the imported specialization architecture and its specialization

patterns, the application developer continues the casting process and completes the

specialization. In addition, the application developer can import other architectures (or

the same architecture more than once) or employ more general specialization patterns

directly from the pattern repository. Also, the categorization of projects to a frame-

work- or an application project is not strict; intuitively, a project becomes a frame-

work if it has some uncompleted specialization patterns that may be used by other

projects.

5.3.2 Framework Project: Pattern Organization Phase

Specialization patterns are employed from the pattern repository and organized into

specialization architectures. These specialization architectures can then be imported

by other projects to continue the casting process. Therefore, to provide a comprehen-

sive pattern language to specialize the framework with FRED, the framework expert

must create the required specialization patterns, employ them to the framework's ar-

chitecture, and point out the essential framework elements by casting the framework-

specific roles. We call this the pattern organization phase.

To briefly demonstrate the pattern organization phase, a short example is given

here. Framelets are small frameworks consisting of handful of classes and used as re-

 56

usable, tailorable building blocks for creating components [Pree and Koskimies

1999]. The Red framework is a simple framelet used to demonstrate FRED [Hakala et

al. 2001d]. Red provides user interface facilities to maintain a list of Record-objects

and to edit their fields. Typically, the Red framelet is used by deriving a new Record

subclass with some application-specific fields. Once the application developer has

created this new record type, the framelet provides facilities to automatically generate

dialogs to set the values of the instantiated Record-objects. In Figure 22, an applica-

tion is started that uses the Red framelet and defines a new record type for personalia.

In the figure, the framelet has provided a dialog to update the fields of the selected

person.

Figure 22. Typical views provided by the Red framelet.

Clearly, from the application developer's standpoint, one of the specialization prob-

lems is how to create a new record type that complies with the framework system.

The framework expert, in turn, identifies this request as a specialization goal pursued

by the application developer. To construct a specialization wizard for Red, the frame-

work expert models (with the Pattern Editor tool) the expected specialization as a spe-

cialization pattern called RecordType. Solutions to other specialization goals, like how

to support new types of fields in addition to standard types, may be modeled, too. To-

gether these specialization patterns compose a pattern language to specialize Red.

The created specialization patterns are stored into the pattern repository. To or-

ganize specialization patterns inside the framework's specialization architecture and to

cast the framework-specific roles, the framework expert must employ the created pat-

terns in the Architecture View and cast the framework-specific parts in the Task View.

This is illustrated in Figure 23. Without this organization process, the application de-

 57

veloper himself would have to employ these specialization patterns from the reposi-

tory and cast the framework-specific roles.

Employ

Cast framework elements in roles

Figure 23. Organizing specialization patterns in the framework project.

As a conclusion, making framework-specific specialization patterns with FRED 1.2

has the following phases; creation of the patterns, employing them to the framework's

specialization architecture, and casting the framework-specific roles. It may be con-

sidered how this process could be simplified in the future.

5.3.3 Application Project: Continue Casting

Let us now assume that the application developer wants to create a person manager

application using the Red framelet discussed in the previous subsection. After creating

a new project for the application, the application developer selects the framelet from a

library of existing projects. The specialization architecture of Red is imported to the

application project and added as a subsystem to the application's specialization archi-

tecture. The situation is illustrated in Figure 24. The Architecture View shows that there

are two specialization patterns that came with the imported Red framework. The ap-

plication developer decides to work with the RecordType pattern and opens it in the

Task View. In the figure, the application developer has completed tasks to create a new

record type (Person) and some of its methods and fields. Small red circles indicate the

mandatory tasks for the application developer. By doing tasks step-by-step, the appli-

cation developer eventually specializes the Red framelet and enables the Red-based

user interface to edit the person repository.

 58

Patterns from
the framework

Cast application elements in roles

Figure 24. Using framework-specific specialization patterns in the application project.

As we can see in Figure 23 and Figure 24, both the framework expert and the applica-

tion developer works with the same user interface and tools when using FRED. There

is no restrictions on the application project to become a framework if the application

developer adds some partially instantiated specialization patterns. Eventually the sys-

tem of imported specialization architectures may lead to a chain of projects, where the

most abstract project could, for instance, describe a set of abstract interfaces. The sec-

ond project may, in turn, implement essential parts of these interfaces while a third

project completes the specialization. Thus, in a way, FRED supports the use of lay-

ered architectural structures.

 59

5.4 Pattern Definition Language (PDL)

In FRED, the formalism to construct specialization patterns is a special class-based

object-oriented programming language. Here this language is simply called the Pat-

tern Definition Language (PDL). By definition, a programming language is a notation

for writing programs [Sethi 1989]; in this case, the pattern engine is an interpreter

[Aho et al. 1986] that takes a program made with PDL as input and makes the compu-

tation to implement and integrate the specified design solution into the current soft-

ware project.

This section is a tutorial giving the main constructs of the language and how they

are meant to be used. Typically, the best way to learn programming is by doing; by

experimenting and using the language to build up specialization patterns. Subsection

5.4.1 presents the role types and the corresponding PDL base classes. Subsection

5.4.2 explains how role-specific properties are given as functions. Subsection 5.4.3

discusses function expressions. Subsection 5.4.4 explains how to create adaptive

documentation with tags.

5.4.1 Role Types

As mentioned in Subsection 4.1.1, a specialization pattern consists of roles. When us-

ing PDL to represent specialization patterns, roles are declared by deriving subclasses

from the PDL base classes. For instance, to declare a new method role we must derive

a new subclass from the MethodClause base class. To give the role-specific properties,

some of the functions must be overridden in the derived PDL class. In addition, de-

pendencies and multiplicity can be given. This may sound difficult, but with a pro-

gramming tool, like the Pattern Editor, it is rather easy to create roles, set dependen-

cies, and write function expressions.

Roles can be categorized to different role types depending on the kind of pro-

gram element they are used to represent. Currently, PDL is capable to express the role

types enumerated in Table 2. Roles to represent Java classes, constructors, methods,

and fields are quite evident. However, because specialization patterns must be able to

express also complex interactions and more fine-grained details precisely, we need

some additional roles. The issue role is rather versatile; it can be used to group other

roles, or to denote a subject that needs additional attention from the application devel-

 60

oper. The code role is used to express a piece of code, for instance, inside method or

constructor bodies. The parameter, exception, and inheritance roles are needed to ex-

press context-sensitive method parameters, exception types, and inheritance relations.

Note that because of the prototypical nature of FRED 1.2, there is some lability if a

constraint property should actually be a role. For instance, for class roles there is the

"inheritance" constraint property which basically has the same meaning – though less

flexibility - as the inheritance role type. In the future, the set of role types and proper-

ties will be more consistent.

Pattern The root of the pattern structure. Defines the pattern name.
Class Represents Java classes; name, kind (class or interface), base class, and modifiers.
Constructor Represents constructors; modifiers and default implementation.
Method Represents methods; name, return type, modifiers, default implementation, and overriding.
Field Represents fields; name, type, modifiers, and default initialization.
Issue Used as a reminder or to group other roles.
Code Represents a piece of code, for instance, inside a Java method or constructor.
Parameter Represents method- or constructor parameters; name, type and position.
Exception Represents the type of an exception thrown by a Java method or constructor.
Inheritance Represents a context-sensitive inheritance relation between two Java classes.

Table 2. FRED role types.

In FRED, role types are declared as PDL classes. Each role type has a corresponding

base class that defines a suitable set of properties and the semantics associated with

that role type. The base classes are shown in Figure 25; when we are creating a new

role with the Pattern Editor we are actually deriving a new PDL class from one of these

base classes. Thus, when declaring a specialization pattern with PDL, the modeler

creates the corresponding roles by subclassing particular base classes. Constraint and

template properties are given simply by overriding some of the inherited functions

(see the next subsection). As a PDL interpreter, the pattern engine of FRED checks

the application against the constraint properties and generates tasks as explained in

Chapter 4. Note that for historical reasons, PDL classes for various role types have the

"Clause" suffix and the root class for the specialization pattern structure is named

"Contract"; this will change in the future, when a new version of PDL and the pattern

engine is released.

 61

Contract

JavaClause

defaultModifiers: String

Object

class: Class
toString: String

OperationClause

defaultImplementation: String
signature: String

array: ClassClause
defaultName: String
description: String
java(String): ClassClause
name: String
parent: Clause
self: Clause
taskDescription: String
taskTitle: String

Clause

type: ClassClause

ExceptionClause

defaultType: String
parameterNumber: String
type: ClassClause

ParameterClause

source: String
tagString: String

CodeSnippet

Issue

type: ClassClause

InheritanceClause

ConstructorClause
defaultReturnType: String
returnType: ClassClause
overriding: MethodClause

MethodClause

defaultType: String
defaultInitializer: String
type: ClassClause

FieldClause

defaultKind: String
defaultInheritance: String
inheritance: ClassClause
longName: String

ClassClause

Figure 25. Base classes of PDL to represent different role types.

Technically speaking, the current Pattern Catalog tool actually shows the subclasses of

the Contract class stored in the pattern repository when it enumerates the available

specialization patterns. The Architecture View and the Task View tools, in turn, are deal-

ing with the instantiated PDL objects. For instance, when a specialization pattern is

employed from the pattern repository to the current project (in the Architecture View),

the corresponding PDL classes are instantiated. Also, when it is said that a program

element is cast in the role, or the application developer makes a contract between the

element and the role, the program element is actually bound to a particular PDL ob-

ject instantiated from the derived PDL class.

5.4.2 Functions

Each PDL class comes with a set of functions to express role-specific properties. The

value of the property is defined as the return value of the corresponding function. For

template properties the return value is a string expression while for constraint proper-

ties it is a reference to a particular role. Depending on the semantics of the current

property, the return value is then used to check constraints or to generate adaptive

documentation or source code. The base classes and functions of PDL used in FRED

 62

1.2 are enumerated in Table 3. Here the functions are divided into three categories:

utility functions (), constraint functions (), and template functions (). Utility

functions, like the parent function, cannot be overridden in the derived subclasses.

Function expressions are discussed more precisely in the next subsection.

Object
Base class of all PDL classes.

class: Class
Returns the PDL class of this object.

toString: String
Returns this object as string expression.

 Clause

Base class of PDL classes declaring roles.
defaultName: String
Returns the default name of this PDL object. Default expression: "<#name>".

description: String
Returns description. This is the role-specific documentation.

taskDescription: String
Returns task description. This is the role-specific documentation for the generated task to cast
the role. Default expression: "<#description>".

taskTitle: String
Returns task name for the generated task to cast the role. Default expression: "Provide <#de-
faultName>".

array(String): ClassClause
Returns a new ClassClause object that represents an array of Java classes represented by this
PDL object. This function takes the Java class name as a parameter.

java(String): ClassClause
Returns a ClassClause object representing a particular Java class. This function takes the Java
class name as a parameter.

name: String
If this PDL object is bound to a program element the function returns the element’s name,
otherwise it returns the PDL object’s name (i.e., the role name).

parent: Clause
Returns the parent PDL object containing this object.

self: Clause
Returns this PDL object itself.

 Contract

Declares the root of the specialization pattern structure. Declaring a new specialization
pattern is started by deriving a new subclass from this base class.

 JavaClause

Common base class for PDL classes declaring Java-specific pattern roles.
defaultModifiers: String
Returns default modifiers for the Java code element. For fields the default expression is
"private". For classes, methods, and constructors the default expression is "public".

 63

ClassClause
Declares a class role. New class roles are created by deriving new subclasses from
this base class. It can be used to define name, kind (class or interface), modifiers,
and base class of the represented Java class.

inheritance: ClassClause
Returns a ClassClause object representing the type that must be inherited by the Java
class.

defaultInheritance: String
Returns the name of the default type to be inherited by the Java class.

defaultKind: String
Returns the kind of the Java class (interface or class). Default expression: "class".

longName: String
Returns the long name of the Java class. If no Java class has been bound to this PDL
object, evaluates the defaultName function.

 FieldClause

Declares a field role. New field roles are created by deriving new subclasses from
this base class. It can be used to define type, modifiers, and default initialization of
the Java field.

type: ClassClause
Returns a ClassClause object representing the type of the Java field.

defaultType: String
Returns the default type name of the Java field. Default expression: "int".

defaultInitializer: String
Returns the default initialization statement for the Java field.

 OperationClause

Base class for PDL classes declaring Java operation roles, i.e., methods and con-
structors.

defaultImplementation: String
Returns the default code that is used when the code is generated for the Java opera-
tion.

signature: String
Returns the signature of the Java operation.

 ConstructorClause

Declares a constructor role. New constructor roles are created by deriving new
subclasses from this base class. It can be used to define modifiers and default
implementation of the Java constructor. Note that context-sensitive parameters
are defined with the ParameterClause classes, exceptions with the Exception-
Clause classes, and constructor bodies with the CodeSnippet classes.

 64

MethodClause

Declares a method role. New method roles are created by deriving new sub-
classes from this base class. It can be used to define return type, modifiers, de-
fault implementation, and override relation of the Java method. Note that con-
text-sensitive parameters are defined with the ParameterClause classes, excep-
tions with the ExceptionClause classes, and constructor bodies with the CodeS-
nippet classes.

returnType: ClassClause
Returns a ClassClause object representing the return type of the Java method.

overriding: MethodClause
Returns a MethodClause object representing the Java method to be overridden by
the Java method bound to this PDL object.

defaultReturnType: String
Returns the default return type name of the Java method. Default expression:
"void".

 ParameterClause

Declares a parameter role that is used to describe a single context-sensitive method or
constructor parameter. New parameter roles are created by deriving new subclasses from
this base class. It can be used to define type and place number of the parameter.

type: ClassClause
Returns a ClassClause object representing the type of the parameter.

defaultType: String
Returns the default type name of the parameter. Default expression: "int".

parameterNumber: String
Returns the place number of the parameter as string expression. Default expression: "1".

 ExceptionClause

Declares an exception role that is used to describe a context-sensitive exception thrown
by a Java method or constructor. New exception roles are created by deriving new sub-
classes from this base class. It can be used to define type of the Java exception.

type: ClassClause
Returns a ClassClause object representing the type of the Java exception.

 InheritanceClause

Declares an inheritance role that is used to describe a context-sensitive inheritance rela-
tion between Java classes. New inheritance roles are created by deriving new subclasses
from this base class. It can be used to define the type to be inherited.

type: ClassClause
Returns a ClassClause object representing the type to be inherited.

 65

CodeSnippet

Declares a code role that is used to denote a specific piece of code inside a Java method
or constructor. New code roles are created by deriving new subclasses from this base
class.

source: String
Returns a string expression representing the piece of code. The string expression is given
as normal Java code with some optional tags, which are replaced with application-
specific names when the code is inserted into the application's source code.

tagString: String
Returns the identifier, which is used to locate the insertion point. This identifier can be
written between the /*# */ tag to the suitable location in the application's source code,
e.g., /*#myIdentifier*/. The code is inserted below this tag. If the identifier is not defined or
if it is not found, the application developer must explicitly insert the code.

 Issue

Declares an issue role that can be used to group other roles or to denote concepts which
are hard to formalize or have no direct analogy with the current programming language;
e.g., to remind that the application developer should update a particular configuration
file. Issue roles are created by deriving new subclasses from this base class.

Table 3. PDL base classes and functions used in FRED 1.2.

Actually, in PDL, also role classes are considered as functions; using a role or de-

pendency name in an expression returns a set of program elements cast to that role.

We call such functions role functions. If there are no program elements cast to the

role, the role function returns an empty set.

5.4.3 Expressions

Constraint- and template properties are set by implementing functions. The base class

of the role may have default implementations but if they cannot be used, properties

are set by overriding the corresponding functions. A function contains an expression

that is evaluated when the function is called. The result of the evaluation is returned

and used as the value of the property. For instance, by overriding the overriding func-

tion, a PDL class declaring a method role sets a constraint for the represented Java

method. During the casting process, after a particular Java method is cast to the role,

the overriding function is evaluated by the pattern engine to check that the actual Java

method overrides another Java method that is cast in the referred role.

Writing expressions to override PDL functions is rather straightforward. An ex-

pression can contain role names (considered as functions returning a set of cast pro-

gram elements), and other function calls separated by dots. The result of the expres-

sion must obey the function's return type. Each role establishes a namespace and

 66

names in the same namespace must be unique. Names are resolved by searching the

current namespace and the namespaces of the referred roles and so on to the root of

the specialization pattern. For example, the expression "Base-

Class.operation.signature" evaluates the signature function in the operation role en-

closed by the BaseClass role enclosed by the root of the pattern structure. Though

there may be multiple Java methods cast in that operation role, the system associates

the expression with the relevant one, determined by the casting graph.

However, as mentioned in Subsection 5.2.1 when discussing the Pattern Editor,

there is some unnecessary complexity in the current version because the name of the

referred role cannot be used directly. Instead, the dependency between two roles must

be named (except the implicit containment relation) and the name of that dependency

must be used. For instance, if a method role depends on the role BaseClass.operation,

we must use the given dependency name when writing the expression; we may name

this dependency "OVR" and define it to represent the dependency between the current

role and BASE.operation where "BASE", in turn, is another dependency name declared

in the enclosing role and referring to the BaseClass role. Now the expression for the

overriding function turns from " BaseClass.operation" to "OVR". Figure 26 illustrates

the situation.

DerivedClass * BaseClass

operation field *

implementation

operation +

BASE: BaseClass

OVR: BASE.operation

Figure 26. Pattern graph with named dependencies.

The use of additional dependency names will be removed in the future as it is possible

to unambiguously determine the program element cast in the referred role without us-

ing explicitly given dependency names. Also, to avoid unnecessary complexity, we

have not used dependency names in the notation for specialization patterns, though

they are actually used when the specialization patterns are created with the Pattern Edi-

tor.

 67

As a PDL interpreter, the pattern engine of FRED utilizes the given function expres-

sions and enforces the application developer to obey the role-specific constraints.

Checks are made simply by evaluating functions and comparing the result against the

program element(s) cast to the role. Similarly, the template functions are used to gen-

erate adaptive documentation and source code by evaluating string expressions. Be-

cause the pattern engine is integrated to the source editor facilities, violated con-

straints can be instantly detected when the application developer modifies the source

code of the application; violated constraints effect tasks to repair violations.

5.4.4 Tags

Rather than roles and program elements, some functions contain string expressions

that may be used to generate documentation, task titles, default implementations, and

so on. To make this text dynamic, string expressions may contain macro tags enumer-

ated in Table 4.

<#expression> This macro is expanded with the string that is
obtained when the given expression is evaluated.

<%expression> This macro is expanded with the string that is
obtained when the given expression is evaluated.
The first letter of the string is written upper case.

Table 4. Macro tags for template properties in FRED 1.2.

A macro tag is expanded with the string that is obtained when the expression inside

the tag is evaluated. Thus, the result of the string evaluation may vary, depending on

the previously made actions. This means that unlike with traditional documentation,

the role-specific documentation can adapt the application-specific terms that were un-

known when the documentation was given. Further, the generated source code may be

customized with application-specific names. Note that if the expression inside a tag

evaluates a PDL object, FRED implicitly converts this object to string expression by

calling its toString method.

To illustrate the use of macro tags, consider that the pattern modeler wants to

give a short description for a role representing a particular Java class. The modeler

has derived a new subclass from the ClassClause base class to represent the desired

Java class; the description function is overridden with the following string expression:

 68

The base class of <#name> is <#BASE> that has operation <#BASE.myMethod.signature>

Here it is supposed that "BASE" is the name of the dependency that has been declared

between the current class role and the role representing its base class. The role re-

ferred by "BASE" has a method role myMethod, which in turn has the signature func-

tion inherited from the MethodClause base class; thus, the macro tag

"<#BASE.myMethod.signature>" returns the signature of the Java method cast to the

myMethod role. In PDL, each role class inherits also the name function that returns the

name of the role or the names of the program elements cast to that role; here the

macro tag "<#name>" simply returns the name of the Java class cast to the current

class role.

Another example; the string expression below could be used to override the de-

faultName function for a particular method role. Here it is assumed that MyField is a

specific field role. For instance, if the name of the actual Java field (that is bound to

the MyField role) is "button", the string expression evaluates "getButton". Thus, this

template specifies a naming convention for a method associated with a particular

field.

get<%MyField>

Augmented with hyper text links and macro tags, the FRED environment constructs a

flexible documentation and source code that adapts to the current task-specific prob-

lem of the application developer. This can be seen as an advantage when the applica-

tion developer is trying to learn or use a complex design solution.

5.5 Experiences

Besides minor experiments, like the JavaBeans programming [Sun 2001] and the Red

framelet [Hakala et al. 2001d; Pree and Koskimies 1999], FRED has been applied to

two major frameworks: a public domain graphical editor framework by Erich Gamma

(JHotDraw) [Gamma 2001] and an industrial framework by Nokia [Bonnet 1999].

JHotDraw is a well-structured, relatively large (about 150 classes), yet sophisticated

Java framework for implementing graphical editors. It enables the user to define vari-

ous kinds of figures as well as handles to grab them, connectors to link them together,

and tools to manipulate them. About ten patterns were needed to annotate the main

parts of the specialization interface of JHotDraw [Viljamaa 2001]. The industrial

 69

framework, in turn, has about 300 classes and it is intended for creating GUI compo-

nents for a family of network management systems. After analysing the specialization

goals of the framework, a collection of thirteen patterns was defined to cover a major

part of its specialization interface. These are shortly discussed in Chapter 6.

So far, the experiences gained from various case studies have been encouraging,

showing that the FRED approach is sufficiently powerful to define the specialization

interface of a real framework, and that FRED 1.2 – though still a prototype - scales up

for industry-sized frameworks. Benefits of FRED are discussed in Subsection 5.5.1.

The encountered problems are presented in Subsection 5.5.2. The possibility to inte-

grate FRED with a third party development environment is shortly discussed in Sub-

section 5.5.3.

5.5.1 Benefits

Besides and due to the general benefits of architecture-oriented task-driven system

enumerated in Section 3.2 (support for incremental, iterative and interactive speciali-

zation process; specialized instructions; architecture-sensitive source-code editing;

open-ended adaptation process), FRED enables extensive applicability, reduced learn-

ing efforts, intelligent code generation, and restricted specialization.

Extensive applicability. Although the original motivation of FRED was to sup-

port the framework specialization process, it turned out that the architecture-oriented

task-driven approach has much wider scope. Due to the extremely general character

of the underlying concept, FRED can be used to support all kinds of architectural

conventions and rules. For instance, we have used FRED to support JavaBeans pro-

gramming, where the framework is thin if non-existent and the architecture relies on

just a set of architectural and coding conventions.

Reduced learning efforts. The incremental specialization process with context-

sensitive specialization instructions facilitates the understanding of the framework and

architectural design by supporting learning-by-doing. During this process, the user

may experiment with different aspects of the architecture; the environment illustrates

the intended usage of design solutions by generating new tasks to fix possible errors

and to provide missing participants. In a way, FRED resembles a human tutor, which

rather than giving a lecture with abstract terms and beforehand, guides the process

 70

continuously using the terms related to the specific task at hand. Hence, FRED can be

used also as a training aid in a company, complementing traditional framework

documentation.

Intelligent code generation. In addition to novice users, also the expert users are

served. While the specialization process can be actually carried out by persons who

are not thoroughly familiar with the framework, an experienced user can utilize FRED

to automatically produce a lot of essential and strictly regulated, but uninteresting

code. Unlike with other wizards and development environments, the code is not gen-

erated as large and static lump. Because also the code generation proceeds piecemeal,

the application developer is not overwhelmed by the generated code but can reason

the rationale of it.

Restricted specialization. To ensure quality and robustnes of software products,

it is often essential that programmers obey some company related rules and conven-

tions. By providing the specialization interface as specialization patterns, FRED can

be used to restrict and remind programmers during the development process. Though

this may sound limiting, it assures that the essential aspects will be perceived by the

application developers.

5.5.2 Problems

Though FRED has many advantages compared to traditional programming environ-

ments, it is still a prototype. The problems enumerated here are categorization, reus-

ability, dependencies across patterns, kinds of dependency, verification of methods,

debugging, environment, and incomplete implementation. Minor bugs that are not

relevant to the scope of this thesis are not discussed here. Various problems to imple-

ment design patterns are discussed, for instance, by Bosch [1998] and Soukup [1995].

In any case, additional functions and role types would increase the expression power

of PDL, making it possible to create even more sophisticated tool-support.

Categorization. In the current version, the created specialization patterns cannot

be categorized in the pattern repository; they are shown as a simple list in the Pattern

Catalog tool. This becomes a problem when the number of patterns increases. We need

a system that guides the user to select the most suitable patterns. One possible solu-

tion is to categorize patterns in the same way than the Java classes are categorized un-

 71

der packages. Pattern providers could publish their patterns under certain "pattern

packages". Another approach is to attach some kind of selection criterias to the spe-

cialization patterns enabling the use of intelligent pattern selection wizards.

Reusability. One of the main problems is that specialization patterns cannot be

easily used to derive new patterns. The structure of a specialization pattern is stati-

cally declared as PDL class declarations, and to define a new slightly different pattern

we must create a copy of the original pattern and modify the PDL code (with the Pat-

tern Editor); thus, there is no "inheritance" mechanism between pattern definitions.

This makes it difficult to reuse specialization patterns as building blocks of other spe-

cialization patterns. For instance, a framework could use a specialization pattern that

models a general design solution but the documentation of that pattern cannot be

changed to be more convenient for the application developer. In the current version,

the framework expert must create a new slightly different framework-specific copy of

the original specialization pattern, save it to the pattern repository, and finally instan-

tiate it to the framework project. However, it would be more convenient to create a

new specialization pattern and reuse the original as much as possible.

Dependencies across patterns. The current implementation doesn't support de-

pendencies between the roles of the separate specialization pattern declarations. How-

ever, specialization patterns may be closely related requiring common program ele-

ments during the casting process. Now this can be only mentioned in the role-specific

documentation and the pattern modeler must rely on the alertness of the application

developer; after using one of the related specialization patterns, when instantiating the

second one, the application developer must explicitly point out the already associated

program element. Alternatively, separate specialization patterns could be imple-

mented as one big pattern structure. But this approach doesn't sound very elegant, like

trying to create one monolithic entity, and it only gets around the actual problem.

Therefore, we are extending the model for increasing modularity within individual

specialization patterns.

Kinds of dependency. If the role s depends on the role r, it means that the role s

cannot be cast before the role r is cast. However, it would be useful if we could add

more complicated semantics to the dependency relations. For instance, it could be

useful to say that the role s cannot be cast if the role r is cast. Adding a comprehensive

 72

set of dependencies and making it possible to create dependencies over specialization

patterns would substantially increase the expression power of PDL.

Verification of methods. FRED does not provide techniques to verify the seman-

tics of a method, that is, to check the behaviour of a software system. FRED provides

an extended architecture-specific typing system, augmented with capability to gener-

ate default implementations, but there is no way to programmatically check that the

application developer really makes sensible actions inside the code. Defining the ab-

stract semantics of a method (e.g., by pre- and post-conditions) and checking the im-

plementation against such specifications is beyond the current research scope. How-

ever, FRED could be augmented with a richer set of statically verifiable constraints.

Debugging. Debugging specialization patterns is not supported. At least the

checking of the syntax of PDL expressions (e.g., mistyped dependency- and role

names) would be helpful. Now the pattern modeler must instantiate the pattern and

use it step-by-step with the Task View to find out possible errors. As the experience

about pattern modelling increases, more sophisticated tools may be implemented.

Environment. The current PDL implementation doesn't effectively support other

programming languages than Java. However, specialization patterns to generate and

handle various textual configuration files, XML, C++, etc. would be useful. Also, the

tool set of FRED could be integrated into some 3rd Party IDE, making it more profes-

sional; we do not see any reason why this integration could not be done, provided that

the IDE offers reasonable integration capabilities, especially to access its source edi-

tor. We argue that the concept of specialization patterns doesn't inherently exclude a

system to support other languages and task-driven environments. The integration is

shortly discussed in the next subsection.

Incomplete implementation. Because of the prototypical nature of FRED 1.2,

there are some low-level problems deriving from the incomplete implementation of

the current FRED version and PDL. For instance, the current version doesn't support

Java inner classes; they cannot be bound to the pattern roles making it difficult to

work with the code where inner classes are used. However, the concept of specializa-

tion patterns doesn't make such limitations.

 73

5.5.3 Integrating FRED

Figure 27 illustrates how the FRED system could be integrated with a third party de-

velopment environment. The main components of FRED are: the pattern repository to

store specialization patterns, the FRED project management to handle FRED-specific

information for projects, the pattern engine to update the task list and manage the

casting process, and the pattern tools (Pattern Catalog, Pattern Editor, Architecture View,

Task View) to provide the user interface and enable the use of specialization patterns.

Pattern Editor

Task View

Pattern Catalog

Architecture View

Third Party IDE

browse

edit

save

import
save

cast

notify changes

update tasks

Pattern
Repository

FRED
Project Management

Pattern Tools

import

Pattern Engine

do tasks

generate code

Figure 27. Integrating FRED with third party IDE.

To use specialization patterns effectively, the development environment must work in

the interaction with the application developer. For instance, the FRED environment is

incremental, notifying the pattern engine whenever the user manipulates the source

code with the source editor. The pattern engine compares the current stage of the

source code to the given pattern definition and updates the internal casting structure

by changing states of the tasks and adding new ones. The Task View shows this casting

structure as a task list related to the current problem; by doing the tasks in the task list,

 74

the application developer generates or modifies the source code, thus enforcing the

pattern engine to evaluate again.

To cast roles to program elements and to continuously check the role-specific

constraints the pattern engine must have an access to the parse information maintained

by the development environment. This includes the details of classes, methods, fields,

and constructors. In addition, it may be necessary to obtain the source code of a par-

ticular program element, like the body of a method or a constructor and do some

FRED-specific parsing. Currently we have made some very tentative experiments

with third party development environments and the results have been encouraging. In

principle, we could perhaps turn a suitable Java development environment into archi-

tecture-oriented task-driven system. Clearly, this topic belongs to the future works of

FRED and must be carefully examined.

 75

6 Case Study
Nokia produces a family of NMS (Network Management System) and EM (Element

Manager) applications that are used to manage the network or network element. They

have a Java GUI platform developed to support the implementation of the graphical

user interface parts for the variants of this product family [Bonnet 1999]. The purpose

of this case study is to annotate the GUI framework with specialization patterns so

that FRED can be used as a specialization wizard when creating user interfaces with

the platform. The main work of the case study consists of becoming familiar with the

framework, identifying its specialization goals and extension points, annotating the

framework with a set of specialization patterns, writing documentation, like speciali-

zation instructions to be attached to the patterns, testing the installation, and reporting

the work.

The process to study the framework and to find out specialization goals is dis-

cussed in Section 6.1. The construction phase and the obtained specialization patterns

are presented in Section 6.2. The pattern organization phase as well as the use of the

constructed specialization wizard is summarized in Section 6.3. The case framework

is confidential, thus, technical details are omitted. Details of the constructed frame-

work-specific specialization patterns are presented in a separate appendix [Hautamäki

2001].

6.1 Studying the Framework

The most difficult and time consuming part of the case study was to learn the frame-

work and to analyze the use of the specialization interface. Though the case frame-

work had good documentation, the source code was not available, nor any realistic

use cases. However, the author learned the essentials of the framework in couple of

weeks and was able to create a draft of the required specialization patterns. First the

specialization goals were found by reading the documentation. Then, as discussed in

Subsection 4.4.2, the specialization patterns were constructed by deriving example

specializations to achieve the observed specialization goals and by analyzing the re-

sulted participants.

The specialization goals of the case framework are shown in Figure 28. The con-

structed specialization patterns are enumerated under the corresponding specialization

 76

goals. In the figure, the specialization goals are grouped into three sections. Firstly, it

is supposed that the application developer starts by providing a specific factory class

to launch the application, provides a main controller that makes the application com-

patible with the framework system, and implements the main window. Secondly, to

create other views, like dialogs and frames, the application developer must implement

additional view- and controller classes as described by the used MVC paradigm.

Thirdly, the application developer may utilize features like the internationalization

service or the clipboard. The order, in which the application developer pursues these

specialization goals is a recommendation only; solutions can be revisited during the

life cycle of the specialization process, providing more specific functionality, or undo-

ing previous specialization choices.

Corba services, application tramboline,
visual component library,

Internationalize
(I18n)

Use the online help framework

Enable clipboard functionality
(Clipboard)

Enable drag and drop

Create controllers for subviews
(SubController, DialogController,
PanelController, InternalFrameController)

Implement subviews
(SubView, DialogView, PanelView,
InternalFrameView)

Provide factory class to create application instances
(ApplicationFactory)

Make the application a standard
MVC application
(MVCApplication)

Implement main view
(MainView)

Figure 28. Specialization goals of the case framework.

Note that the map of the specialization goals is not necessary complete; instead, new

problems may arise during the use of the case framework, forcing the application de-

veloper to invent new ways to specialize the framework. These empirical experiences

can be used as a feed-back to refine the existing specialization patterns and to create

new ones. Also, because of the limitations of the current FRED implementation, not

all of the specialization goals can be efficiently supported by specialization patterns.

 77

6.2 Constructing Specialization Patterns

As discussed in Subsection 4.4.2, constructing a specialization pattern requires that

the participants of the desired outcome are analyzed and represented as roles and their

interactions. In the case study, we have used the available documentation and some

example specializations as a source of the analysis. As shown in Figure 28, the spe-

cialization patterns to pursue the specialization goals can be organized as patterns to

make the application compatible with the framework system, patterns to implement

controllers and views, and patterns to utilize services and other features of the case

framework. During the pattern modelling process, iteration was occurred as each spe-

cialization pattern was tested by trying to re-produce the corresponding example spe-

cialization. Similarly, the attached role-specific documentation was continuosly revis-

ited.

Based on the categorization of the specialization patterns, the constructed appli-

cation patterns are presented in Subsection 6.2.1, the controller- and view patterns in

Subsection 6.2.2, and the service patterns in Subsection 6.2.3. Due to the confidential

nature of the case framework, detailed descriptions with role tables and pattern dia-

grams are given in a separate appendix [Hautamäki 2001].

6.2.1 Application Patterns

The specialization patterns in Table 5 are categorized as application patterns because

they are used to associate a particular application with the framework system and to

create the main controller and main window for it. The ApplicationFactory pattern de-

scribes how an application is instantiated with a specific factory class. The MVCAppli-

cation pattern specifies how to make the application a standard MVC application in

terms of the case framework. The MainView pattern defines the application's main user

interface and the interactions between the user interface and the main controller.

After using the patterns in Table 5, the application developer should have a

working skeleton application compatible with the framework's system; it can be

launched with the factory class and it has the main controller and the corresponding

main view. To create dialogs, panels and frames the application developer uses the

controller- and view specialization patterns discussed in the next subsection.

 78

ApplicationFactory

This specialization pattern defines the constructional relationship between an application and
the factory class used to create this application. One should use the MVCApplication pattern
to make the application a standard MVC application, and the MainView pattern to build up the
main window.

MVCApplication

Each application instance created with the ApplicationFactory pattern should be a standard
MVC application. The MVCApplication pattern defines the required functionality for such an
application. This includes the creation of the application's main controller. After transforming
the application into MVC application, one should use the MainView pattern to provide the
main view. Controller- and view patterns can be used to create other user interface elements
like dialogs and frames.

MainView

This specialization pattern defines the application's main user interface and the interactions
between the user interface and the main controller. After creating the main user interface, one
should use controller- and view patterns to create other frames, dialogs, etc.

Table 5. Application patterns.

6.2.2 Controller- and View Patterns

The case framework is based on the MVC paradigm [Krasner and Pope 1988]. The

aim of this architecture is to provide a clear separation between the graphical user in-

terface and the rest of the application. As explained in the framework's documenta-

tion, the fundamental principles in the case framework are that every view object is

managed by exactly one controller object and that every controller is managed by a

parent controller. In addition, there are different kinds of controllers that handle dif-

ferent kinds of views. The view-controller interactions may concern the call-backs

from the view to the controller, triggered by user actions, or the orders from the con-

troller to the view.

To support the use of the MVC system, we have created specialization patterns

to create suitable controller and view pairs. These specialization patterns are enumer-

ated in Table 6. A new frame window can be created with the SubController and Sub-

View patterns. Panels can be created and used with the PanelController and PanelView

patterns. Dialogs, in turn, are produced with the DialogController and DialogView pat-

terns. Finally, internal frames (windows opened in the desktop area of the parent win-

dow) can be created with the InternalFrameController and InternalFrameView patterns.

 79

SubController

The SubController pattern is used to create controllers for new frame windows. It describes a
parent-child relation between a parent controller (e.g., the application's main controller) and a
subcontroller handling a new frame window. After using this pattern, one should use the Sub-
View pattern to create the frame's user interface.

SubView

The SubView pattern is used to create user interface for new frame windows.

PanelController

The PanelController pattern is used to create controllers for panel components. It describes a
parent-child relation between a parent controller and a panel controller handling the panel.
After using this pattern, one should use the PanelView pattern to create the panel's user inter-
face.

PanelView

The PanelView pattern is used to create user interface for new panel components.

DialogController

The DialogController pattern is used to create controllers for dialogs. It describes a parent-
child relation between a parent controller and a dialog controller handling the dialog. After
using this pattern, one should use the DialogView pattern to create the dialog's user interface.

DialogView

The DialogView pattern is used to create user interface for new dialogs.

InternalFrameController

The InternalFrameController pattern is used to create controllers for internal frames, i.e., win-
dows opened in the desktop area of the parent window. It describes a parent-child relation
between a parent controller (must be the main controller or other frame controller) and an in-
ternal frame controller handling the internal frame. After using this pattern, one should use the
InternalFrameView pattern to create the internal frame's user interface.

InternalFrameView

The InternalFrameView pattern is used to create user interface for new internal frames.

Table 6. Controller- and view patterns.

6.2.3 Service Patterns

In addition to the MVC system, the case framework provides other features which are

useful for building applications, like internationalization, clipboard, and various GUI

components. Unlike the MVC system, some of these features are more like compo-

nents or behavioral aspects of the application. For instance, the use of the internation-

alization service is typically splattered inside methods of the view- and controller

classes.

As an example, we have implemented specialization patterns for some of the sub

architectures of the case framework. The I18n pattern is used to internationalize user

interface components. The Clipboard pattern, in turn, can be used to enable clipboard

 80

facilities for arbitrary user interface components. Other features of the case frame-

work that could be supported by FRED are drag and drop functionality and the system

to create online help, like tooltips, etc.

I18n

The case framework contains classes to be used when creating global applications. The in-
ternationalization handles strings, colors, fonts, and icons. The data for these is stored in lo-
cale specific property files. The handling of the files is normally done by the framework sys-
tem. The I18n pattern defines how to use the internationalization service.

Clipboard

The Clipboard pattern defines how to transfer data between components and the clipboard.
Each component type should have a specific adapter that handles the data transfer. However,
note that the standard Swing JTextField and JTextArea classes and so also the components
inherited from those base classes support text copy/paste internally.

DragAndDrop 1

Drag and drop is a Java feature first introduced in Java 2 environment. There are several sup-
porting classes in the case framework that can be used to reduce the amount of code needed
in normal drag and drop cases. However, to enable the drag and drop feature, the application
developer must implement number of classes dealing with the drag source and the drop
target. Clearly, a specialization pattern could be used here to support the use of this complex
mechanism. Though the specialization pattern for drag and drop is not currently implemented,
it would be similar (and more complex) to the Clipboard specialization pattern.

HelpFramework 2

The online help framework provides the GUI designer a way to add help to the GUI applica-
tion and standardises help between GUIs of applications. It contains methods for GUI applica-
tions and visual help request mechanisms for the users of the applications. There should be
no major obstacles to construct a specialization pattern to support the usage of the online
help framework. The specialization pattern would be similar (and slightly more complex) to the
I18n specialization pattern.

Table 7. Service patterns.

6.2.4 Other Features

The constructed specialization wizard for the case framework is not a slot machine

that independently generates applications; some decisions cannot be automatized and

some aspects cannot be effectively supported by FRED. As discussed in Subsection

5.5.2, one of the main problems of FRED 1.2 is the lack of behavioral verifications;

this makes it difficult to support solutions that involve changes in method bodies.

Thus, FRED is more suitable to express structural solutions, like how to create MVC

application, than behavioral aspects.

1 The DragAndDrop pattern is not currently implemented.

2 The HelpFramework pattern is not currently implemented.

 81

For instance, to ease writing multi-threaded code the case framework includes a col-

lection of classes. Typically, using these classes means that the application developer

creates a new thread with few lines of code and implements the application-specific

logic. From the standpoint of FRED, the place where this thread is created nor the ap-

plication-specific logic cannot be specified beforehand, unless the application domain

is very limited. During the implementation, benefits of the specialization pattern

would be minimal.

Similarly, using a specialization pattern to support the usage of individual com-

ponents, like buttons and scroll bars, could be tedious. In addition, there are existing

RAD (Rapid Application Development) tools that can be used to compose the user

interface with these GUI components. However, if the usage of the component is part

of a more complex architectural solution, FRED could be used at some point to teach

or guide the application developer.

6.3 Constructing and Using Specialization Wizard

As described in Subsection 5.3.2, the pattern modeler must create a framework project

and organize the framework-specific specialization patterns. The organization is done

by employing the constructed specialization patterns from the pattern repository and

placing them into the specialization architectures of the framework project. Because

the specialization goals and the corresponding specialization patterns are already

categorized into three sections (recall Figure 28), it is natural to create a specialization

architecture for each of these groups. Also, to ensure that the application developer

will use right base classes, override particular methods, and so on, some of the roles

must be cast to these framework elements. The pattern organization phase is illus-

trated in Figure 29. After organizing the specialization patterns, the framework project

is closed and ready to be utilized by the application developer.

The application developer uses the case framework by importing its specializa-

tion architectures and the contained specialization patterns. Figure 30 illustrates the

situation. In the figure, the application developer has created a new application pro-

ject. Because the user interface of the application must be implemented with the case

framework, the application developer imports the specialization architecture of the

framework project. To make the application compatible with the framework system,

 82

the application developer must use at least the ApplicationFactory, MVCApplication,

and MainView patterns.

Employ

Cast framework elements in roles

Figure 29. Organizing the specialization patterns for the case framework.

Patterns from
the framework

Cast application elements in roles

Figure 30. The application developer is specializing the case framework.

One of the issues that this case study can be criticited is that the obtained specializa-

tion wizard has not been used by ordinary application developers creating real indus-

trial applications; such use cases would most propably point out some weaknesses and

missing specialization patterns. However, in the case of small example applications,

 83

the system worked satisfactorily. For instance, when making the application compati-

ble with the MVC system, most of the required source code can be generated auto-

matically. Also, the specialization wizard helped the application developer to remem-

ber some non-trivial method invocations and implementations. For a novice user, the

specialization wizard was illustrative, making it easier to start making compatible ap-

plications. One of the most important uses of the constructed specialization wizard

could be its suitability to teach programmers as they are simultaneously creating

meaningful applications with the case framework.

 84

7 Related Work and Conclusion
FRED (FRamework EDitor) is a prototype of a task-driven architecture-oriented pro-

gramming environment that can be used as a specialization wizard to adapt architec-

tural design. Specialization instructions are given to the tool as specialization patterns

[Hakala 2001, Hakala et al. 2001a, 2001b]; these formal specifications make it possi-

ble to automatically compute how to implement architectural solutions during the

software development process. This includes, for example, the intended usage of ob-

ject-oriented frameworks [Fayad et al. 1999] and other architectural conventions, like

design patterns [Gamma et al. 1995], and idioms [Coplien 1992; Venners 1998].

The main advantage of FRED is that it manages the adaptation and specialization

process as a gradually progressing work, where each step is recorded and may have

effects to the steps to come. This enables, for instance, documentation and source

code generation that uses application-specific names familiar to the application devel-

oper. Further, the application developer can be instantly notified if he violates the ar-

chitectural rules embodied by the given specialization patterns. The system can be

used both to learn the described architectural solution and to rapidly generate much of

the non-interesting source code, letting the application developer to concentrate more

complex issues.

One of the constituting ideas behind FRED is the concept of patterns [Alexander

et al. 1975, 1977; Alexander 1979] and, as noticed by number of authors in the object-

oriented community, their applicability to describe software architectures (see, e.g.,

[Lea 1994]). For instance, design patterns [Gamma et al. 1995], metapatterns [Pree

1994, 1995], architectural patterns [Buschmann et al. 1996], modeling patterns [Coad

1992; Coad et al. 1995], idioms [Coplien 1992; Vlissides et al. 1996], analysis pat-

terns [Fowler 1997], and cookbooks [Krasner and Pope 1988, Pree 1995] are informal

description about a particular object-oriented implementation problem and its solu-

tion. In this connection, we should also mention antipatterns [Akroyd 1996; Brown et

al. 1998] describing common bad design and how to avoid it.

The close relationship between patterns and frameworks was noted, for instance,

by Johnson [1992] when he proposed using design patterns as an aid to document

frameworks. Since then, patterns have been used to provide higher level descriptions

 85

of frameworks [Hueni et al. 1995; Schmidt 1997]. Many authors (e.g., [Riehle 2000]

and [Florijn et al. 1997]) have also recognized the close relationship between the

framework's flexibility points or "hot spots" [Pree 1995] and design patterns.

Typically, patterns and cookbooks are rather informal when explaining the prob-

lem and its solution. For instance, a cookbook is a documentation containing problem-

specific instructions that describe in an informal way how to use a framework. How-

ever, instructions for specializing a framework cannot be expressed as a static and lin-

ear step-by-step task list, because a choice made during the specialization process

may change the rest of the list completely. Also, it is common that the application de-

veloper makes mistakes and revisits the implementation continuosly; this kind of in-

cremental and iterative software development is not directly supported by informal

pattern descriptions. Thus, formal specifications are needed to enable incremental,

iterative, and interactive tool-support with error recovery capabilities and to make the

modeling of the solution more systematic.

One of the earliest works to specify architectural solutions were contracts [Helm

et al. 1990; Holland 1993]. The proposed mechanism used pre- and post conditions to

monitor the program execution. Thus, unlike with specialization patterns, contracts

are used to specify reusable program fragments and restict their behavior at run-time,

not to verify architectural rules at development time while typing in source code.

Since contracts, number of formalisms have been proposed to specify patterns

and frameworks. For instance, hooks [Froelich et al. 1997] are semi-formal templates

for describing the extension points of a framework. A hook represents the required

sequence of actions as an algorithm that is intended to be carried out by the applica-

tion developer. UML-F [Fontoura et al. 2000], in turn, is a UML [Rumbaugh et al.

1999] extension to specify the usage of a framework. These UML-F descriptions can

then be executed with a special framework instantiation tool. However, the approach

utilizes standard UML case tools, not a FRED-like incremental, iterative, and interac-

tive programming environment.

One approach is LePUS [Eden et al. 1999; Eden and Grogono 2001] that is a

symbolic logic language for the specification of recurring structural solution aspects

of patterns. Further, Eden et al. [1999] have implemented a tool that locates, gener-

ates, and verifies pattern instances based on LePUS formulas. Yet another logic based

 86

formalism is presented by Alencar et al. [1996] that resembles the FRED system in

that they recognize the possibility to implement a pattern by doing a sequence of

tasks.

Besides formalisms, attempts have been made to create tool-support for adapting

architectural design. For instance, active cookbooks [Pree et al. 1995] outlines a sys-

tem to provide guidance for framework specialization. However, unlike with FRED, it

is not explained how the system keeps consistent during the software development.

The SmartBooks system [Ortigosa and Campo 1999; Ortigosa et al. 2000], in turn,

seem to be more precise, letting the user to write instantiation rules describing the

necessary tasks to specialize a framework. This reminds the use of specialization pat-

terns in the FRED environment, but while SmartBooks assumes that the application

developer precisely knows what kind of application he wants, our approach is more

forgiving, guiding the application developer to gradually construct the application.

Also, it seems that SmartBooks doesn't keep up the bindings between the rules and the

produced source code.

Various other tools are, for example, COGENT [Budinsky et al. 1996], fragment

tools [Florijn et al. 1997], PSiGene [Schütze et al. 1999], Pattern-Lint [Sefika et al.

1996], SNIP [Wild 1996], POE [Kim and Benner 1996], and FACE [Meijler et al.

1997]. Typically, these tools provide a way to specify and instantiate patterns. What

makes them different from the FRED environment is that our approach is a pragmatic

one, assuming that the application developer is not going to instantiate patterns as per-

fect monumental manifestations, but rather with small backwardable steps. Thus, our

specialization patterns can be seen as small pattern languages [Alexander 1979] for

writing software, while FRED provides a meaningful programming environment for

that purpose.

 87

References
[Aho et al. 1986] Aho A., Sethi R., Ullman J.: Compilers – Principles, Techniques,

and Tools. Bell Telephone Laboratories, 1986. Reproduced by Addison-Wesley.

[Akroyd 1996] Akroyd M.: AntiPatterns – Vaccinations Against Object Misuse. In:
Session Notes of Object World West Conference, San Francisco, August 1996.

[Aksit et al. 1999] Aksit M., Tekinerdogan B., Marcelloni F.: Deriving Frameworks
from Domain Knowledge. In: Fayad M., Schmidt D., Johnson R. (eds.): Building
Application Frameworks – Object-Oriented Foundations of Framework Design.
Wiley, 1999.

[Alencar et al. 1996] Alencar P., Cowan C., Lucena C.: A Formal Approach to Archi-
tectural Design Patterns. In: Proceedings of the 3rd International Symposium of
Formal Methods Europe, 1996, 576-594.

[Alexander 1979] Alexander C.: The Timeless Way of Building. Oxford University
Press, New York, 1979.

[Alexander et al. 1975] Alexander C., Silverstein M., Angel S., Ishikawa S., Abrams
D.: The Oregon Experiment. Oxford University Press, 1975.

[Alexander et al. 1977] Alexander C., Ishikawa S., Silverstein M., Jacobson M., Fiks-
dahl-King I., Angel S.: A Pattern Language – Towns, Buildings, Construction. Ox-
ford University Press, New York, 1977.

[Appleton 1997] Appleton B.: Patterns and Software – Essential Concepts and Termi-
nology. Object Magazine Online, Vol. 3, No. 5, 1997.
Internet: www.enteract.com/~bradapp/docs/patterns-intro.html, August 2001.

[Beck and Johnson 1994] Beck K., Johnson R.: Patterns Generate Architectures. In:
Proceedings of the 8th European Conference on Object-Oriented Programming,
Bologna, Italy, July, 1994.

[Bonnet 1999] Bonnet S.: Java MVC++ Framework for NMS GUI Applications. Mas-
ter of Science Thesis, Department of Information Technology, Tampere University
of Technology, August 1999.

[Booch 1994] Booch G.: Designing an Application Framework. Dr. Dobb's Journal,
Vol. 19, No. 2, February 1994.

[Bosch 2000] Bosch J.: Design & Use of Software Architectures – Adopting and
Evolving a Product-Line Approach. Addison-Wesley, 2000.

[Bosch 1998] Bosch J.: Design Patterns as Language Constructs. Journal of Object-
Oriented Programming, Vol. 11, No. 2, May 1998, 18-32.

[Brown et al. 1998] Brown W., Malveau R., McCormic H., Mowbray T.: AntiPatterns
– Refactoring Software, Architectures, and Projects in Crisis. Wiley, 1998.

http://www.enteract.com/~bradapp/docs/patterns-intro.html

 88

[Budinsky et al. 1996] Budinsky F., Finnie M., Vlissides J., Yu P.: Automatic Code
Generation from Design Patterns. IBM Systems Journal, Vol. 35, No. 2, 1996, 151-
171.

[Buschmann et al. 1996] Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal
M.: A System of Patterns - Pattern-Oriented Software Architecture. Wiley, 1996.

[Carroll 1990] Carroll J.: The Nurnberg Funnel - Designing Minimalist Instruction for
Practical Computer Skill. Massachusetts Institute of Technology, 1990.

[Coad 1992] Coad P.: Object-Oriented Patterns. Communications of the ACM, Vol.
35, No. 9, September 1992.

[Coad et al. 1995] Coad P., North D., Mayfield M.: Object Models – Strategies, Pat-
terns, and Applications. Prentice Hall, 1995.

[Coad and Yourdon 1991] Coad P., Yourdon E.: Object-Oriented Analysis - Second
Edition. Prentice-Hall, 1991.

[Coplien 1996] Coplien J.: Patterns. SIGS, New York, 1996.

[Coplien 1992] Coplien J.: Advanced C++ Programming Styles and Idioms. Addison-
Wesley, 1992.

[Demeyer 1998] Demeyer S.: Analysis of Overridden Methods to Infer Hot Spots. In:
Proceedings of the ECOOP'98 Workshops, Demos, and Posters (Workshop
Reader), Brussels, Belgium, July 1998, LNCS 1543, 1998, 66-67.

[Demeyer et al. 1997] Demeyer S., Meijler T., Nierstrasz O., Steyaert P.: Design
Guidelines for Tailorable Frameworks. Communications of the ACM, Vol. 40, No.
10, October 1997, 60-64.

[Eden et al. 1999] Eden A., Hirshfeld Y., Lundqvist K.: LePUS – Symbolic Logic
Modeling of Object Oriented Architectures - A Case Study. In: Proceedings of the
Second Nordic Workshop on Software Architecture (NOSA'99), University of
Karlskrona/Ronneby, Ronneby, Sweden, 1999.

[Eden and Grogono 2001] Eden A., Grogono P.: A Theory of Object-Oriented Soft-
ware Architecture. Submitted to: International Journal of Software Engineering
and Knowledge Engineering, Special Issue on Software Architecture. Internet:
www.cs.concordia.ca/~faculty/eden/articles/atoosa/atoosa.pdf, September 2001.

[Fayad et al. 1999] Fayad M., Schmidt D., Johnson R., (eds.): Building Application
Frameworks – Object-Oriented Foundations of Framework Design. Wiley, 1999.

[Florijn et al, 1997] Florijn G., Meijers M., van Winsen P.: Tool Support for Object-
Oriented Patterns. In: Proceedings of the 11th European Conference on Object-
Oriented Programming (ECOOP'97), LNCS 1241, 1997, 472-496.

[Fontoura et al. 2000] Fontoura M., Pree W., Rumpe B.: UML-F – A Modeling Lan-
guage for Object-Oriented Frameworks. In: Proceedings of the 14th European Con-

http://www.cs.concordia.ca/~faculty/eden/articles/atoosa/atoosa.pdf

 89

ference on Object-Oriented Programming (ECOOP'00), Sophia Antipolis and
Cannes, France, June 2000, 63-83.

[Fowler 1997] Fowler M.: Analysis Patterns - Reusable Object Models. Addison-
Wesley, 1997.

[Froehlich et al. 1997] Froehlich G., Hoover H., Liu L., Sorenson P.: Hooking into
Object-Oriented Application Frameworks. In: Proceedings of the of 19th Interna-
tional Conference on Software Engineering (ICSE'97), Boston, Massachusetts.
IEEE Press, 1997, 491-501.

[Gamma 2001] Gamma E.: JHotDraw Framework, Download.
Internet: members.pingnet.ch/gamma/JHD-5.1.zip, August 2001.

[Gamma et al. 1995] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns –
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Garlan et al. 1995] Garlan D., Allen R., Ockerbloom J.: Architectural Mismatch or
Why it's hard to build systems out of existing parts. In: Proceedings of the 17th In-
ternational Conference on Software Engineering, Seattle WA, April 1995

[Hakala 2001] Hakala M.: The Pattern Engine. Manuscript. September 2001.

[Hakala 2000] Hakala M.: Task-Based Tool Support for Framework Specialization.
In: Proceedings of OOPSLA'00 Workshop on Methods and Tools for Framework
Development and Specialization. Tampere University of Technology, Software
Systems Laboratory, Report 21, October 2000.

[Hakala et al. 2001a] Hakala M., Hautamäki J., Koskimies K., Paakki J., Viljamaa A.,
Viljamaa J.: Generating Application Development Environments for Java Frame-
works. To appear in: The 3rd International Conference on Generative and Compo-
nent-Based Software Engineering (GCSE'01), Erfurt, September 2001.

[Hakala et al. 2001b] Hakala M., Hautamäki J., Koskimies K., Paakki J., Viljamaa A.,
Viljamaa J.: Annotating Reusable Software Architectures with Programming Pat-
terns. To appear in: The Working IEEE/IFIP Conference on Software Architecture
(WICSA'01), Amsterdam, August 2001.

[Hakala et al. 2001c] Hakala M., Hautamäki J., Koskimies K., Paakki J., Viljamaa A.,
Viljamaa J.: Architecture-Oriented Programming Using FRED. In: Proceedings of
the of 23rd International Conference on Software Engineering (ICSE'01), Toronto,
Canada. IEEE Computer Society, 2001, 823-824.

[Hakala et al. 2001d] Hakala M., Hautamäki J., Koskimies K., Paakki J., Viljamaa A.,
Viljamaa J.: Task-Driven Specialization Support for Object-Oriented Frameworks.
Tampere University of Technology, Software Systems Laboratory, Report 22,
February 2001. ISBN 952-15-0546X.

[Hakala et al. 1999a] Hakala M., Hautamäki J., Tuomi J., Viljamaa A., Viljamaa J.:
Managing Object-Oriented Frameworks with Specialization Templates. In: Work-

 90

shop on Object Technology for Product-Line Architectures. European Software In-
stitute, Spain, 1999, 87-98.

[Hakala et al. 1999b] Hakala M., Hautamäki J., Tuomi J., Viljamaa A., Viljamaa J.,
Koskimies K., Paakki J.: Task-Driven Framework Specialization. In: Penjam J.
(eds.): Software Technology, Fenno-Ugric Symposium, Institute of Cybernetics,
Tallinn Technical University, August 1999, 65-74.

[Hakala et al. 1998] Hakala M., Hautamäki J., Tuomi J., Viljamaa A., Viljamaa J.:
Pattern-Oriented Framework Engineering Using FRED. In: Object-Oriented Tech-
nology. LNCS 1543, 1998, 105-109.

[Hakala et al. 1997] Hakala M., Hautamäki J., Tuomi J., Viljamaa A., Viljamaa J.:
Design of a Java Framework Engineering Tool. University of Tampere, Depart-
ment of Computer Science, Report A-1997-12, November 1997. ISBN 951-44-
4256-3.

[Hautamäki 2001] Hautamäki J.: Appendix: Specialization Patterns for the Nokia
Case Framework. Internal document, September 2001.

[Hamu and Fayad 1998] Hamu D., Fayad M.: Achieve Bottom-Line Improvements
with Enterprise Frameworks. Communications of the ACM, Vol. 41, No. 8, August
1998.

[Helm et al. 1990] Helm R., Holland I., Gangopadhyay D.: Contracts – Specifying
Behavioral Composition in Object-Oriented Systems. In: Proceedings of The 5th
Conference on Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA'90). SIGPLAN Notices, Vol. 25, No. 10, 1990, 169-180.

[Holland 1993] Holland I.: The Design and Representation of Object-Oriented Com-
ponents. Ph.D. thesis, Northeastern University, 1993.

[Hueni et al. 1995] Hueni H., Johnson R., Engel R.: Framework for Network Protocol
Software. In: Proceedings of the 10th Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA'95). Austin, TX, October 1995.

[Jacobson and Nowack 1999] Jacobson E., Nowack P.: Frameworks and Patterns –
Architectural Abstractions. In: Fayad M., Schmidt D., Johnson R. (eds.): Building
Application Frameworks – Object-Oriented Foundations of Framework Design.
Wiley, 1999.

[Jacobson et al. 1999] Jacobson I., Rumbaugh J., Booch G.: The Unified Software De-
velopment Process. Addison-Wesley, 1999.

[Jacobson et al. 1997] Jacobson I., Griss M., Jonsson P.: Software Reuse – Architec-
ture, Process and Organization for Business Success. Addison-Wesley, 1997.

[Jazayeri et al. 2000] Jazayeri M., Ran A., van der Linden F.: Software Architecture
for Product Families. Addison-Wesley, 2000.

 91

[Johnson 1997] Johnson R.: Frameworks = (Components + Patterns). Communica-
tions of the ACM, Vol. 40, No. 10, 39-42.

[Johnson 1992] Johnson R.: Documenting Frameworks Using Patterns. In: Proceed-
ings of the 7th Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA'92), Vancouver, Canada, October 1992, 63-76.

[Johnson and Foote 1988] Johnson R., Foote B.: Designing Reusable Classes. Journal
of Object-Oriented Programming, Vol. 1, No. 5, June/July, 1988, 22-35.

[Johnson and Russo 1991] Johnson R., Russo V.: Reusing Object-Oriented Design.
Technical Report UIUCDCS 91-1696, University of Illinois, 1991.

[Kim and Benner 1996] Kim J., Benner K.: An Experience Using Design Patterns -
Lessons Learned and Tool Support. Theory and Practice of Object Systems (TA-
POS), Vol. 2, No. 1, 1996, 61-74.

[Krasner and Pope 1988] Krasner G., Pope S.: A Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk-80. In: Journal of Object-
Oriented Programming, August/September, 1988, 26-49.

[Krämer and Prechelt, 1996] Krämer C., Prechelt L.: Design Recovery by Automated
Search for Structural Design Patterns in Object-Oriented Software. In: Proceedings
of the Working Conference on Reverse Engineering, Monterey, 1996. IEEE CS
Press, 1996, 208-215.

[Lea 1994] Lea D.: Christopher Alexander – An Introduction for Object-Oriented De-
signers. ACM SIGSOFT Software Engineering Notes, Vol. 19, No. 1, 1994, 39-46.

[Lehman and Belady 1985] Lehman M., Belady L. (eds): Program Evolution – Proc-
esses of Software Change. Academic Press, 1985.

[Mattsson 1996] Mattsson M., Object-Oriented Frameworks – A Survey of Methodo-
logical Issues. Licentiate thesis, LU-CS-TR, 96-167, Department of Computer Sci-
ence, Lund University, 1996.

[Meijler et al. 1997] Meijler T., Demeyer S., Engel R.: Making Design Patterns Ex-
plicit in FACE – A Framework Adaptive Composition Environment. In: Proceed-
ings of the 6th European Software Engineering Conference (ESEC'97). LNCS 1301,
1997, 94-111.

[Meszaros and Doble 1998] Meszaros G., Doble J.: A Pattern Language for Pattern
Writing. In: Martin R., Riehle D., Buschmann F. (eds.): Pattern Languages of Pro-
gram Design 3. Addison-Wesley, 1998, 529-574.

[Mikkonen 1998] Mikkonen T.: Formalizing Design Patterns. In: Proceedings of the
20th International Conference on Software Engineering (ICSE'98). IEEE Press,
1998, 115-124.

[Ortigosa et al. 2000] Ortigosa A., Campo M., Salomon R.: Towards Agent-Oriented
Assistance for Framework Instantiation. In: Proceedings of the 15th Conference on

 92

Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA'00), Minneapolis, Minnesota, October 2000, 253-263.

[Ortigosa and Campo 1999] Ortigosa A., Campo M.: SmartBooks – A Step Beyond
Active-Cookbooks to Aid in Framework Instantiation. In: Technology of Object-
Oriented Languages and Systems 25. IEEE Press, June 1999, 131-140.

[Oxford 1989] Oxford: The Oxford English Dictionary – Second Edition. Oxford
University Press, 1989.

[Pasetti 2001] Pasetti A.: A Software Framework for Satellite Control Systems –
Methodology and Development. Ph.D. thesis, University of Constance, 2001.

[Pasetti and Pree 2000] Pasetti A., Pree W.: Two Novel Concepts for Systematic
Product Line Development. In: Donohoe P. (eds.): Software Product Lines: Experi-
ence and Research Directions (First Software Product Lines Conference, Denver,
Colorado), Kluwer Academic Publishers, 2000.

[Poulin 1994] Poulin J.: Measuring Software Reusability. In: Proceedings of the In-
ternational Conference on Software Reuse, Rio de Janeiro, November 1994.

[Pree and Koskimies 1999] Pree W., Koskimies K.: Framelets - Small is Beautiful. In:
Fayad M., Schmidt D., Johnson R. (eds.): Building Application Frameworks - Ob-
ject-Oriented Foundations of Framework Design. Wiley, 1999, 411-414.

[Pree 1994] Pree W.: Meta Patterns – A Means of Capturing the Essential of Reusable
Object Oriented Design. In: Proceedings of the 8th European Conference on Ob-
ject-Oriented Programming, Bologna, Italy, July 1994.

[Pree 1995] Pree W.: Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1995.

[Pree et al. 1995] Pree W., Pomberger G., Schappert A., Sommerlad P.: Active Guid-
ance of Framework Development. Software-Concepts and Tools, Vol. 16, No. 3,
136-145, 1995.

[Riehle 2000] Riehle R.: Framework Design – A Role Modeling Approach. Ph.D. the-
sis, ETH Zürich, Institute of Computer Systems, February 2000.

[Riehle and Zűllighoven 1996] Riehle D., Zűllighoven H.: Understanding and Using
Patterns in Software Development. Theory and Practice of Object Systems, Vol. 2,
No. 1, 1996, 3-13.

[Roberts and Johnson 1996] Roberts D., Johnson R.: Evolving Frameworks - A Pat-
tern Language for Developing Object-Oriented Frameworks. In: Proceedings of,
the 3rd Conference on Pattern Languages and Programming (PLoP'96), Allerton
Park, IL, September 1996.

[Rumbaugh et al. 1991] Rumbaugh J., Blaha M., Premerlani W., Frederick E., Loren-
sen W.: Object-Oriented Modeling and Design. Prentice-Hall, 1991.

 93

[Rumbaugh et al. 1999] Rumbaugh J., Jacobson I., Booch G.: The Unified Modeling
Language Reference Manual. Addison Wesley, 1999.

[Schauer et al 1999] Schauer R., Robitaille S., Martel F., Keller R.: Hot Spot Recov-
ery in Object-Oriented Software with Inheritance and Composition Template
Methods. In: Proceedings of the IEEE International Conference on Software Main-
tenance 1999 (ICSM '99), Keble College, Oxford, England. IEEE Computer Soci-
ety Press, 1999, 220-229.

[Schmidt 1997] Schmidt D.: Applying Design Patterns and Frameworks to Develop
Object-Oriented Communications Software. In: Peter Salus (eds.): Handbook of
Programming Languages, Vol. I, Macmillan Computer Publishing, 1997.

[Schütze et al. 1999] Schütze M., Riegel J., Zimmermann G.: PSiGene - A Pattern-
Based Component Generator for Building Simulation. Theory and Practice of Ob-
ject Systems (TAPOS), Vol. 5, No. 2, 1999, 83-95.

[Sefika et al. 1996] Sefika M., Sane A., Campbell R.: Monitoring Compliance of a
Software System with Its High-Level Design Models. In: Proceedings of 18th IEEE
International Conference on Software Engineering, Berlin 1996. IEEE Computer
Society Press 1996, 387-396.

[Sethi 1989] Sethi R.: Programming Languages – Concepts and Constructs. Addison-
Wesley, 1989.

[Shaw and Garlan 1996] Shaw M., Garlan D.: Software Architecture - Perspectives on
an Emerging Discipline. Upper Saddle River, NJ, Prentice Hall, 1996.

[Soukup 1995] Soukup J.: Implementing Patterns. In: Coplien J., Schmidt D. (eds.):
Pattern Languages of Program Design. Addison-Wesley, 1995, 395-412.

[Stroustrup 1991] Stroustrup B.: The C++ Programming Language – Second Edition.
Addison-Wesley, 1991.

[Sun 2001] JavaBeans. Internet: http://java.sun.com/products/javabeans, August, 2001.

[Venners 1998] Venners B.: The Event Generator Idiom.
Internet: http://www.javaworld.com/ javaworld/jw-09-1998/jw-09-techniques.html.

[Viljamaa 2001] Viljamaa A.: Pattern-Based Framework Annotation and Adaptation
- A Systematic Approach. Licentiate thesis, University of Helsinki, Department of
Computer Science, 2001.

[Vlissides et al. 1996] Vlissides J., Coplien J., Norman L. (eds.): Pattern Languages
of Program Design 2. Reading, MA, Addison-Wesley, 1996.

[W3C 2001] World Wide Web Consortium: Extensible Markup Language (XML).
Internet: http://www.w3.org/XML, August 2001.

[Wild 1996] Wild F.: Instantiating Code Patterns — Patterns Applied to Software De-
velopment. Dr. Dobb's Journal, Vol 21., No 6., June 1996, 72-76.

http://java.sun.com/products/javabeans
http://www.w3.org/XML

	Introduction
	Problems in the Usage of Frameworks
	Development Phase: Creating Framework
	Usage Phase: Deriving Application
	Evolution and Maintenance Phase

	Specialization Wizard
	About Patterns and Piecemeal Growth
	Formal Pattern Specification Languages
	Tasks and Piecemeal Growth

	Architecture-Oriented Task-Driven System
	Usage with Frameworks
	Identifying Extension Points
	Goal-Oriented Approach

	Specialization Patterns
	Basic Concepts
	Roles, Contracts, and Program Elements
	Dependencies and Multiplicity
	Properties: Constraints and Templates

	Casting Process
	Pattern Graph
	Generating Tasks
	Casting Example

	Notation
	Role Table
	Pattern Diagram
	Example

	About Writing Patterns
	Pattern Modeling and Specialization Patterns
	Outlining Specialization Patterns

	FRED Environment
	Overview
	Pattern Tools
	Pattern Editor
	Pattern Catalog
	Architecture View
	Task View

	Using Frameworks: Patterns across Architectures
	Specialization Architecture
	Framework Project: Pattern Organization Phase
	Application Project: Continue Casting

	Pattern Definition Language (PDL)
	Role Types
	Functions
	Expressions
	Tags

	Experiences
	Benefits
	Problems
	Integrating FRED

	Case Study
	Studying the Framework
	Constructing Specialization Patterns
	Application Patterns
	Controller- and View Patterns
	Service Patterns
	Other Features

	Constructing and Using Specialization Wizard

	Related Work and Conclusion

