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Abstract

This article studies the properties of three dimensional visibility rep-
resentations of planar graphs and three dimensional crossing-free polyline
grid drawings of non-planar graphs with known crossing number.

First, we show how to construct in linear time a three dimensional
polygonal z-visibility representation for planar graph having n vertices
with volume [4/|3n/2] — 3] x [4/|3n/2] — 3] x (n —1). This sharpens
earlier results for three dimensional visibility representations for planar
graphs.

Second, we show that a planar graph with n-vertices and m-edges,
without any restrictions concerning its degree, admits a three dimen-
sional crossing-free polyline grid drawing with volume [/|3n/2]| — 3] x
[+/13n/2] — 3] x 3(n — 1) having at most 2m total edge bends.

Third, we give a drawing algorithm for non-planar graphs. Let G be a
non-planar graph with n-vertices and m edges and let G, be the planarized
version of G with n vertices and n’ dummy vertices. We show how to con-
struct in O(n+n') time three dimensional crossing-free polyline grid draw-
ing of G with volume 2[+/[3(n + n’)/2] — 3] x 2[4/[3(n + n')/2] — 3] x
3(n+ n' — 1) having at most 4m + 19n’ edge bends. It follows that a n-
vertex non-planar graph with O(n) crossings admits a three dimensional
crossing-free polyline grid drawing with O(n?) volume.

1 Introduction

Three dimensional drawings of graphs are needed in VLSI-design [32], modeling
VRML worlds and in user interface design. There is also a great theoretical in-
terest to learn properties of the three dimensional drawings of graphs. Moreover,
the experimental results gives a strong motivation to study three dimensional
graph drawing [37].

The first theoretical results for the three dimensional graph drawing problem
appeared in [7]. It was proved there that a complete graph with n vertices has a
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three dimensional straight-line crossing-free grid drawing with volume 2nx2nxn
and that the lower bound of the drawing of complete graph is also Q(n®). It
was also shown that every planar graph with maximum degree 4 admits a three
dimensional polyline drawing with /n x /n x n volume with at most 2n + 4
edge bends. It was conjectured that there are other classes of graphs allowing
a smaller volume than the general case.

The next refinement was given in [6], where it was shown that 2-, 3- and
4-colorable graphs can be drawn with volume O(n?). In [30] it was pointed
out that for any fixed C' > 2, every C-colorable graph can be drawn with
volume O(n?) with integer coordinates and that the order of magnitude of the
bound cannot be improved. Since each planar graph is 4-colorable [18], this
result implies that each planar graph admits a O(n?) volume, crossing-free three
dimensional drawing with integer coordinates.

More results appeared in [17], where it was proved that 2- and 3-colorable
graphs can be drawn with volume O(n3/?) and any C-colorable graph admits a
straight-line drawing with volume O(C*n3/?) with rational coordinates.

Recently, Felsner, Liotta and Wismath gave more results for outerplanar
graphs [15], showing that outerplanar graphs admit linear volume drawing. See
also [10, 11, 38] for other recent results concerning the relationship of three
dimensional graph drawing and tree-width, path-width and queue-number. Bose
et al. [4] have found the maximum number of edges for a drawing of a given
volume. For other three dimensional drawing conventions, see for example [3]
and references given there or a recent survey by Landgraf [24].

Fundamental results for three dimensional visibility representations are col-
lected in [5], where it was shown that every planar graph admits a rectangle
z-visibility representation. It was also proved an upper bound n = 56 for the
largest representable complete graph K, and showed by construction that at
least Koo admits a z-visibility representation.

In this paper we show first how to construct a three dimensional polygonal
z-visibility representation from a two dimensional visibility representation. Our
three dimensional visibility representation allows vertices to be associated with
polygonal regions parallel to z,y-plane. The volume of this representation is at
most [v/Z] X [v/z] X y, where z and y are the dimensions of the corresponding
two dimensional representation.

Second, we describe a method that produces three dimensional drawings
from three dimensional visibility representations. Our method is similar to
those for two dimensional graph drawing [9]. Then we show that a planar graph
with n vertices and m edges admits a three dimensional polyline crossing-free
grid drawing with volume [/[3n/2] — 3] x [/[3n/2] — 3] x 3(n — 1) and with
at most 2m total edge bends. The drawing can be constructed in O(n) time.

Third, we introduce a new drawing method for non-planar graphs. Suppose
that G is a non-planar graph with n-vertices and m edges and G, is the pla-
narized version of G with n vertices and n’ dummy vertices. Then our method
constructs in linear time three dimensional crossing-free polyline grid drawing of
G with volume 2[/[3(n +n')/2] — 3] x 2[\/[3(n + n')/2] — 3] x 3(n+n' —1)
having at most 4m+19n' edge bends. From this result it follows that a n-vertex
non-planar graph with O(n) crossings admits a three dimensional crossing-free
polyline grid drawing with O(n?) volume. This is the main contribution of this
paper.

The rest of this paper is organized as follows. In Section 2 we give some




preliminaries for three dimensional graph drawing and visibility representation
in two and three dimensions. In Section 3 we introduce our drawing algorithm
for planar graphs and analyze its time complexity and other properties. In
the fourth section we apply the drawing method introduced in Section 3 to
non-planar graphs. In the last section we summarize our results.

2 Preliminaries

For the basic graph-theoretical concepts we refer to [34] and for graph algo-
rithms and their complexity to [9, 12]. Consult [26] for a survey on planarity of
graphs and theoretical results for crossing number of non-planar graphs and [8]
for the basic terminology concerning computational geometry. Notations and
definitions for the three dimensional graph drawing are taken from [6, 7, 17, 30]
and for the three dimensional visibility representation we use the approach of
[5, 13], with slight modifications.

A graph is planar if it admits a plane drawing where no two distinct edges
intersect. Otherwise the graph is non-planar. Planarity testing can be done in
linear time [19, 25].

The crossing number of a graph G is the smallest number k& so that G can
be drawn in the plane with at most k edge intersections [26, 36]. Determining
the crossing number of an arbitrary graph is NP-complete [16], but for sparse
graphs with small number of vertices many practical methods are known [9,
20, 21, 27, 28]. A two dimensional graph drawing technique for non-planar
graphs is to add dummy vertices for each edge intersection and then apply
drawing algorithm for planar graphs. Finally dummy vertices are replaced by
a crossing. Therefore, finding small crossing numbers improves the quality of a
two dimensional drawing.

A three dimensional polyline drawing of a graph is a drawing where the
vertices are distinct points in three dimensional space and edges are drawn as
a polygonal chain connecting the vertices. The drawing is straight-line, if each
edge is drawn as one straight line without bends. The drawing is crossing-free,
if there is no crossings of edges. If the coordinates of the vertices and all edge
bends are integer grid points, the drawing is called a grid drawing.

Let D be a three dimensional drawing. The rectangular hull of D is the
smallest rectangular box with sides parallel to coordinate axis containing the
whole drawing. The volume of D is the product of the lengths of the three sides
of the rectangular hull of D.

The aspect ratio of a drawing D is max{z/y,z/z,y/x,y/z, 2/, z/y}, where
z,y and z are the dimensions of D. Notice that for a two dimensional drawings
we assume that z = 1.

Next we introduce two and three dimensional visibility representations. A
visibility representation maps the vertices of the graph to geometrical objects.
An edge is represented by the visibility relationship between corresponding ob-
jects. If two objects are visible to each other, then there is an edge between
corresponding vertices.

Usually two dimensional visibility representation is defined as follows. Ver-
tices are associated to closed disjoint lines parallel to z-axis. Two lines are
visible if they can be joined by a line segment parallel to y-axis that does not
intersect any other object. This kind of visibility is called y-visibility, since the



joining line segment (if it exists) is parallel to the y-axis. On the left in Figure
1, line segments 1 and 2 are visible to each other and segments 2 and 3 are not
visible. It is known that a graph admits a two dimensional visibility representa-
tion if and only if it is planar [35, 33]. See [9], for an introduction and references
to two dimensional visibility representations and linear time algorithms for con-
structing the representation. Visibility representation can be constructed also
using the canonical numbering of the vertices [29]. See an article by Kant [22]
for a method constructing compact visibility representation for planar graphs
and Kant and He [23] for 4-connected planar triangular graphs.
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Figure 1: Two and three dimensional visibility representations. Colored areas
on the right denote the visibility of regions.

Next we define three dimensional visibility representations. Consider a set of
polygonal disjoint regions in R® such that the planes determined by the regions
are perpendicular to the z-axis. Two regions R; and R; are z-visible [5] if there
is a closed cylinder C of positive length and radius such that the ends of C' are
contained in R; and R;, the axis of C' is parallel to z-axis, and the intersection
of C' with any other region is empty. A graph with n vertices admits a three
dimensional visibility representation (shortly representation) if and only if its
vertices can be associated with n disjoint polygonal regions parallel to z,y-
plane such that if vertices v; and v; are adjacent in G then their corresponding
polygonal regions R; and R; are z-visible. See an example on the right in Figure
1, where regions 1 and 2 are visible and regions 2 and 3 are not.

Note that our definition for the three dimensional visibility differs from that
in [5, 13], since we allow vertices to be polygonal regions, not only rectangles.
Fekete and Meier [13] consider also box visibility representations. Bose et al. [5]
show that every planar graph admits a z-visibility representation, but no exact
volume was given for the representation. See [1, 2, 14], for other approaches
and results of the three dimensional visibility representations.

For the basic geometrical objects (points, lines and regions) we use their nor-
mal notations. Since rectangles and squares play important role when construct-
ing visibility representations, we need some special notations and definitions. A
rectangle R with sides parallel to = and y axes is a quartet (z1,y1,Z2,y2), where
z1,y1 are the coordinates of the down left point and x4, y» are the coordinates of
the right up point of rectangle. A k-square is a rectangle (z1,y1, 21 +k,y1 + k),
where k € Z. Rectangle (z1,y1,%2,y2) with integer dimensions w =| z3 — 21 |
and h =| y2 — y1 | can be naturally divided into wh unit squares, h rows and w



columns. In Sections 3 and 4 of this paper we usually assume that rectangles are
placed in the plane in such a way that there are integer grid points in the middle
of these unit squares. These integer points inside a rectangle R are denoted as
point (z;,y;) of R, where z; < xz; < w and y1 <y; < h.

Let S1, S and S3 be 2-squares in a plane and p;, p2 and p3 be the midpoints
of these squares. Let [ be a line that goes through points p; and ps. If ps lies
also on the line [, we say that squares lie on the same line. If the slope of [ is
positive, we say that squares are ascending and otherwise in descending order.
If S; is not on [, then it is on the left side (above) or right side (below) of I.

3 Polyline drawing for planar graphs

This section introduces a technique for converting a two-dimensional visibil-
ity representation to a three dimensional one and a method how to use this
representation to obtain a 3D polyline drawing.

To convert two dimensional visibility representation into three dimensions,
we “stretch” and “roll up” line segments and empty space between those seg-
ments which lie on the same line parallel to z-axis to obtain a region parallel to
z,y-plane. Then we put the regions one on the other, with the same z-coordinate
as the corresponding y-coordinate was in the two dimensional representation,
to obtain a three dimensional visibility representation. See [7], for a quite sim-
ilar method for converting a two-dimensional orthogonal drawing to a three
dimensional polyline crossing-free grid drawing.

After this conversion, we route edges between visible regions without edge
crossings.
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Figure 2: An example on stretching and rolling line segments to obtain polygonal
regions with stretching function ¢ and rolling function d4.

Let p1 = (x1,¥1) and ps = (22,¥1) be points in a line parallel to x axis with
0 < 1 < 2. Stretching function o maps the two dimensional line segment p1pa
parallel to z axis to a two dimensional rectangle with height 1:

U'(ZL', y:length) = (xay17x2ay1 + 1)

Rolling function 6,., where r € Z,, maps the two dimensional rectangle
(21,91, T2, y2) to a two dimensional polygonal region such that, for z; < x < xa,
y1 <y <y2, o1 <rand z,y €N,

5 _ [ (lz mod rly+|z/r]), if |z/r] is even
o(#:9) = { (r—(z mod r)—1,y+ |z/r]), if|z/r]is odd.



See Figure 2 for an example of using stretching and rolling functions. Next
we introduce a lemma that describes the properties of the two dimensional
visibility representations. This lemma is needed to prove the properties of the
three dimensional representation. We omit the proof since it can be found
elsewhere.

Lemma 3.1. [22] Let G be a planar graph with n-vertices. Then G admits
o two dimensional visibility representation © which can be constructed O(n)

time, line segments and lengths have integer coordinates and the area is at most
(13n/2] —=3) x (n—1).
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Figure 3: A two dimensional visibility representation and corresponding three
dimensional visibility representations constructed by Algorithm 1 with stretch-
ing function d; g5, = d3).

Algorithm 1 converts two dimensional visibility representation to three di-
mensional visibility representation as follows. First it stretches and rolls up all
line segments on the same line parallel to x axis. Then the planes determined
by these polygonal regions are placed one on the other. By Lemma 3.1, we can
assume that the down left corner of the two dimensional visibility representation
is located at point (0, 0) in the plane, and after rolling and stretching, the down
left point of level i is located at point (0,0,%) in the three dimensional coordi-
nates. The step 4 of the Algorithm 1 decreases the z and y coordinates by 1/2
of the three dimensional visibility representation. This is done to get integer
grid points in the middle of unit squares inside different regions. Throughout
this paper, we assume that one unit square inside region contains exactly one
integer grid point.

Algorithm 1 3D planar visibility
Input: A n-vertex planar graph G = (V, E) and a two dimensional
visibility representation © of G.
Output: A 3D visibility representation ©' of G.
For all lines y =k, k =0,1,..., containing line segments in ©® do
1. Stretch line segments to obtain rectangles by using stretch function o.
2. Let r = [4/n]. Roll up rectangles to obtain polygonal regions by using
rolling function &,.
3. Place polygonal regions to three dimensional space with coordinate z = k.



4. Decrease all z and y coordinates by 1/2.

See Figure 3 for an example of the use of Algorithm 1. The asymptotic vol-
ume of this new visibility representation remains unchangeable, but the aspect
ratio of this representation gets lower.

The proof of Theorem 3.1 follows from the properties of Algorithm 1.

Theorem 3.1. Let G be graph that admits a two dimensional visibility represen-
tation © with volume x X y. Then Algorithm 1 constructs in O(n) time a three
dimensional visibility representation ©' of G with bounding box [/z] x [\/z] xy.

Proof. Algorithm 1 clearly works in linear time. Let G be a graph with n vertices
and let © be the two dimensional visibility representation of G. Suppose that
there is an edge between vertices v; and v;. Then line segments associated to v;
and v; are visible in ©. By the construction of Algorithm 1, the corresponding
three dimensional regions are visible in representation ®'. By the construction
of Algorithm 1, the dimensions of the bounding box are [v/z] X [/z] x y. The
theorem follows. O

R’ R R’ — R
\ R\ R

(@) (b) (©

Figure 4: Illustration of the Lemma 3.2.

Next we give a simple lemma, which is needed to construct crossing-free
drawings for planar graphs from their visibility representations.

Lemma 3.2. Let R and R’ be polygonal regions produced by Algorithm 1 having
common boundary and let p; and ps be distinct integer points inside R and ps3
and p4 integer points inside R'. Then following properties hold:

1. Straight line segments Iy = p1pz and lo = p3pg do not intersect.

2. If line segment | crosses the outer boundary of R and lies over R', then it
does not cross with any integer point inside R'.

Proof. Let R and R' be polygonal regions produced by Algorithm 1. If R and
R’ are rectangles, then any line segment inside one region can not cross with
line segment of the other region. Also the property 2 holds trivially (see Figure
4 (a)).

Suppose that R or R' is not a rectangle (see Figures 4 (b) and (c)). Let
p1 = (x1,y1) and p2 = (z2,y2) be distinct integer points inside R, p3 = (24, y4)
and ps = (x4,y4) be distinct integer points inside R’ and line segments l; = p1p2



connect points p3 and py and Iy = P3pg connect points ps and py. Without loss
of generality, we can assume that line segment in the two dimensional visibility
representation corresponding to R appears before R’ and y; < y2 and y3 < y4.
By the construction of Algorithm 1, we have y; < y3 and yo < y4.

If yo < y3, there can not be any crossings. Therefore assume that y, = y3. If
the other endpoint of the line segment [; (respectively l2) has higher y coordinate
(respectively lower y coordinate), segments can not cross. Suppose then than
also y2 = y4. But now by the construction of Algorithm 1, both lines lie inside
their regions. Hence property 1 holds.

Suppose that y» > y3. By the properties of Algorithm 1, line segment [y
can not cross the boundary of R, if y; = y». Therefore, we can assume that
y1 < y2. For a contradiction, suppose that line segment [; crosses an integer
point p' = (z',y") outside R and [ is increasing. Since the endpoints of I; belongs
to R, it holds y; < 9’ < y2. Now the point p’ is inside the region R, but by the
construction method of the regions, this can not be true. The case when [y is
decreasing, can be shown with similar reasoning. The case holds and the lemma
follows. O

Now we are ready to give an algorithm that produces a three dimensional
crossing-free polyline drawing from the three dimensional visibility representa-
tion. First, Algorithm 2 modifies the three dimensional representation adding
space between different levels. This increases the height of the drawing to 3n.
Then edges are routed in such a way that the crossings are avoided. Second,
Algorithm 2 places a vertex associated to a polygonal region in some integer
point inside each region. Then edges are routed without crossings.

Algorithm 2 3D Planar Draw
Input: A 3D visibility representation ©' of G constructed by Algorithm 1.
Output: A 3D polyline crossing-free grid drawing D of G.
1. For each region R; in ©' do
Increase corresponding z coordinate by 3z.
Insert a vertex v; to any integer point inside R;
2. For each regions R; and R; at levels z(R;) and z(R;) that are visible do
Let R;¥ and R;Y be the projections of R; and R; to the
z,y-plane and P = {(z,y) € R{’ N R}’ | (z,y) € Z}.
Choose a point (z,y) from P. Route edge with a chain of
straight lines from v; to v; with bendings in the
coordinates (z,y, 2(R;) + 1) and (z,y, 2(R;) — 1).

Next we prove that Algorithm 2 works correctly.

Theorem 3.2. Let G be a graph with n-vertices and m edges and let ©' be the
three dimensional polygonal visibility representation of G with volume £ Xy X z.
Then Algorithm 2 constructs in O(n) time a three dimensional polyline crossing-
free grid drawing of G with bounding box x x y x 3z, with integer coordinates
and with at most 2m total edge bends.

Proof. By the construction of Algorithm 2, the following properties holds triv-
ially: algorithm works in linear time, the volume of the bounding box is £ Xy x 3z,
and the vertices and edge bends have integer coordinates.
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Figure 5: Routing edges between visible regions in Algorithm 2: (a) projection to
the z, y-plane; (b) projection to the x, z-plane. The arrows denote the increasing
z-coordinate.

Next we show that there is no crossings in the drawing (see Figures 5 (a) and
(b)). Let R; and R; be regions that are visible with vertices v; and v; placed
at integer coordinates (z;,y;, 2;) and (z;,y;, z;), respectively. Let R;? and R7Y
be the projections of R; and R; to the z,y-plane and P = {(z,y) € R;Y N R;?ﬂ |
(z,y) € Z}. By the properties of the visibility representations, we have that
P #0.

Algorithm 2 routes edges from v; to v; with a chain of straight lines with
bendings in the coordinates (z,y, 2(R;) + 1) and (z,y, 2(R;) — 1) where (z,y) €
P. We consider now outgoing edges from v; (incoming edges to v; can be
considered similarly). Since all other line segments from v; share their starting
point (z;,y;, z;) and their endpoints have distinct x and y coordinates with same
z coordinate, they cannot cross with each other.

By Lemma 3.2, there is no crossings with other line segments from other
regions and no integer point from other regions are crossed. By the properties
of the visibility representations, the line segment between (z,y,2(R;) + 1) and
(z,y,2(R;)—1) can not cross with any other line segment going strictly upward.
Therefore there is no crossings in the drawing.

Finally, since there are at most 2 bends for an edge, there are total by at
most 2m edge bends. The theorem follows. O

Using Theorems 3.1 and 3.2 for planar graphs with the result of Lemma
3.1, we can deduce the following theorem for the volume of three dimensional
polyline grid drawing of planar graphs.

Theorem 3.3. A three dimensional crossing-free polyline grid drowing of a
planar graph with n vertices and m edges can be constructed in O(n) time. The
volume of the obtained drawing is at most [\/[3n/2] — 3] x [/[3n/2] — 3] x
3(n — 1) and there are at most 2m total edge bends.

4 Polyline drawing for non-planar graphs

This section studies non-planar graphs and their three dimensional crossing-free
polyline grid drawings. A well known approach for drawing non-planar graphs
in two dimensions is to replace each edge intersection with a dummy vertex



and then apply some graph drawing algorithm for planar graphs [9]. After
applying the given drawing algorithm, dummy vertices are replaced back to
edge crossings. This drawing paradigm is also suitable for three dimensional
graph drawing. Fortunately, three dimensional space gives more freedom than
two dimensional space, and instead of replacing dummy vertices by a crossing,
it is possible to route edges in such a way that they do not cross. To remove
dummy vertices and corresponding edge crossings, we have to again add some
space between planes of a three dimensional visibility representation and make
polygonal regions slightly larger. This increases the volume of the drawing.
Then edges are routed in such a way that crossings are avoided.

In what follows, we assume that exactly one crossing in a drawing of non-
planar graph is replaced by a one dummy vertex. If one dummy is used to remove
several crossings at the same time, it is easy to add more dummies to get our
assumption hold. There are methods for constructing visibility representation
assuming that given planar graph is maximalized [29] using Read’s maximal-
ization algorithm [31]. Since we are interested only in the method for removing
edge intersection, we just do not draw these dummy edges possibly added in the
maximalization phase when constructing crossing-free polyline drawing.

4-1-0 3-1-1 2-1-2

Figure 6: Different types of dummy vertices.

Next we give some simple preliminary results for the dummy vertices of a
planarized graph and their relation to the visibility representation. The first
property follows from the assumption that one vertex replaces only one edge
crossing and from the fact that dummy edges possible added in the maximal-
ization are omitted.

Property 1. The degree of a dummy vertez is 4.

There is three different types of dummy vertices in the two dimensional
visibility representation, if we do not take account edges that were possibly
added in the maximalization phase before construction visibility representation.

Definition 1. Let G be a non-planar graph and let G, be a planarized version
of G, obtained by adding dummy vertices for each edge crossing. Let © be the
two dimensional visibility representation of G,.

o A dummy vertex v of G is of type 4 — 1 — 0, if there are four visible line
segments below the line segment corresponding to v in ©.

o A dummy vertezx v of Gp, is of type 3—1 —1, if there are three visible line
segments below the line segment corresponding to v in © and there is one
visible line segments above the line segment corresponding to v in ©.
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o A dummy vertex v of G, is of type 2 — 1 — 2, if there are two visible line
segments below the line segment corresponding to v in © and there are two
visible line segments above the line segment corresponding to v in ©.

The cases where word “below” is changed to “above” and word “above” to
“below” in the previous definition, are called types 0 — 1 —4 and 1 — 1 — 3,
respectively. See Figure 6 for an example of different dummy types. The long
connected segment (in the case 3—1— 1, the segment in the middle) denotes the
segment corresponding to a dummy vertex. Notice, that the vertical distances
between dummy vertex and its adjacent vertices might be different and there
might be longer vertical space between horizontal segments, since the dummy
edges possibly added in the maximalization phase are omitted.

stretching rolling doubling
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Figure 7: Algorithm 3 with rolling function d4. A line segment is stretched,
rolled and doubled. The bolded segment clarifies the effect of the doubling
procedure. The small dashed square of the polygonal region denote the location
of the distinct integer points after doubling.

The following Algorithm 3 modifies the two dimensional visibility representa-
tion to have enough free space inside regions and between different levels to route
edges without intersections. It doubles the 2 and y dimensions of the polygonal
regions obtained from Algorithm 1. As in the previous section, we assume that
after applying Algorithm 3 (which calls Algorithm 1) the unit squares inside re-
gions contain exactly one integer point, and this point is located in the middle
of the unit square. See Figure 7 for an illustration of the effects of Algorithm 3.

Algorithm 3 3D non-planar visibility
Input: A n-vertex non-planar graph G = (V, E), planarized version G, of G
and a two dimensional visibility representation © of Gp.
Output: A 3D visibility representation ©" of G,.
1. Use Algorithm 1 to obtain three dimensional visibility representation ©’ of G,,.
2. Increase all z and y coordinates of regions in ®' by 2z and 2y, respectively.
3. Increase all z coordinates of regions in ©' by 3z.

In what follows, we call the regions corresponding to the dummy vertices
constructed by Algorithm 3 shortly dummy regions. Next we give further simple
properties of dummy regions. Property 2 shows the connection of a unit length
line segment of a two dimensional visibility representation © and 2-squares inside
a three dimensional visibility representation constructed from © by Algorithm
3.
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Property 2. Algorithm 3 maps every unit length line segment of a two dimen-
sional visibility representation to a 2-square containing 4 unit squares.

Property 3 follows directly from the properties of the visibility representa-
tion.

Property 3. Every 2-square corresponding to a unit length line segment of a
two dimensional visibility representation of a dummy region is visible on upward
to at most one region and downward to at most one region.

The next property is derived from Properties 1 and 3. It gives a lower bound
for the area of a dummy region.

Property 4. Every dummy region contains at least two adjacent 2-squares.

Since the mapping of a two dimensional visibility representation to a three
dimensional visibility representation applying Algorithm 3 is one-to-one, every
unit length line segment is mapped to distinct 2-squares.

Property 5. Let S1 and Sa be 2-squares corresponding to a unit length line
segment of a two dimensional visibility representation. If S N Ss # 0, then
Sl = 5’2.

T N T —
-F+q-1-| — -F+q-1-
Il Il Il Il

Figure 8: Algorithm 2’ makes the correct routing for the doubled regions con-
structed by Algorithm 3. The upperline segment is routed with a bend to avoid
intersecting integer points outside the region.

If Algorithm 2 is used straightly to construct crossing-free polyline grid draw-
ing for three dimensional visibility representation constructed by Algorithm 3,
there might appear crossings since the Lemma 3.2 can not be applied without
slight modifications to the routing procedure of the Algorithm 2.

We give next a modified version of Algorithm 2 for doubled regions. The
main idea behind Algorithm 2’ is to take account the possibility that if there
is more than 2 rows in a polygonal region, then the first and last row should
be avoided. Incoming edges to these rows are routed by adding a bend to the
integer grid point with one lower or higher y coordinate. Property 2 guarantees
that there are such a free grid point. After this modification, we can again apply
Lemma 3.2 to show the correctness of Algorithm 2’. The number of bends for
an edge increases to four. We omit the proof since it is similar to the one given
for Theorem 3.2. See Figure 8 for an illustration of Algorithm 2’ that works
correctly with doubled regions.
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Algorithm 2’ 3D Doubled-Region-Draw

Input: A 3D visibility representation @' of G constructed by Algorithm 3.
Output: A 3D polyline crossing-free grid drawing D of G.

1. For each region R; in ©' with r rows do

ifr>2
Insert a vertex v; to integer point p; in rows 2 to r — 1 inside R;
else (r = 2)

Insert a vertex v; to integer point p; inside R; od
2. For each visible regions R; and R; with z(R;) < z(R;) having r; and r; rows do
Let R;” and R;" be the projections of R; and R; to the
z,y-plane and P = {(z,y) € R{’ N R;" | (z,y) € Z} Choose a point
(z,y) from P. Route an edge with a chain of straight lines from p; to p;
with bendings in the coordinates (z,y,2(R;) + 1) and (z,y, 2(R;) — 1)
if p is located on the row 1 or r; in R;
add a bend to the coordinate (z,y + 1,2(R;) + 1) or (z,y — 1,2(R;) + 1)
if p is located on the row 1 or r; in R;
add a bend to the coordinate (z,y + 1,2(R;) — 1) or (z,y — 1,2(R;) — 1)

Lemma 4.1. Let G be a graph with n-vertices and m edges and let ©' be the
three dimensional polygonal visibility representation of G with volume x X y X 2
constructed by Algorithm 3. Then Algorithm 2' constructs in O(n) time a three
dimensional polyline crossing-free grid drawing of G with bounding box 2x x 2y x
3z, with at most 4m total edge bends.

Next we give three routing lemmas, which are used in Algorithm 4 for con-
structing crossing free drawings for non-planar graphs. By the properties 1 to 5,
it is enough to show that given any four suitable chosen 2-squares in a dummy
region, we can place four points to integer coordinates inside these 2-squares,
and connect any two of these points with a polygonal chain of line segments
in such a way that these chains do not cross. We will show later that these
polygonal chains do not cross with other line segments corresponding to other
regions.

The following lemmas give a routing for the edges of a dummy region in such
a way that all line segments which are added to avoid edge crossings are par-
allel to z,y-plane. Only the line segments connecting visible regions go strictly
upward or downward. It is obvious that there are also other possible routings,
but we construct only this one.

The first lemma handles the case when all 2-squares in a polygonal region are
distinct and remaining two lemmas considers cases where some of the 2-squares
are same.

Lemma 4.2. Let R be a polygonal region produced by Algorithm 3 and let
S1, S2, S3 and Sy be distinct 2-squares inside R corresponding to unit length
line segments of a two dimensional visibility representation such that they are
projected to R and no two of these 2-squares are the same. Then there ezists a
placement of points p1, p2, p3s and py into integer coordinates inside squares Si,
Sa, S3 and Sy, respectively, and polygonal chains l; connecting points p1 and ps
and lo connecting points ps and py that are parallel to the x,y-plane and there
are no intersections.
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Proof. There are three different base cases depending on the placement of the
four squares inside R. We prove the lemma by constructing polygonal chains
connecting distinct points with the claimed properties. We enumerate different
cases to make it easier to refer them later. Let the points (z1,y1), (z2,y2),
(z3,y3) and (x4,y4) denote the down left point of 2-squares Sy, S2, S3 and Sy
inside R.

& ® | [ L)
C—O: L} L3 L}
e T (L4l [l e
=) I ] 1
U e e | (e ] J)

Figure 9: Cases 1(a) and 1(b) of Lemma 4.2

1. Suppose that all S1, Sz, S3 and Sy lie on the same line. See Figure 4 for
an illustration of the routing procedure.

(a) If 2-squares are parallel to z-axis (respectively y-axis), let p; =
(1,491 + 1) (resp. p1 = (x1,11)), P2 = (T2,y2 + 1) (resp. p2 =
(22,92)), p3 = (3,y3) (resp. p3 = 23 + 1,y3)) and ps = (z4,ya) (
resp. pa = (x4 + 1,y4)).

(b) If the squares are not parallel to x or y axes, suppose that they are
in the ascending order. Let S;, Sj, S; and S; be the ordering of
S1, S, S3 and S, induced by increasing y coordinate. Place the
point corresponding to the square S; to the point (z; +1,y; + 1) and
the point corresponding to the square S; to the point (z,4;). If the
points of S; and S; are to be connected, place remaining points to
(j,y; + 1) and (z;,y; + 1), otherwise to (z;,y;) and (x;,y; + 1).

(c) Descending rectangles can be handled similarly to the case (b).
with the similar reasoning as in the previous case.

2. Suppose that S;, S; and Sy, lie on the same line and the S; is not on the
same line as the other squares. See Figures 10, 11 and 12 for illustrations
of the routing procedure for the case 2.

Figure 10: Case 2(a) of Lemma 4.2.
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(a)

Figure 11: Case 2(b) of Lemma 4.2.

If S;, S; and Sy, ordered by the increasing z-coordinate, lie on the
same line parallel to z-axis and the fourth square S; is above (respec-
tively below) of the other three. Place the point s; corresponding to
Sj to (z;,y; +1) (resp. (z;,y;)) and s; to (z,y;) (resp. (z,yi +1)).
If s; is to be connected with s;, place remaining points to (z;,y;)
(resp. (zi,y; + 1)) and (xg,yr) (resp. (zx,yr + 1)), otherwise to
points (z;,y; +1) (resp. (;,¥:)) and (zg,yr+1) (resp. (z,yx)). See
Figure 10 for an example.

If S;, S; and Sj, ordered by the increasing y-coordinate, lie on the
same line parallel to y-axis, and the fourth square S; is on the right
side (respectively left) of the other three. Place the point s; corre-
sponding to S; to (z; + 1,y;) (resp. (zj,y;)) and if z; < xy, then
place s; to (z;,y; + 1) (resp. (z; + 1,y; + 1), otherwise to (zy,y;)
(resp. (@1 + 1,11)). If 5; is to be connected with s;, place remaining
points to (z;,y;) (resp. (z; +1,y;)) and (zx, yx) (resp. (zr +1,yk)),
otherwise to points (z; + 1,y;) (resp. (z;,v:)) and (zx + L,y + 1)
(vesp. (zk,yr + 1)). See Figure 11 for an example.

(©)

Figure 12: Cases 2(c) and 2(d) of Lemma 4.2.

If S;, S; and Si, ordered by the increasing y-coordinate, lie on the
same ascending line not parallel to x or y-axis, and the fourth square
Si is below (respectively above) of the other three. If s; is going
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to be connected with sy, then place s; to (z; + 1,y; + 1) (resp.
(z; +1,y; + 1)), otherwise to (z;,y; + 1) (resp. (z; +1,y; +1). If
x; < xy, then place s; to (zy,y; + 1) (resp. (z; + 1,y + 1), otherwise
to (xg,y1) (vesp. (z;+1,4;)). Place remaining points to (z; +1,y; +1)
(resp. (zi,y;+1)) and (xg,yx) (resp. (zx + 1,yx)). See Figure 12 for
an example.

(d) If S;, S; and Sk, ordered by the decreasing y-coordinate, lie on the
same descending line not parallel to z or y-axis, and the fourth square
Sy is below (respectively above) of the other three. If s; is going to
be connected with sy, then place s; to (z;,y;) (resp. (z;+1,y;+1)),
otherwise to (z; + 1,y;) (resp. (zj,y;). If ; < z;, then place s
to (z; + 1,y + 1) (resp. (zy,y;1 + 1)), otherwise to (x; + 1,y;) (resp.
(z1,91)). Place remaining points to (x; + 1,y;) (resp. (z;,y;)) and
(g, yr + 1) (vesp. (xk,yr +1)). See Figure 12 for an example.

3. Suppose S, S2, S3 and Sy are 2-squares with the property that no more
than two of them lie on the same line. If for all possible placements of
points s1, $2, s3 and s4 inside squares S, S2, S3 and Sy, three points are
the boundary points of the convex hull C of these points, and the fourth
point is the interior point of C, then any pair of points can be connected
with a straight line without crossings. For all squares S; having the lowest
y coordinate place s; to (x; + 1,y; + 1) and for other squares S; place s;
to (4, ¥:)-

4. Suppose that the previous case holds with the exception that there exists
a placement for points inside squares that all points are boundary points
of the convex hull of these points, then sort squares in increasing order by
their y coordinates and if there is two squares with the same y coordinate,
order them in increasing order by their z coordinates. Let squares S;, S;,
Sk and S; be in order. We have that y; < y; < yr < y; with the property
that at most two equalities hold in inequality chain and there is no two
consecutive equality. This implies 5 distinct subcases.

(@) fy; = y; <yr =y and z; < z; and zp < 7, then set s; = (2; +
1L,yi+1),s; = (zj,y;+1), sk, = (zr+1,yx) and s; = (z7, ;). If points
can be connected with straight line segments without crossings, do
so. Otherwise connect first points s; and s, with a straight line and
route the other edge starting from s; with bendings at points (zx, yx)
and (zx + 1,y + 1) following a straight line to s;.

(b) fy; = y; < yp < y and z; < y;, then set s; = (z; + 1,y; + 1),
s; = (zj,y; + 1) and s; = (x7,y1). If at least one of the points of
Sk is on the left side of the line going through points s; and s;,
then set s = (z + 1,yx), otherwise set sy = (x7,y;) (notice that
Sk is not inside triangle with boundary points s;,s;,s;). If points
can be connected with straight line segments without crossings, do
so. Otherwise, if s; was on the left side, connect s and s; with a
straight line and route the other edge starting from s; with bendings
at points (xg,yx) and (zx + 1,y + 1) following a straight line to s;.
If s was on the right side, connect s; and s, with a straight line
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and route the other edge starting from s; with bendings at points
(zg + 1,yx) and (zg,yr + 1) following a straight line to s;.

(o) fy; <yj = yr <y and z; < yg, then set s; = (z;,y; + 1),
sj = (x; +1,y5), sk = (@k,yx) and s = (a7, y). If points can
be connected with straight line segments without crossings, do so.
Otherwise connect points s; and s, with a straight line segment and
route the other edge starting from s; with bendings at points (x;, y;)
and (z; + 1,y; + 1) following a straight line to s;.

(d) Suppose that y; < y; < yr < Y. Set s; = (z5,y;+1) and s; = (z1,y1).
Let | be a line going through points s; and s;. Now three distinct
subcases arise. If S; and Sy are both on the left side of [, right side
of [ or one of them, is on the left side and the other on the right side.
Consider the first subcase. Set s; = (z;+1,y;+1) and s, = (g, Yx)-
If points can be connected with straight line segments without cross-
ings, do so. Otherwise connect points s; and s; with a straight line
segment and route the other edge starting from s; with bendings at
points (z; + 1,y;) and (z;,y; + 1) following a straight line to sj.
Consider the second subcase. Set s; = (z;,y;) and sp = (zk,yx). If
points can be connected with straight line segments without cross-
ings, do so. Otherwise connect points s; and s; with a straight line
segment and route the other edge starting from s; with bendings at
points (x; + 1,y;) and (z;,y; + 1) following a straight line to sj.
Consider the third subcase. If S; is on the left side and S}, is on the
right side set s; = (z; + 1,y; + 1) and sy = (zr,yx), otherwise set
sj = (zj,y; + 1) and sx = (zx + 1,yx). If points can be connected
with straight line segments, do so. Otherwise connect points s; and
sk with a straight line and route the other edge starting from s; with
bendings at points (z; + 1,y;) and (z;,y; + 1) following a straight
line to s; if S; was on the left side and otherwise route the edge with
bendings at points (zy,yr) and (zr + 1,y; + 1) following a straight
line to s;.

() y; < yj < yr =y and xp < yg, then set s; = (z; + 1,y; +
1), s; = (xk + Lyx) and s; = (x1,y). If S; is on the left side of
the line going through points s; and si, then set s; = (z; + 1,y;),
otherwise set s; = (z;,y;) (notice that S; is not inside triangle with
boundary points s;, s, ;). If points can be connected with straight
line segments without crossings, do so. Otherwise, if s; was on the left
side, connect s; and s; with a straight line and route the other edge
starting from s; with bendings at points (z;,y;) and (z; + 1,y; + 1)
following a straight line to si. If s; was on the right side, connect
s; and sy with a straight line and route the other edge starting from
s; with bendings at points (z; + 1,y;) and (zj,y; + 1) following a
straight line to s;.

O

Lemma 4.2 did not cover the possibility that two 2-squares are the same.
This situation may happen when there is visibility relationships in two direc-
tions, namely upward and downward, from the same unit length line segment
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of a two dimensional visibility representation. Since every 2-square has four
integer points, we can easily choose among them points where incoming edges
are routed. Therefore, we give two more routing lemmas for these special cases.
The following lemma handles the case when there is only three squares for four
points.

Figure 13: Case 2 of Lemma 4.3.

Lemma 4.3. Let R be a polygonal region produced by Algorithm 3 and P =
{p1,D2,p3,p1} be a set of points and S1, S2 and Ss be distinct 2-squares inside
R corresponding to unit length line segments of a two dimensional visibility
representation. Then there exists a placement of points in P to integer points
inside squares S1, So and S3 in such a way there are polygonal chains 1, and
lo, possibly of zero length, connecting points py with py and ps3 with py without
intersections for any mapping function f, with f : P — S;, where i € {1,2,3}
and f is a surjection.

Proof. There are two different cases depending on the placement of these three
2-squares inside the R. We prove the lemma by constructing polygonal chain
connecting distinct points for all possible forms of function f.

1. Suppose that all three 2-squares lie on the same line. Sort squares in
increasing order by their y coordinates and if there is three squares with the
same y coordinate, order them in increasing order by their x coordinates.
Assume that S;, S;, Sy are sorted in this order.

(a) Suppose first that one of the squares contains points p; and ps (the
case where one of the squares contains points p3 and ps can be han-
dled similarly). If z; < z;, then for the square Sy, where x € {i, j, k},
containing the two points, set p1 = pa = (2« + 1,y.) and place the
other two points to the upper right and down left corners and con-
nect them with a straight line. Otherwise (x; > x2) S« contain the
two points, set p1 = pa = (4, y«) and, for the other two points, place
to the upper left and down right corners and connect them with a
straight line.

(b) Suppose now that there is no square having points p; and py (and
no square containing p3 and ps). If z; < z; and S; contains two
points, set those points to the upper left and down right points, and
place remaining two points to the upper right and down left points,
respectively. Now points can be connected with straight lines without
intersections. If z; > z; and S; contains two points, set those points
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to the down left and upper right points, and place remaining two
points to the upper left and down right points, respectively. Now
points can be connected with straight lines without intersections.

2. Suppose that squares do not lie on the same line. Sort squares in increasing
order by their y coordinates and if there are same y coordinates, use
increasing x coordinate to sort them. Assume that S;, S;, Sp are sorted
in this order. Let [ be a line that goes through midpoints of S; and Sk.
See Figure 13 for an illustration of the following routing procedure.

(a)

Suppose first that S; lies on the left side of line I. If S,, where
x € {i,7,k}, contains both p; and pa, set p1 = p2 = (2, y«) (the case
where one of the squares contains points p3 and ps can be handled
similarly). Place the remaining two points to two of the following
three unoccupied points (x;,y; + 1), (z; + 1,y;) and (xr,yr). If S;
contains p; and ps (p2 and py with similar reasoning) place these
points to (x;,y; +1) and (z; +1,y; + 1), if S; contain p; and p3 place
these points to (z;+1,y;) and (z; +1,y;+1) and if S}, contain them,
place these points to (zg,yx) and (z + 1, yg). For the remaining two
points, place them to two of the following three points, depending on
the square that contains them, to (z;,y; + 1), (z; +1,y;) or (zk,yx)-
Connect now corresponding points with a straight line segments. If
there is now an intersection, change the places of p; and p3 to remove
the crossing.

Suppose that S; lies on the right side of line I. If S,, where x €
{i,j,k}, contains both p; and ps, set p1 = pa = (z4,ys) (the case
where one of the squares contains points p3 and ps can be handled
similarly). Place the remaining two points to two of the following
three unoccupied points (z;,y; + 1), (z; +1,y; + 1) and (2, yx). If
S; contain p; and ps (py and ps with similar reasoning) place these
points to (x;,y; +1) and (z; +1,y; + 1), if S; contain p; and p3 place
these points to (z;,y;) and (z;,y; + 1) and if Si, contain them, place
these points to (zx,yr) and (zx + 1,yx). Place the remaining two
points to two of the following three points, depending on the square
that contains them, to (x;,y; + 1), (z; + 1,y;) or (zx,yx). Connect
now corresponding points with a straight line segments. If there is
now an intersection, change the places of p; and ps to remove the
crossing.

O

Third routing lemma, considers the case when four points are mapped to two

squares.

Lemma 4.4. Let R be a polygonal region produced by Algorithm 3 and P =
{p1,p2,p3,p1} be a set of points and S; and Sy be distinct 2-squares inside
R corresponding to unit length line segments of a two dimensional visibility
representation. Then there exists a placement for points of P to integer points
inside squares S1 and Sy in such a way there are polygonal chains 1y and Iy,
possible of zero length, connecting points py with ps and ps with py without
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Figure 14: Case 1 of Lemma 4.4.

intersections for any mapping function f, which maps two points to S; and two
points to Ss.

Proof. There are two different cases depending on the placement of four points
in 2-squares. In the first case points p; and ps are mapped to the same square
and in the second case points p; and p, are mapped to distinct squares. We
prove the lemma by constructing polygonal chain connecting distinct points.

1. Suppose first that S; contains points p; and ps and S, points py and py.
Suppose that S; is below S, (the case when S; above S, can be handled
similarly). Set p1 = (z1,y1 + 1), p3 = (x1 + 1L,y1 + 1), p2 = (22,¥2),
ps = (x2 + 1,y2) and connect adjacent points with a straight line. If S;
and S, have the same y coordinate, suppose that S; is on the left side of
Sy (if Sy is on the right side of Sy, similar reasoning can be used). Set
p1=(z1+1,91), p3 = (1 +1L,y1 +1), p2 = (22, 92), pa = (72,92 +1) and
connect adjacent points.

2. Suppose now that S; contains points p; and ps and S points p3 and pj.
Set p1 = p2 = (z1,¥1) and p3 = ps = (22, Y2)-

O

Next we give an important property of the previous three routing lemmas.
It shows that given any polygonal chain of line segments constructed by Lemma
4.2, it does not cross with any integer point outside its region.

Lemma 4.5. Let R be a polygonal region with r rows constructed by Algorithm
3 with polygonal chains l; and la constructed by Lemma 4.2, 4.3 or 4.4. Then
it holds that l1 and la do not cross with any integer point outside R.

Proof. The rows 1 and r are used in the routing only if r = 2 or if the convex
hull containing squares where points are assigned is a rectangle. by Lemma 3.2,
it follows that there are no crossings between polygonal chains in the adjacent
regions. |

Now we are ready to introduce an algorithm that produces three dimensional
crossing-free polyline drawings for non-planar graphs. Our algorithm gets as
input a non-planar graph, the planarized version of it and the two dimensional
visibility representation of it. First it calls Algorithms 1 to convert the input
to the three dimensional visibility representation, then it calls Algorithm 3 to
double the representation and after that it creates a three dimensional drawing
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using Algorithm 2'. Finally, dummy vertices are removed and the adjacent edges
of the dummies are routed without crossings using Lemmas 4.2, 4.3 and 4.4. The
type of the dummy vertex implies the direction where from edges arrive to the
dummy region. If the type of the dummy vertexis 4 —1—0 (0 — 1 — 4), then
there arrives four lines to the region of the dummy vertex from the down (up)
and if the type of the dummy vertex is 3—1—1 (1 — 1 — 3), there arrives three
lines from down (up) and one line from the up (down) of the region. In the case
2 — 1 — 2 there arrives two lines from down and two lines from the up of the
region.

Algorithm 4 3D Planar-Draw
Input: A non-planar graph G = (V, E) with n vertices and m edges,
and a planarized version G, of G with n’ added dummy vertices.
Output: A 3D polyline crossing-free grid drawing D of G.
1. Use Algorithm 1 to obtain a 3D visibility representation ©' of Gp.
2. Use Algorithm 3 to modify ©' to obtain visibility representation ©"” of Gp.
3. Use Algorithm 2’ to obtain 3D grid drawing drawing D of G, from ©".
4. For each dummy region R; of vertex v; at level m, m = 0,1,2,...,in ©” do
Remove all drawn edges incident v; between levels m — 1 and m + 1,
but leave the endpoints of the incident edges at levels m — 1 and m + 1.
5. For each dummy region R; of vertex v; at level m, m =0,1,2,... in ©" do
Let R1Y, R3Y, R3Y and RjY be the projections of Ry, Rs, R3
and Ry to the y = 0 plane that are visible to R ordered by the increasing
z coordinate. Choose a 2-square corresponding to a unit length line segment
in the two dimensional visibility representation from each R*Y and denote
these squares by Sy, Sz, S3 and Sj.
If | {51USQUS3US4} |:4d0
Apply Lemma 4.2 to find points p; = (z;,y;,m) € S;, where i € {1,2,3,4}
and a polygonal chain /; and I3 connecting points p; with py and ps with p4.
else if | {S1 U S, US3US:} |=3do
Apply Lemma 4.3 to find points p; = (z;,y;,m) € S;, where i € {1,2,3,4}
and a polygonal chain connecting points p; with ps and p3 with py.
else (now | {S1 US; U S3USs} |=2) do
Apply Lemma 4.4 to find points p; = (z;,y;,m) € S;, where i € {1,2,3,4}
and a polygonal chain connecting points p; with ps and ps with py4.
Draw polygonal chains 3 and la. Let p}, ph, p5 and pj be the incoming points
of the edges at levels m — 1 and m + 1 corresponding to the regions Ry, Rs, R3
and R, depending on the type of the dummy vertex.
Draw straight lines pipi1, paph, p§, ps and pap).
od

Theorem 4.1. Let G be a non-planar graph with n-vertices and m edges and
let G, be the planarized version of G with n vertices and n' dummy vertices.
Then Algorithm 4 constructs in O(n + n') time a three dimensional polyline
crossing-free grid drawing of G with bounding bozx 2[+/|3(n +n')/2] — 3] x
2[/[3(n+n')/2] —3] x 3(n + n') and there is at most 4m + 19n’ total edge
bends.

Proof. The properties of Algorithm 3 guarantee that the claimed upper bound
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for the volume of the drawing holds. To show that Algorithm 4 runs in O(n+n')
time, it is enough to consider the running time to detect different cases for
routing, since Algorithms 1, 3 and 2’ that are called from Algorithm 4 run in
O(n + n') time and all other operations of Algorithm 4 are executed once for
each dummy vertex. Fach subcase of Lemmas 4.2, 4.3 and 4.4 can be performed
in constant time and to test wheter any two straight line segments cross can
be done in constant time. Therefore, the total running time of Algorithm 4 is
O(n +n').

Theorem 4.1 guarantees that all edges between non-dummy vertices are
drawn without intersections and Lemmas 4.2, 4.4 and 4.4 guarantee that there
are no intersections inside dummy regions. By Lemma 3.2, there are no cross-
ings with other line segments from other regions and no integer point from other
regions is crossed.

To prove the upper bound for the total edge bends, let Ry, Ry, R3 and Ry
be regions that are joined with an intersection on a dummy vertex before step
4 of Algorithm 4. By Algorithm 2', there is at most two bends before arriving
to point p} just one level before or after a dummy region. One bend is possibly
added when connecting points p} and p;, where p; is a point located at the
dummy region. The worst case of Lemmas 4.2, 4.3 and 4.4 adds at most 5
bends (case 4(b) of Lemma 4.2) when connecting points p; with ps (or p3 with
p4) in the dummy region, but on the other hand, the points ps and ps (or py
and po) are always connected with a straight line segment. Also the points p3
and p4 might add the total number of bends by 2. Since one dummy vertex
can cause up to 19 edge bends and an edge constructed by Algorithm 2' have
at most 4 edge bends, we have at most 4m + 19n’ edge bends. The theorem
follows.

O

From the Theorem 4.1 following result can be derived.

Corollary 4.1. Let G be a non-planar graph with n vertices. If the crossing
number of G is f(n) then G admits a three dimensional crossing-free polyline
grid drawing with volume O(y/n + f(n)) x O(y/n + f(n)) x O((n + f(n))).

By Corollary 4.1, a non-planar graph with O(n) crossings admits a polyline
crossing-free grid drawing with O(n?) volume. It is not known whether there
exist any non trivial classes of graphs admiting linear number of crossings [36],
but on the other hand, many sparse graphs have only few crossings.

5 Conclusions

In this paper we showed that the three dimensional polygonal z-visibility rep-
resentation for planar graphs can be drawn with volume [+/[3n/2] —3] x
[V 13n/2] — 3] x (n —1). The time complexity for this representation is linear
in the number of vertices in the graph. We also showed that planar graphs
with n vertices admit a three dimensional crossing-free polyline grid draw-
ing with at most two bends for an edge with bounding box [1/|3n/2] — 3] x
[v/13n/2] — 3] x 3(n — 1). The final result of this paper was that non-planar
graphs with n’ crossings can be drawn with volume 2[/[3(n + n')/2] — 3] x
2[/[3(n +n')/2] — 3] x3(n+n'—1) having at most 2m+19n’ edge bends. The
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drawing algorithm for non-planar graphs runs in O(n + n') time, if planarized
version of the G graph is given as input.
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