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Abstract. This paper empirically compares five linear-time algorithms
for generating unbiased random binary trees. We count the numbers of var-
ious types of operations executed by the algorithms. It turns out that there
hardly exists a definite overall ranking order among the algorithms but the
order varies depending on the criteria applied.
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1 Introduction

Binary trees are essential in various branches of computer science [6]. From
time to time, there is a need to generate random binary trees. For example,
when testing or analyzing a program that manipulates binary trees, it is
advantageous to have an efficient method to generate random binary trees
with a given number n of nodes.

We consider in this paper only algorithms that assign equal probability to
all members of the family of trees with n nodes, i.e., we always use the uniform
distribution. Mathematically, there are no problems at all in generating
random binary trees. Namely, there exist algorithms to enumerate binary
trees. Simply choose a random natural number ¢ from the interval [1..C}],
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where the nth Catalan number
o = <2n> 1
n/n+1
gives the number of binary trees with n nodes, and output the #th binary
tree from the enumeration with an unranking algorithm.

Computationally the problem is more complicated. As Martin and Orr
[10] observe, Csgop needs over 2000 digits in decimal notation. It is preferable
that algorithms generating random binary trees use only integers of polyno-
mial size on n or, if possible, of size O(n). Notice, however, that we also have
to use probabilities, that is, real numbers from the interval [0..1].

The problem of exponential numbers in generating unbiased random bi-
nary trees can be tackled through the use of binary tree codings. Instead
of directly generating binary trees, the algorithms actually generate random
code words which are in 1-1 correspondence with binary trees. This requires
an efficient way to travel between trees and code words. All the coding
schemes considered here allow efficient transformation algorithms. These
transformations are obvious when the code words are given, and are not
considered in this paper. For further details concerning these transforma-
tions, the reader is referred to the original articles introducing the methods
(2,3, 7,10, 13].

The rest of this paper is organized as follows. In section 2 we recall the
algorithms. Section 3 describes the organization of our tests and introduce

the results in several data tables. In section 4 we draw our conclusions.
Sections 3 and 4 are based on [14].

2 The algorithms

There are several linear time random binary tree generators (for a survey,
see [8]). In this section we recall five such algorithms. These algorithms
can produce code words for random binary trees without any preliminary
computations, while there is a sixth algorithm introduced by Johnsen [5]
requiring a preprocessing phase which takes O(n?) time and space. Johnsen’s
algorithm is not considered here since, besides the need of a preprocessing
phase, it uses integers of exponential size on n.



2.1 Arnold and Sleep

Strings of balanced parentheses are well-known to be in 1-1 correspondence
with binary trees. The set of all balanced parentheses can be generated by
the grammar with productions

S — {S}S,5 — A,

where A stands for the empty string. (For notational clarity we use strings
of curly brackets { and }.)

Suppose we are generating binary trees with n nodes. The correspond-
ing strings of balanced parentheses are of length 2n. From left to right, we
construct a balanced string by repeatedly choosing between a left parenthe-
sis (corresponding the production S — {S}S) and a right parenthesis (the
production S — A). The decision probabilities depend only on the number r
of unmatched left parentheses produced so far and on the total number & of
symbols remaining to be produced. Let A(r, k) denote the number of valid
continuations when there are r unmatched left parentheses and k& symbols
remaining to be produced.

The probabilities to produce left and right parentheses can be expressed
in terms of A. Namely, the number of valid continuations starting with a left
parenthesis is A(r + 1,k — 1) and the number of valid continuations starting
with a right parenthesis is A(r — 1,k — 1). Hence, the probability P(r, k) to
produce a right parenthesis when there are » unmatched left parentheses and
k symbols remaining to be produced is

A(r—l,k—l)‘ (1)

A(r, k)

A string of parentheses can be geometrically represented as a zigzag-line,
starting from the origin and consisting of northeast and southeast edges of
equal length. FEach northeast edge represents a left parenthesis and each
southeast edge represents a right parenthesis. A balanced string of parenthe-
ses has a drawing in which the line returns to the base line and has no edges
below it.

A geometric representation of the situation where there are » unmatched
left parentheses and k£ symbols remaining to be produced is a similar zigzag
line from the point (0, ) to the point (k, 0) not entering the negative region of
the plane. Such paths are called positive paths. The other paths are negative

P(r k) =




paths. Arnold and Sleep [2] determine the number of positive paths, that is
A(r, k), by subtracting the number of negative paths from the total number
of paths. This difference is

o 2r41) k
Alr, k) = (k+71+2) ((k + r)/2>' 2)

Based on (1) and (2) the probability P(r, k) can now be written as

(k+7r+2)

P(r.k) = r2k(r 1) 3)

Note that r = k gives P(r, k) = 1.

Equation 3 solves the problem of generating random binary trees: we
choose random real numbers from the interval [0..1] and compare them to
the results obtained by equation (3) with the present values of r and k.

2.2 Atkinson and Sack

Atkinson and Sack [3] give a divide-and-conquer algorithm to generate ran-
dom strings of balanced parentheses.

A string of parentheses is said to be balanced with defect iif (1) it contains
an equal number of left and right parentheses, i.e., its zigzag line returns to
the base line, and (2) the zigzag line has precisely 2i edges below the base
line. Note that the set of balanced strings with defect 0 is the one having a
1-1 natural correspondence with binary trees.

Let B,; stand for the set of balanced strings with defect + and with length
2n. The sets By, Bni, ..., By, are disjoint and their union B, is the set
of all strings of parentheses containing an equal number of left and right
parentheses. All the sets B,,; have the same size f:) — [4]. The algorithm
of Atkinson and Sack chooses a random member of B,, and transforms it into
the corresponding member of B,,.

If w is a string of parentheses, we denote by w the string obtained by re-
placing each left parenthesis by a right parenthesis and each right parenthesis
by a left parenthesis.

Let w be a string (not necessarily balanced) containing an equal number
of left and right parentheses. We say that w is reducible if it can be written
in the form w = wyw, where both w; and wy are nonempty and contain an



equal number of left and right parentheses. Otherwise, w is irreducible. If an
irreducible string w contains an equal number of left and right parentheses,
then one of w and w is balanced. Moreover, w has a unique factorization
w = wiwy . .. wg, where each wj; is irreducible [3].

The algorithm of Atkinson and Sack first generates a random combination
X of n integers from {1,2,...,2n}. This is possible in linear time (for details,
see e.g. [12]). Next, a random string x = x;xs...x9, of parentheses is
constructed by setting z; = { if i € X; otherwise x; =}. There are an equal
number of left and right parentheses in x, and hence z is in B,,.

The crux of the algorithm is the mapping of x to a unique member of
B,o. Formally, we need a map ® : B,, — B, defined inductively as follows.
When n = 0, we have ®q(\) = A. For n > 0, we express w € B, as w = uv,
where u is nonempty and irreducible and v is of length s > 0. Now we define
®,, by setting @, (w) = ud,(v), if u is balanced; otherwise @, (w) = {P4(v)}¢,
where u =}t{. It is possible to prove that ®, is bijective on each B,; [3].

The method of Atkinson and Sack has the nice feature that it uses only
integers of size at most 2n [3].

2.3 Korsh

Korsh [7] introduced a random binary tree generation algorithm based on bit
sequence rotations. Korsh’s method uses a binary tree coding scheme where
the tree is given as a sequence of bit pairs, one pair for each node. The
bits indicate whether or not the node has a non-null left and right subtree.
Pairs are given in preorder. The code word of a tree with n nodes contains
n — 1 1-bits and n + 1 0-bits. A k-rotation related to the node k of a Korsh’s
code word is obtained by shifting the first £ — 1 pairs from the front to the
end of the code word. Korsh [7] shows that any sequence of bit pairs with
n — 1 1-bits and n + 1 0-bits is either a valid code word or a k-rotation of
a unique code word. Hence, it is sufficient to randomly generate a bit pair
sequence of appropriate length (as in the method of Atkinson and Sack) and
then find the corresponding Korsh’s code word as follows. Suppose that d is
an arbitrary sequence of bit pairs with n —1 1-bits and n+1 0-bits. Find the
shortest prefix of d where the number of 0-bits exceeds the number of 1-bits
by two. If this prefix is proper (i.e., differs from d itself), shift the prefix to
the end of d and repeat the operation. This process will halt in linear time
with the desired result [7].



Like the method of Atkinson and Sack, Korsh’s method uses only integers
of size at most 2n [7].

2.4 Martin and Orr

Consider now the following coding method for binary trees. Each node in the
right arm (the path from the root following right child pointers) is labeled
with 0. If a node is a left child, its label is i + 1 where 7 is the label of the
parent. The label of a right child is the same as the label of its parent. Read
the labels in preorder. The code word obtained is called an inversion table
in [10].

Generating a binary tree is now equivalent to generating a code word
(21,22, ...,2,). If x; =4, Martin and Orr [10] use a cumulative probability
distribution function F'(k) which gives the probability that z;.; € {0,..., k},
k< i+ 1. If a is the number of all valid code words with the prefix so
far produced and b is the number of valid code words with the prefix so
far produced augmented with any code item from the set {0,... &k}, then
F(k) = b/a. More generally, F' is a function of n, the length of the code
word, ¢, the previous code item, j, the position in the code word, and k, the
upper bound for the next code item to be determined.

Martin and Orr [10] give the following formula

(k+1)(n—7+i+2)!(2n—2j+k)!
(i+2)(n—F+k+1)!(2n—2j+i+ 1)
We can now choose a random number x from the interval [0,1), and find
the largest m such that x > F(n,i,j,m — 1). Then m is the next code item.
Let P(n,i,j, k) = F(n,i,j,k) — F(n,i,j,k — 1) denote the probability
that k is the next code item and let Q(n, j, k) = P(n,i,j,k—1)/P(n,i,j, k).
To dispense with the factorials, Martin and Orr [10] derive the formulas

F(n,i,j, k) =

(k+1)(n—j+k+1)

Qi k) = G en =2 s k= 1)

and

(i +3)(n—J)

P(n,i,jyi+1) = .
(i 0 ) = oy an — 2 i 1)




Because of the fact P(n,i,5,k — 1) = Q(n,j,k) - P(n,i,j,k), it is now
easy to compute the values of P for all necessary k’s starting at ¢ + 1 (the
highest possible value for k) and continuing iteratively towards 0 (the lowest
possible value).

2.5 Rémy

Rémy [13] gave the following inductive algorithm to generate a random binary
tree with n internal nodes and n + 1 leaves:

e suppose that so far we have a binary tree with &k internal nodes and
k + 1 leaves

e randomly select one of the 2k + 1 nodes; denote the selected node by v
e replace v by a new node

e randomly choose v to be the left or right child of the new node; the
other child of the new node is a new leaf; the subtrees of v are kept
unchanged

e repeat the process of inserting nodes until the tree has n internal nodes
and n + 1 leaves.

The correctness of Rémy’s algorithm can be proved by considering binary
trees with leaves labelled by numbers 1,...,n+1. Namely, it is easy to show
by induction (see [1, 13| for details) that the algorithm generates all

2n/!

binary trees with labelled leaves with probability

n!
ol

We use the implementation of Rémy’s algorithm given in [9].



3 The tests

The algorithms recalled in the previous section are all of linear time complex-
ity. Hence, in order to compare the algorithms we have to use finer methods
than the order of magnitude of the time complexities.

A straightforward method is to compare execution times. The results
so obtained, however, depend on the environment in which the tests are
performed. More general information is obtained if we count the numbers of
various types of operations executed. We record the numbers of the following
operation types:

e arithmetic operations (abbreviated in the sequel as ADD, MUL and
DIV)

e array references (ARR)

e random number generator calls (RAN)

e variable references and assignment statements (LOA, STO)
e arithmetic and logical comparisons (CMP)

e pointer references (PTR)

e recursive procedure calls (REC)

e miscellaneous operations (OTH).

We have to make a few simplifying assumptions concerning the recording.
For example, we treat logical expressions as if they were always completely
evaluated, thus disregarding situations where the value of an expression be-
comes known before the end of the evaluation. Furthermore, we disregard
type conversions and the size of operands in arithmetic operations. The ma-
jority of the operations in the column ADD are additions or subtractions by
one, mostly in loop counter variables.

As an example, we give the detailed code for the Martin-Orr algorithm (cf.
section 2.4) with the recordings of the operations. The procedure generates
one random code word. Notation ¢(INS,z) stands for incrementing x times
the counter corresponding the operation type INS.



void main()
{
int i, j, k, n,
x[1..n]; // code word 1..n
double random, sum, p, q;

x[1] = 0;
/] ¢(LOA,2); ¢(ARR,1); ¢(STO,1);
// ¢(LOA,4*n-1); ¢(STO,n); // for
/] ¢(CMPpn); ¢(ADDn-1); // for

for (j=1; j<=n-1; j++)
{
i = x[jl;
k =i+1;
// ¢(LOA4); ¢(STO,2);
// ¢(ADD,1); ¢(ARR,1);
p = double( (i4+3)*(n-j) ) / double((i+2)*(2*n-2*j+i+1));
// ¢(LOA12); ¢(STO,1);
// ¢(ADD,8); ¢(MUL,2); ¢(DIV,1);
sum = p;
random = 1.0-randomGen/();
// ¢(RAN,1); ¢(LOA,2);
// ((ADD.1); ¢(STO.2):
while (random > sum)

{
// ¢(LOA,2); ¢(CMP,1); // while
q = double((k+1)*(n-j+k+1)) / double((k+2)*(2*n-2*j+k-1));
// ¢(LOA,14); ¢(STO,1);
// ¢(ADD,10); ¢(MUL,2); ¢(DIV,1);

P = q*p;
sum = sum-p;
k = k-1;

// ¢(LOA,6); ¢(STO,3);
// ¢(ADD,2); ¢(MUL,1);



// ¢(LOA2); ¢(CMP,1); // while

x[j+1] = k;
/] ¢(LOA,3); ¢(STO,1);
// ¢(ADD,1); ¢(ARR,1);

The above algorithm generates code words that represent binary trees
according to the coding system by Martin and Orr’s algorithm. Because the
algorithms use different coding systems, we record the costs in two stages:
generating random code words and constructing the binary trees from the
code words.

We apply the unit cost principle, i.e., operation costs do not depend on
the size of the integers handled. The tests were performed in an environment
where this is possible for integers not exceeding 23! — 1.

We use the random number generator of Park and Miller [11] with pa-
rameters a = 7° and b = 23! — 1 giving more than 2 - 10° pseudorandom
numbers before the sequence repeats itself.

3.1 Generating code words

In this section we give the observed numbers of the operations for the five
methods from the random generation of code words. Tables 1-5 show the
number n of nodes in trees, the number ¢ of trees generated, and the average
numbers of different operations per node (i.e., we sum up the corresponding
numbers from all the ¢ trees generated and divide the sums by n - t). As
a result, the numbers from different test runs are comparable even with
differing values of n and ¢t. When n is large enough, these values can be used
to estimate and compare the asymptotic performances of the algorithms.

3.2 Constructing the trees

In this section we give the observed numbers of the operations per node from
the construction of the resulting binary trees from the code words gener-
ated in the previous section. The data shown in Tables 6-9 is collected and
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presented as in the case of Tables 1-5. Notice that Arnold and Sleep’s and
Atkinson and Sack’s algorithms use the same coding method.

4 Total costs

So far, we have counted the numbers of different operations in the test runs.
This would be enough, if there were an algorithm with the smallest number
of all types of operations. Unfortunately, this is not the case. In order
to compare the algorithms, we have to decide weights for different types of
operations. The weights used in this paper are shown in Table 10. Naturally,
reasonable sets of weights vary from one environment to another.

When the weights are fixed, it is straightforward to give the total costs
of the algorithms. Just multiply every number in Tables 1-9 by its corre-
sponding weight and add up the numbers in each row. The final results so
obtained are given in Tables 11-15.

The algorithms include many loops with a fixed number of iterations. In
principle, the cost of the control structure of this kind of loop can be avoided,
if the body of the loop is duplicated in the program code the known number
of times. As an aside, we recorded the amount by which ignoring these costs
reduces the total costs. The reduction in the weighted costs of the generation
of code words was in the order of 15 per cent (Atkinson and Sack, Korsh),
5 per cent (Martin and Orr, Remy) and zero (Arnold and Sleep). However,
these results did not affect the ranking order of the algorithms.

5 Conclusions

The level of convergence and monotonicity of the total costs in Tables 11-15
imply that our tests have been sufficiently long to estimate the relative con-
stant factors of the time complexities (possibly excluding Korsh’s algorithm
whose total cost didn’t behave monotonically as n increased). We can con-
clude that exact asymptotic costs are found at least for Arnold and Sleep’s,
Martin and Orr’s and Rémy’s algorithms. The standard deviations of the
total costs of the algorithms (excluding again Korsh’s algorithm) are very
small with n > 1000.

First we discuss the numbers of different operation types in the algo-
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rithms. In most environments a call of a random number generator is far
more expensive than the other operation types recorded. In Table 10 we
have weighted it 32 times more expensive than the basic operations LOA
and STO. A natural measure of the efficiency of the algorithms is then the
number of calls of the random number generator per node. Arnold and Sleep’s
and Rémy’s algorithms use two calls per node while one call is sufficient for
the other three algorithms.

With respect to array references, Arnold and Sleep’s and Martin and Orr’s
algorithms are clearly the best ones. They need only two array references per
node while the other algorithms need at least 10 array references. Moreover,
the two algorithms with the lowest numbers of array references also make
their references in consecutive array positions.

Tables 11-15 suggest the following overall order of the algorithms:

1. Martin and Orr

2. Arnold and Sleep
3. Rémy

4. Atkinson and Sack

5. Korsh.

However, Martin and Orr’s algorithm was the only one with which we had
problems when n increased. Indeed, run time errors occurred when n > 6-10°
because of overflow in integer arithmetic.

Execution times for the generation of code words (measured in VAX 7000-
830 environment) with average size trees (n = 10*) gave the order

1. Martin and Orr

2. Atkinson and Sack
3. Korsh

4. Arnold and Sleep

5. Rémy.

12



To summarize, Martin and Orr’s algorithm produced the best results for

trees with n up to over half a million. For larger trees, no clear ’winner’
emerged. Because some of the algorithms do not differ very much in per-
formance, the overall order may vary depending on the weights, i.e., on the
implementation of the operations.
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n t LOA | STO | CMP | ADD | MUL | DIV | ARR | RAN | OTH

4 10K | 34.99 | 10.75 | 5.00 | 10.25 | 2.00 | 1.00 | 2.00 | 1.00 | 0.00
10 | 10K | 39.29 | 11.30 | 5.45 | 12.10 | 3.00 | 1.50 | 2.00 | 1.50 | 0.00
100 | 10K | 43.44 | 11.91 | 5.93 | 13.78 | 3.88 | 1.94 | 2.00 | 1.94 | 0.00
1K | 5K [ 43.94 | 11.99 | 599 | 1398 | 3.99 | 1.99 | 2.00 | 1.99 | 0.00
10K | 1K | 43.99 | 12.00 | 6.00 | 14.00 | 4.00 | 2.00 | 2.00 | 2.00 | 0.00
100K | 100 | 44.00 | 12.00 | 6.00 | 14.00 | 4.00 | 2.00 | 2.00 | 2.00 | 0.00

Table 1: The average numbers of the operations per node from the random

generation of code words by Arnold and Sleep’s algorithm.

n t LOA | STO | CMP | ADD | MUL | DIV | ARR | RAN | REC | OTH
4 10K | 85.28 | 26.90 | 12.32 | 15.91 | 1.00 | 0.00 | 15.35 | 1.00 | 0.91 | 0.91
10 | 10K | 81.07 | 25.68 | 11.34 | 15.57 | 1.00 | 0.00 | 15.53 | 1.00 | 0.57 | 0.57
100 | 10K | 76.74 | 24.47 | 10.38 | 15.17 | 1.00 | 0.00 | 15.83 | 1.00 | 0.18 | 0.18
1K | 5K | 75.52 | 24.14 | 10.11 | 15.04 | 1.00 | 0.00 | 15.95 | 1.00 | 0.06 | 0.06
10K | 1K | 75.16 | 24.04 | 10.04 | 15.01 | 1.00 | 0.00 | 15.98 | 1.00 | 0.02 | 0.02
100K | 100 | 75.06 | 24.01 | 10.01 | 15.01 | 1.00 | 0.00 | 15.99 | 1.00 | 0.01 | 0.01

Table 2: The average numbers of the operations per node from the random
generation of code words by Atkinson and Sack’s algorithm.

n t LOA | STO | CMP | ADD | MUL | DIV | ARR | RAN | OTH
4 10K | 103.10 | 27.41 | 20.21 | 18.03 | 0.75 | 0.00 | 15.25 | 0.75 | 0.00
10 | 10K | 105.20 | 27.34 | 20.15 | 19.26 | 0.90 | 0.00 | 16.30 | 0.90 | 0.00
100 | 10K | 106.10 | 27.13 | 20.05 | 19.96 | 0.99 | 0.00 | 16.93 | 0.99 | 0.00
1K | 5K | 106.01 | 27.03 | 20.00 | 19.99 | 1.00 | 0.00 | 16.99 | 1.00 | 0.00
10K | 1K | 105.33 | 26.87 | 19.82 | 19.86 | 1.00 | 0.00 | 16.95 | 1.00 | 0.00
100K | 100 | 105.95 | 26.99 | 19.99 | 19.99 | 1.00 | 0.00 | 17.00 | 1.00 | 0.00

Table 3: The average numbers of the operations per node from the random
generation of code words by Korsh’s algorithm.
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n t LOA | STO | CMP | ADD | MUL | DIV | ARR | RAN | OTH
4 10K | 32.61 | 7.77 | 2.26 | 15.06 | 3.02 | 1.26 | 1.75 | 0.75 | 0.00
10 | 10K | 41.30 | 9.50 | 2.65 | 19.80 | 4.05 | 1.65 | 1.90 | 0.90 | 0.00
100 | 10K | 48.13 | 10.83 | 2.96 | 23.53 | 4.89 | 1.96 | 1.99 | 0.99 | 0.00
1K | 5K | 48.91|10.98 | 3.00 | 23.95 | 4.99 | 2.00 | 2.00 | 1.00 | 0.00
10K | 1K | 48.99 | 11.00 | 3.00 | 24.00 | 5.00 | 2.00 | 2.00 | 1.00 | 0.00
100K | 100 | 49.00 | 11.00 | 3.00 | 24.00 | 5.00 | 2.00 | 2.00 | 1.00 | 0.00

Table 4: The average numbers of the operations per node from the random
generation of code words by Martin and Orr’s algorithm.

n t | LOA | STO | CMP | ADD | MUL | DIV | ARR | RAN | OTH
4 10K | 36.82 | 16.25 | 3.83 | 3.00 | 2.00 | 0.00 | 991 | 2.00 | 9.91
10 | 10K | 36.14 | 15.50 | 3.89 | 3.00 | 2.00 | 0.00 | 9.87 | 2.00 | 9.87
100 | 10K | 35.97 | 15.05 | 3.98 | 3.00 | 2.00 | 0.00 | 9.96 | 2.00 | 9.96
1K | 5K | 35.99 | 15.00 | 4.00 | 3.00 | 2.00 | 0.00 | 9.99 | 2.00 | 9.99
10K | 1K | 36.00 | 15.00 | 4.00 | 3.00 | 2.00 | 0.00 | 10.00 | 2.00 | 10.00
100K | 100 | 36.00 | 15.00 | 4.00 | 3.00 | 2.00 | 0.00 | 10.00 | 2.00 | 10.00

Table 5: The average numbers of the operations per node from the random
generation of code words by Rémy’s algorithm.

n t LOA | STO | CMP | ADD | ARR | PTR | REC | OTH
4 | 10K | 13.75 | 4.75 | 3.00 | 2.00 | 2.00 | 3.50 | 2.00 | 0.00
10 | 10K | 13.90 | 4.90 | 3.00 | 2.00 | 2.00 | 3.80 | 2.00 | 0.00
100 | 10K | 13.99 | 4.99 | 3.00 | 2.00 | 2.00 | 3.98 | 2.00 | 0.00
1K | 8K | 14.00 | 5.00 | 3.00 | 2.00 | 2.00 | 4.00 | 2.00 | 0.00
10K | 1K | 14.00 | 5.00 | 3.00 | 2.00 | 2.00 | 4.00 | 2.00 | 0.00

Table 6: The average numbers of the operations per node from the construc-
tion of binary trees from the code words by Arnold and Sleep’s and Atkinson
and Sack’s algorithms.
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n t LOA | STO | CMP | ADD | ARR | PTR | REC | OTH
4 | 10K | 12.75 | 5.75 | 2.00 | 2.00 | 2.00 | 1.50 | 1.00 | 2.00
10 | 10K | 12.90 | 5.90 | 2.00 | 2.00 | 2.00 | 1.80 | 1.00 | 2.00
100 | 10K | 12.99 | 5.99 | 2.00 | 2.00 | 2.00 | 1.98 | 1.00 | 2.00
1K | 5K | 13.00 | 6.00 | 2.00 | 2.00 | 2.00 | 2.00 | 1.00 | 2.00
10K | 1K | 13.00 | 6.00 | 2.00 | 2.00 | 2.00 | 2.00 | 1.00 | 2.00

Table 7: The average numbers of the operations per node from the construc-
tion of binary trees from the code words by Korsh’s algorithm.

n t LOA | STO | CMP | ADD | ARR | PTR | REC | OTH
4 | 10K | 9.75 | 425 | 2.50 | 0.75 | 0.75 | 1.50 | 1.00 | 0.75
10 | 10K | 11.10 | 4.70 | 2.80 | 0.90 | 0.90 | 1.80 | 1.00 | 0.90
100 | 10K | 11.91 | 4.97 | 298 | 0.99 | 0.99 | 1.98 | 1.00 | 0.99
1K | 3K | 11.99 | 5.00 | 3.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00
10K | 1K | 12.00 | 5.00 | 3.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00

Table 8: The average numbers of the operations per node from the construc-
tion of binary trees from the code words by Martin and Orr’s algorithm.

n t LOA | STO | CMP | ADD | ARR | PTR | REC | OTH
4 | 10K | 23.25 | 875 | 6.75 | 0.00 | 4.50 | 4.00 | 2.25 | 9.00
10 | 10K | 21.90 | 8.30 | 6.30 | 0.00 | 4.20 | 4.00 | 2.10 | 8.40
100 | 10K | 21.09 | 8.03 | 6.03 | 0.00 | 4.02 | 4.00 | 2.01 | 8.04
1K | 8K | 21.01 | 8.00 | 6.00 | 0.00 | 4.00 | 4.00 | 2.00 | 8.00
10K | 1K | 21.00 | 8.00 | 6.00 | 0.00 | 4.00 | 4.00 | 2.00 | 8.00

Table 9: The average numbers of the operations per node from the construc-
tion of binary trees from the code words by Rémy’s algorithm.

LOA | STO | CMP | ADD | MUL | DIV | ARR | PTR | REC | RAN | OTH

1 1 1.5 1.5 2 2 4.5 2 10 32 2

Table 10: The weights of the operations.
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n t codes | trees

total

4 10K | 115.59 | 98.00
10 | 10K | 142.87 | 98.90
100 | 10K | 167.68 | 99.44
1K | 5K | 170.66 | 99.49
10K | 1K | 170.97 | 99.50
100K | 100 | 171.00 | 99.50

213.59
241.77
267.12
270.16
270.47
270.50

Table 11: The weighted costs of Arnold and Sleep’s algorithm.

n t codes | trees

total

4 10K | 268.49 | 98.00
10 | 10K | 257.86 | 98.90
100 | 10K | 246.90 | 99.44
1K | 5K | 243.81 | 99.49
10K | 1K | 242.91 | 99.50
100K | 100 | 242.64 | 99.50

366.49
356.76
346.34
343.30
342.41
342.14

Table 12: The weighted

costs of Atkinson and Sack’s algorithm.

n t codes | trees

total

4 10K | 281.97 | 86.50
10 | 10K | 295.61 | 87.40
100 | 10K | 303.07 | 87.94
1K | 5K | 303.45 | 87.99
10K | 1K | 302.00 | 88.00
100K | 100 | 303.40 | 88.00

368.47
383.01
391.01
391.45
390.00
391.40

Table 13: The weighted costs of Korsh’s algorithm.

n t codes | trees

total

4 10K | 106.77 | 72.75
10 | 10K | 133.22 | 76.80
100 | 10K | 153.04 | 79.23
1K | 5K | 155.25 | 79.47
10K | 1K | 155.48 | 79.50
100K | 100 | 155.50 | 79.50

179.52
210.02
232.27
234.72
234.97
235.00

Table 14: The weighted costs of Martin and Orr’s algorithm.
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n t codes | trees total

4 10K | 195.72 | 146.88 | 342.60
10 | 10K | 194.14 | 140.35 | 334.49
100 | 10K | 194.25 | 136.44 | 330.68
1K | 5K | 194.45 | 136.04 | 330.50
10K | 1K | 194.49 | 136.00 | 330.50
100K | 100 | 194.50 | 136.00 | 330.50

Table 15: The weighted costs of Rémy’s algorithm.
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