
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

ON THE COMPLEXITY OF A PROBLEM

ON MONADIC STRING REWRITING

SYSTEMS

F.L. T� IPLEA AND ERKKI M�AKINEN

DEPARTMENT OF COMPUTER AND

INFORMATION SCIENCES

UNIVERSITY OF TAMPERE

REPORT A-2001-4

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER AND

INFORMATION SCIENCES

SERIES OF PUBLICATIONS A

A-2001-4, JUNE 2001

ON THE COMPLEXITY OF A PROBLEM ON

MONADIC STRING REWRITING SYSTEMS

F.L. T� IPLEA AND ERKKI M�AKINEN

University of Tampere

Department of Computer and Information Sciences

P.O.Box 607

FIN-33014 University of Tampere, Finland

ISBN 951-44-5135-X

ISSN 1457-2060

ON THE COMPLEXITY OF A PROBLEM ON MONADIC STRING

REWRITING SYSTEMS
1

Ferucio Laurent�iu T� iplea2

Faculty of Computer Science, \Al.I.Cuza" University of Ia�si

Ia�si, Romania

e-mail: fltiplea@mail.dntis.ro

and

Erkki M�akinen3

Department of Computer and Information Sciences, Tampere University

P.O. Box 607, Tampere, FIN-33014, Finland

e-mail: em@cs.uta.fi

ABSTRACT

Computing the set of descendants of a regular language L with respect to a monadic string rewrit-
ing system has proved to be very useful in developing decision algorithms for various problems on
�nitely-presented monoids and context-free grammars. Recently, Esparza et al. [6] proved O(ps3)
time and O(ps2) space bounds for this problem, where p is the number of rules in the monadic
string rewriting system and s is the number of states in the automaton accepting L.

Using synchronized extension systems [11, 9, 10] we provide a new insight to the problem and
allow an O(pr) time and space solution, where p is as above and r is the number of the rules in
the grammar generating L.

Keywords: formal languages, decision problems, monadic string rewriting systems, synchronized
extension systems, computational complexity

1. Introduction and Preliminaries

In [3] (see also [2]), Book and Otto show, among many other results, that if the rewriting rules
of a monadic string rewriting system T are applied to the strings of a regular set L, the set
��

T (L) so obtained (the set of descendants of L with respect to T) is also regular. This result
can be used to develop a methodology for designing decision algorithms for various problems
on �nitely-presented monoids and context-free grammars. The complexity of the decision
algorithms obtained in this way depends highly, among others factors, on the complexity of
the transformation of a �nite automaton accepting a language L into an automaton accepting
the set of descendants of L. The original transformation algorithm by Book and Otto was
later improved by Bouajjani et al. [4] and Esparza et al. [5, 6]. Esparza et al. [6] proved
O(ps3) time and O(ps2) space bounds where p is the number of rules in the monadic string
rewriting system and s is the number of states in the automaton accepting L.

1To be presented at the Third Workshop on Descriptional Complexity of Automata, Grammars and Related
Structures, July 20 - 22, 2001, Vienna, Austria.

2While visiting Carnegie Mellon University (Pittsburgh, Pennsylvania) by a Fulbright research grant.
3Work supported by the Academy of Finland (Project 35025).

2 F.L. T� iplea, E. M�akinen

Using synchronized extension systems [11, 9, 10], a new powerful and elegant rewriting
formalism, we provide a new insight to the problem and allow an O(pr) time and space
solution, where p is as above and r is the number of the rules in the grammar generating L.
Notice that synchronized extension systems deal the problems in di�erent level of granularity
than �nite automata used by the authors citied above.
For a self-contained and elegant treatment of this problem, we will survey to some extent

the Book and Otto's methodology, as well as some algorithms for computing the set of
descendants.

2. An Approach for Designing Decision Algorithms

Recall �rst some concepts from [3] related to string rewriting systems. A string rewriting
system over an alphabet � (shortly, an STS over �) is an non-empty subset T � �� � ��.
Each element (�; �) 2 T is called a (rewrite) rule; they are usually denoted by � ! �. The
rewriting (or step derivation) relation induced by T is the binary relation)T on �� given by

u)T v i� u = u1�u2 ^ v = u1�u2 ^ �! � 2 T;

for all u; v 2 ��. The reexive and transitive closure of)T , denoted by
�

)T , is called the
derivation relation induced by T .
A (non-empty) derivation of u into v by T is a sequence of step derivations

u = u00�1u
00

0)T u00�1u
00

0 = u1 = u01�2u
00

1)T � � �)T u0n�1�nu
00

n�1 = un = v;

where n � 1 and ri : �i ! �i 2 T for all 1 � i � n. Sometimes we will write u
r1���rn===)T v

to denote the fact that u is rewritten into v by the rules r1; : : : ; rn used in this order (this
notation is ambiguous because it does not take into consideration the places where the rules
are applied. However, we will use it in conjunction with a derivation explicitly given as above
in order to simplify the notation and, therefore, the ambiguities will be avoided.)
For a language L over an alphabet � and an STS T over �, we denote by ��

T (L) the
language

��

T (L) = fv 2 ��j9u 2 L : u
�

)T vg:

A monadic STS (over an alphabet �) is an STS having the property j�j > j�j and j�j � 1,
for each rule �! �.
In [3] (p. 91), the following important result has been proved.

Theorem 1 For any non-deterministic �nite automaton A and monadic STS T one can
construct in polynomial time a non-deterministic �nite automaton B such that L(B) =
��

T (L(A)).

Theorem 1 has many important consequences concerning the decidability of various prob-
lems on rewriting systems. The main strategy in using this theorem is to transform the
decision problem we want to study into an equivalent one on regular languages. As an ex-
ample, consider the \extended word problem" for a conuent monadic STS (for de�nition,
see [3], p. 11) T given by:

Instance: Two regular sets R1 and R2 speci�ed by nondeterministic �nite-state automata.

Question: Do there exist x 2 R1 and y 2 R2 such that x
�

$T y ?

One can easily see that

(9x 2 R1)(9y 2 R2)(x
�

$T y) i� ��

T (R1) \��

T (R2) 6= ;:

On the Complexity of a Problem on Monadic String Rewriting Systems 3

Since ��

T (R1) and ��

T (R2) are regular, and the question

��

T (R1) \��

T (R2)
?
= ;

is decidable, the extended word problem for T is decidable.
The decision problems studied so far by means of Theorem 1 can be grouped into two

classes:

1. Decision problems on monoids presented by �nite conuent monadic STS's. This class
includes problems like the extended word problem, the power problem, the left/right
divisibility problem, the submonoid problem, the independent set problem, the subgroup
problem, the left/right/two-sided ideal problem, Green's relations decision problem etc.

2. Decision problems on context-free languages. This class includes problems like the
emptiness problem, the �niteness problem, the membership problem, the useless variable
problem, and the nullable variable problem.

The �rst class of decision problems has been studied to a great extent by Book [1]. Some
limitations of the Book method (called the method of linear sentences { see [3], p. 104) are
studied in [8]. For a uniform treatment the reader is referred to [3]. Book and Otto also
pointed out (see the end of Chapter 6 in [3]) the applicability of their method to certain
problems on context-free grammars, but they did not go into details. These were set up in
[4, 5, 6].
The complexity of a decision algorithm based on the method of linear sentences depends

on (a) the complexity of designing a non-deterministic �nite automaton B as in Theorem 1
and (b) the complexity of the resulting decision problem on regular languages.
Book and Otto have discussed the complexity of the decision problem they studied only

from a qualitative point of view (polynomial time/space). In [6], a quantitative point of view
is considered, in order to compare the eÆciency of the new decision algorithms with respect
to well-known algorithms (for example, CYK or Earley's algorithms). The discussion focuses
on (a) above. We will discuss three methods for (a), one being better than the others.

3. Computing the Set of Descendants

Let A = (Q;�; Æ; q0; F) be a �nite automaton and T be a monadic STS on �. The algorithm
proposed by Book and Otto for computing a �nite automaton recognizing the set ��

T (L(A))
changes the transition relation Æ by adding certain transitions and by turning certain non-�nal
states into �nal ones.

Algorithm 1

Input: A and T as above;
Output: A0 = (Q;�;�0; q0; F) accepting �

�

T (L(A));
begin

Æ0 := Æ;
repeat

for q; q0 2 Q and �! � 2 T do

if q0 2 �Æ0(q; �) then Æ0 := Æ0 [f(a; �; q0)g
until Æ0 does not change any more

end

It is not diÆcult to prove the correctness of this algorithm (see for details [5]). The running
time of this algorithm can be estimated as follows. Let p be the number of rules in T , l be
the maximal length of the left hand side of a rule, and let s be the number of states in

4 F.L. T� iplea, E. M�akinen

A. The repeat-until loop in Algorithm 1 is performed at most O(p � s2) times because the
transitions added to Æ0 are labelled by the right hand sides of rules in T . The for-loop is
performed �(p �s2) times, and checking whether q0 2 �Æ0(q; �) holds can be done by simulating
A on input �, which requires time O(l � s2). Adding an element to the relation Æ0 requires a
constant time. Therefore, the running time of Algorithm 1 is O(l � p2 � s6).

In [5], Esparza et al. proposed a new algorithm, whose running time is O(p � s4). Later
in [4], the bounds were improved to O(p � s3) time and space. The space complexity was
the subject of a new improvement to O(p � s2) in [6]. All these versions work on context-free
grammars which are special cases of monadic STS's. Moreover, the �nal version obtained in
[6] requires the Chomsky normal form extended with unit productions and �-productions.
This is not a real restriction because such a normal form can be obtained in linear time and
with a linear growth in the size of the productions. For unambiguous grammars, the time
complexity is O(p � s2), as proved in [6].

Excepting the (conceptually) very simple method by Book and Otto, the above solutions
require complicated computations. The solution we propose in the next section is fairly trivial
and superior from the complexity point of view. It works directly with the original monadic
STS. For convenience, the regular language is consider to be speci�ed by a regular grammar.

4. The New Solution

In this section we �rst recall the basic de�nitions related to synchronized extension systems.
This recently introduced rewriting formalism is then used in creating a new eÆcient solution
for the problem discussed in the previous sections.

4.1. Synchronized Extension Systems

Synchronized extension systems (SE-systems, for short) are introduced in [11] as 4-tuples
G = (V;L1; L2; S), where V is an alphabet and L1, L2, and S are languages over V . L1 is
called the initial language, L2 the extending language, and S the synchronization set of G.
For an SE-system G, de�ne the binary relations)G;r and)G;r� over V � as follows (the
leftmost versions)G;l and)G;l� can be de�ned analogously):

� u)G;r v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = xs ^ w = sy ^ v = xsy);

� u)G;r� v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = xs ^ w = sy ^ v = xy):

In an SE-system G = (V;L1; L2; S), the words in S act as synchronization words. They
can be kept or neglected in the �nal result, and r, r�, l, and l� are called (basic) modes of
synchronizations. In what follows, we restrict ourselves to the mode r�.

We say that an SE-system G = (V;L1; L2; S) is of type (p1; p2; p3) if the L1, L2, and S are
languages having the properties p1, p2, and p3, respectively. We use the abbreviations f and
reg for the properties of �niteness and regularity, respectively.

A derivation u
�

)r� v is called an r�-derivation. The language of type r� generated by an
SE-system G = (V;L1; L2; S) is de�ned as

Lr�(G) = fv 2 V �j9u 2 L1 : u
�

)G;r� vg:

The following result is essential for this paper.

Theorem 2 ([11]) For any SE-system G of type (reg; reg; f), the language Lr�(G) is regular.

On the Complexity of a Problem on Monadic String Rewriting Systems 5

4.2. Left-to-Right Derivations in STS's

In this section we give technical results concerning the form of derivations in �nite STS's.
The concept of a \derivation from u on x within the decomposition u = u1xu2" is aimed to
capture the idea that the subwords u1 and u2 are not used (neither partially nor totally) in
a derivation. Alternatively, one can say that the derivation u = u1xu2

�

)T u1yu2 from u on
x is obtained from the (normal) derivation x

�

)T y by catenating to each step the word u1
to the left and the word u2 to the right.

De�nition 1 Let T be a �nite STS over an alphabet �, u 2 �+ and x a subword of u. A
derivation from u on x within a decomposition u = u1xu2 is de�ned inductively as follows:

� if u = u1xu2 = u1x
0�x00u2 and �! � 2 T , then

u = u1xu2 = u1x
0�x00u2)T u1x

0�x00u2

is a derivation on x;

� if u = u1xu2
�

)T u1yu2 is a derivation on x and

u1yu2 = u1y
0�y00u2)T u1y

0�y00u2

is a derivation on y (within the decomposition u1yu2), then

u = u1xu2
�

)T u1yu2 = u1y
0�y00u2)T u1y

0�y00u2

is a derivation on x.

Now we are ready to de�ne left-to-right derivations of a �nite STS.

De�nition 2 Let T be a �nite STS over an alphabet �, u 2 �+, and let D the derivation

D : u
r1���ri�1
===) u1�iu2

ri) u1�iu2
ri+1���rn
===) v:

Let i < j � n.

(1) The step j of D is said to be to the left of the step i if there is a decomposition u1 = u01u
00

1

of u1 such that the derivation

u1�iu2 = u01u
00

1�iu2
ri+1���rj�1
====) xy

is on u01 or u001�iu2 and the step j (of D) is on x.

(2) The step j of D is said to be to the right of the step i if there is a decomposition
u2 = u02u

00

2 of u2 such that the derivation

u1�iu2 = u1�iu
0

2u
00

2

ri+1���rj�1
====) xy

is on u1�iu
0

2 or u002 and the step j (of D) is on y.

(3) The step j of the derivation D is said to be dependent on the step i if it is neither to
the left nor to the right of the step i.

(4) The derivation D is called a left-to-right (right-to-left) derivation of u into v if for every
i, 1 � i < n, the step i+ 1 is not to the left (right) of the step i.

The following lemma states that it is suÆcient to consider left-to-right derivations in �nite
STS's (see also [7] for a classical treatment of a similar topic).

6 F.L. T� iplea, E. M�akinen

Lemma 3 Let T be a �nite STS over an alphabet �. Then, for every derivation D of a
word u into a word v one can e�ectively construct a left-to-right derivation D0 of u into v.
Moreover, the derivation D0 can be obtained by changing only the order of steps in the original
derivation D.

Proof. Let D be a derivation of u into v,

D : u
s
)T v;

where s = r1 : : : rn 2 T+.
De�ne inductively a sequence s0 = ri1 � � � rin , where i1; : : : ; in 2 f1; : : : ; ng are pairwise

distinct, as follows:

1. Initially, set s0 := r1;

2. Assume that s0 is the sequence obtained by rearranging the subsequence r1 � � � rk of s,
where k < n;

3. Consider the rule rk+1 and the following possible cases:

(a) rk+1 is to the left of all rules in s0. Then, de�ne s0 = rk+1s
0;

(b) rk+1 does not depend on any rule in s0. Then, �nd the biggest j such that
rk+1 is to the right of s0(j) and insert rk+1 immediately after s0(j) (that is,
s0 := s0(1) � � � s0(j)rk+1s

0(j + 1) � � � s0(p), where js0j = p);

(c) rk+1 depends on some rule in s0, and let j be the biggest index such that rk+1
depends on s0(j). Then, insert rk+1 immediately after s0(j) (as above).

The fact that D0 de�ned by s0 is a left-to-right derivation follows directly from the con-
struction above.

2

Remark 1 In [3], Book and Otto introduce the concept of a leftmost derivation for STS's.
Let T be an STS over an alphabet �. A derivation step u)T v is called a leftmost derivation
step if the following hold:

(i) there is a rule �! � 2 T such that u = u1�u2 and v = u1�u2;

(ii) for every rule �0 ! �0 2 T such that u = u01�
0u02 we have

{ u1� is a proper pre�x of u01�
0, or

{ u1� = u01�
0 and u1 is a proper pre�x of u01, or

{ u1 = u01 and � = �0.

A derivation is called leftmost if each step of it is a leftmost derivation step.
Every two consecutive leftmost derivation steps have the property that the latter one is not

to the left of the �rst one (otherwise, (ii) is contradicted). Therefore, every leftmost derivation
is a left-to-right derivation, but the converse does not hold. As a conclusion, derivations of
STS are not generally equivalent to leftmost derivations.

4.3. The SES-solution

If the step j (using the rule rj : �j ! �j) of a derivation depends on a step i (using the rule
ri : �i ! �i), then �j uses, directly or indirectly, subwords of �i.
Left-to-right derivations of monadic STS have the interesting property that whenever a

step j depends on a step i then it uses all of the right hand side of the rule ri. This property
is crucial for the results to be proved in this section.

On the Complexity of a Problem on Monadic String Rewriting Systems 7

Let G = (VN ; VT ;X0; P) be a regular (right-linear) grammar without unit productions (i.e.,
rules A! B where A;B 2 VN), and let T be a �nite monadic STS over VT . We consider the
SE-system H = (V;L1; L2; S), where

{ V = VN [VT ,

{ L1 = fX0g,

{ L2 = fA�jA! � 2 Pg [f�A�AjA 2 VN ^ �! � 2 Tg,

{ S = VN [f�AjA 2 VN ^ (9�)(�! � 2 T)g.

Then, H is an SE-system of type (f; f; f) and, from Theorem 2 it follows that Lr�(H) is
regular.
With the notation above we have;

Theorem 4 ��

T (L(G)) = Lr�(H) \ V �

T .

Proof. A derivation in G,

X0)G a1A1)G � � �)G a1 � � � an�1An�1)G a1 � � � an�1an;

is simulated in H by synchronized extensions to the right, that is

X0)r� a1A1)r� � � �)r� a1 � � � an�1An�1)r� a1 � � � an�1an

(for some variables A1; : : : ; An�1).
The action of T on u = a1 � � � an is simulated at the time of generating u. Assume that u

is rewritten into v by the sequnce s = r1 � � � rm of rules of T , and let D be the derivation

D : X0
�

)G u
s
)T v:

By Lemma 3 we may assume that the derivation of u into v is left-to-right. Then, D can be
simulated by a derivation in H using the following remarks:

(1) if u = u1�u2�
0u3 and r : �! �; r0 : �0 ! �0 2 T , then the derivation

X0
�

)G u = u1�u2�
0u3

rr0
=)T u1�u2�

0u3

can be simulated in H by

X0
�

)r� u1�A

)r� u1�A
�

)r� u1�u2�
0B

)r� u1�u2�
0B

�

)r� u1�u2�
0u3;

for some variables A and B;

(2) if u = u1u2�u3u4, r : �! �, �0 = u2�u3 and r0 : �0 ! �0 2 T , then the derivation

X0
�

)G u = u1u2�u3u4
r
)T u1u2�u3u4

r0
)T u1�

0u4

can be simulated in H by

X0
�

)r� u1u2�A

)r� u1u2�A
�

)r� u1u2�u3B

)r� u1�
0B

�

)r� u1�
0u4;

8 F.L. T� iplea, E. M�akinen

(3) since the right hand side of each rule in T is either a symbol or the empty word, every
two rules r and r0 that are applied successively can be related either as in (1) or as in
(2).

Therefore, every derivation in G from X0 to a word u 2 V �

T followed by a derivation in T

from u into a word v can be simulated by a derivation in H from X0 into v.
Conversely, it is trivial to see that every derivation in H leading to a word v 2 V �

T is
a combination between a derivation in G from X0 into a word u 2 V �

T followed then by a
derivation in T from u into v.
As a conclusion, ��

T (L(G)) = Lr�(H) \ V �

T .
2

Corollary 5 For every right-linear grammar G = (VN ; VT ;X0; P) and every monadic STS
T over VN , the language ��

T (L(G)) is regular.

Consider now the complexity of our construction. To the extending language L2 we take
a string for each production in G, and a string for each production in G and a rule in T .
Hence, the cardinality of L2 is O(p � r), where p and r are the number of rules in T and
G, respectively. To the synchronization set S we take a string for each nonterminal in G,
and a string for each nonterminal in G and a left hand side of a rule in T . Thus, the sum
of the cardinalities of L2 and S is O(p � r). This gives the time and space bounds for our
construction.

Theorem 6 Let G and T be as above. Then, an SE-system H of type (f; f; f) simulating
the computation of ��

T (L(G)) can be constructed in O(jP j � jT j) time and space.

Theorem 6 gives the complexity of constructing H. Note that the complexity is dominated
by the size of the output; the algorithm itself is straightforward. Implementing the compu-
tation de�ned by H is also possible to perform very eÆciently. Namely, we can store VN ,
VT , S, and T in arrays, and maintain the current string in a stack. A simulation step simply
rewrites the right hand side end of the current string.

On the Complexity of a Problem on Monadic String Rewriting Systems 9

References

[1] R.V. Book, Decidable sentences of Church-Rosser congruences. Theoret. Comput. Sci.
24 (1983), 301{312.

[2] R.V. Book, F. Otto, Cancellation rules and extended word problems. Inform. Pro-
cess. Lett. 20 (1985), 5{11.

[3] R.V. Book, F. Otto, String Rewriting Systems. Springer-Verlag, 1993.

[4] A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems,

P. Wolper, An eÆcient automata approach to some problems on context-free gram-
mars. Inform. Process. Lett. 74 (2000), 221{227.

[5] J. Esparza, P. Rossmanith, An automata approach to some problems on context-free
grammars. In: Foundations of Computer Science: Potential, Theory, Cognition, LNCS
1337, Springer-Verlag, 1997, 143{152.

[6] J. Esparza, P. Rossmanith, S. Schwoon, A uniform framework for problems on
context-free grammars. Bull. EATCS 72 (2000), 169{177.

[7] T.V. Griffiths, Some remarks on derivations in general rewriting systems. Inform.
Control 12 (1968), 27{54.

[8] F. Otto, Some undecidability results for non-monadic Church-Rosser Thue systems.
Theoret. Comput. Sci. 33 (1984), 261{278.

[9] F. L. T� iplea, E. M�akinen, A Note on synchronized extension systems. Inform. Process.
Lett. 79 (2001), 7{9.

[10] F.L. T� iplea, E. M�akinen, A note on SE-systems and regular canonical systems. Fun-
dam. Inf. (to appear).

[11] F.L. T� iplea, E. M�akinen, C. Apachit�e. Synchronized extension systems. Acta Inform.
37 (2001), 449-465.

