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Abstract. This paper presents a variable grouping method that is based on tech-
niques of graph theory. An association matrix is calculated and the properties of the
graph induced by the matrix are employed in variable grouping. The method gives
a deeper insight into data. Furthermore, it can be utilised in feature subset selection
for machine learning and statistical methods.

Keywords: Variable grouping, Graph theory, Measures of association, Feature
subset selection

1. Introduction

Consider a data set collected in an experimental study or retrieved
from a database of an information system. The data set consists of
cases representing concrete or abstract objects of the application do-
main. Certain characteristics or properties of these objects have been
targets of interest and measurement, that is, numeric or symbolic values
have been attached to the variables corresponding to them. The vari-
ables have been measured using nominal, categorical, interval, or ratio
scales that determine statistical methods applicable to them (Freund
and Simon, 1992). The information contained in the data set can be
extracted using descriptive statistics (Freund and Simon, 1992), mea-
sures of association (Freund and Simon, 1992), or more sophisticated
data analytic techniques (Sharma, 1996) such as regression analysis,
analysis of variance, discriminant analysis, principal component analy-
sis, and cluster analysis. Information or knowledge extraction methods
have been developed also in the �eld of machine learning; examples of
such methods are nearest neighbour techniques, decision tree methods,
neural networks, and bayesian learning (Mitchell, 1997).

The de�nition of the knowledge representation, that is, variables
that are used to describe cases, is an essential task when models are
formed from data sets using machine learning or statistical methods.
Although a larger set of variables usually carries more information than
a smaller one, it is not necessarily bene�cial for model forming. First,
simple models are easier to interpret and, thus, preferable. Second,
increasing the number of variables may result in a decreased accuracy.
Decision tree algorithms, for example, have been reported to produce



2 Viikki

weaker results with too many variables (Kohavi and John, 1997; Viikki
et al., 1999). Even if the increase in the number of variables does
not decrease the accuracy, a method may be sensitive to correlated
or dependent variables. Examples of such methods are regression anal-
ysis (Weisberg, 1985) and Naive Bayes classi�ers (Kohavi and John,
1997; Mitchell, 1997).

In some application areas, there are a large number of attributes
available for model forming. Similarly, when data are retrieved from
databases for knowledge extraction there are usually a considerable
number of available variables. Still another example of the wealth of
variables is provided by studies of experimental sciences. If the phe-
nomenon to be studied is not well known, a large number of potentially
relevant variables may be measured. The abundance of available vari-
ables makes the task of variable or feature subset selection (Kohavi and
John, 1997) diÆcult and time-consuming, which calls for automated
methods.

This paper presents a variable grouping method that can be utilised
in feature subset selection. The method is based on measures of associa-
tion and techniques of graph theory. An association matrix is calculated
and the properties of the graph induced by the matrix are used to form
variable groups. The objective is to �nd groups of related variables that
describe some phenomenon from di�erent points of view. The method
gives a deeper insight into data: If the data set is large with respect to
the number of variables, the mere task of �nding related variables can
be tedious. Further, the variable groups can be used to guide variable
selection for model forming. When variables are selected, the aim is
to maximise the information contained by the selected variables with-
out including correlated variables and redundant information. Selecting
only one variable from the variable group approximates this provided
that the selected variable 'represents' the information of the entire
group. Alternatively, a set of independent variables found from the
variable group can be selected.

The objective of cluster analysis (Sharma, 1996) is to form disjoint
subsets or clusters by grouping elements that are highly similar to each
other into the same cluster and elements that have low similarity to
each other into di�erent clusters. Statistical packages, such as SPSS
(SPSS, 2000), provide tools for clustering variables. However, these
tools typically use only one measure of association in clustering, which
causes problems with mixed data sets having variables of di�erent
measurement scales. The demands set by the mixed vertigo data set
(Viikki et al., 1999) used in our earlier studies led to the development
of the variable grouping method reported in this paper. The need for
detailed information about variable groups (variables compressing the
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information of the entire variable group and sets of independent vari-
ables) a�ected also the development of the method. Techniques of graph
theory have been utilised in the �eld of cluster analysis for decades; a
recent example is a clustering algorithm based on high-connectivity in
similarity graphs by Hartuv and Shamir (2000).

2. Variable grouping method

In this section, the variable grouping method is described. The reader
is assumed to be familiar with the basic concepts of graph theory as
given, e.g. in (Even, 1979).

2.1. Association matrix

In order to form variable groups, the presence or absence of the relation
between two variables has to be known for all variables. Further, the
degrees of the present relations have to be known. There are vari-
ous measures of association and their tests of signi�cance such as the
phi coeÆcient, the Cram�er's V coeÆcient, the Spearman's rank-order
correlation coeÆcient, and the Pearson's product-moment correlation
coeÆcient (Siegel and Castellan, 1988). Generally speaking, the choice
of the measure depends on the scales and distributions of the variables
involved and the number of cases.

The variable grouping algorithm presented in Table I takes as its
input a data set D and a list of the measurement scales of its variables.
The degrees of associations between the variables are calculated using
appropriate measures of association and stored in the association ma-
trixM . The matrix can be seen as an undirected graph in which vertices
represent variables and degrees of association over some threshold value
establish connections between them. The time complexity T (D) for
computing the association matrix for the data set D depends on the
number of variables and cases and on the measures of association used
in the matrix. Because the matrix is symmetric and has 1's along the
main diagonal, only the upper triangle matrix has to be calculated.
Hence, we have

T (D) =
v�1X

i=1

vX

j=i+1

fij(Mij); (1)

where i and j are variable indices, v is the number of variables, and
fij(Mij) is the time complexity for calculating the measure of associa-
tion used in the element Mij.

Let n be the number of cases. The time complexity for measures
of association typically varies from O(n) to O(n2). For example, the



4 Viikki

Table I. The variable grouping algorithm.

Algorithm VG

Input : A data set D, a list of the measurement scales of its variables,

and threshold values.

Output : Variable groups, and the corresponding degrees of variables,

cliques, and independent sets.

1. Compute the association matrix M inducing a graph G.

2. Find the connected components (variable groups) of the graph G with

the depth-�rst search.

3. For each connected component

3.1 Find the cliques.

3.2 Find the independent sets.

Pearson's product moment correlation coeÆcient has the time com-
plexity of O(n). Association measures that require sorting of cases (e.g.
the phi coeÆcient, the Cram�er's V, and the Spearman's rank-order
correlation coeÆcient) have the time complexity of O(n log n) or O(n2)
depending on the implementation of the sorting process. Hence, the
time complexity for computing the association matrix typically varies
from O(v2n) to O(v2n2). Notice however, that it might be possible
to have cases for which all the variables do not have values. This can
decrease the time needed in a practical situation, but does not a�ect
to the worst case time bounds.

2.2. Variable groups

Related variables form variable groups. Two variables can be related
to each other directly or via other variable(s). A structure formed by
related variables corresponds to a connected component of the graph in-
duced by the association matrix. The connected components are found
by traversing the graph using the depth-�rst search. The time complex-
ity is linear on the size of the graph but quadratic on the number of
variables.

From the viewpoint of feature subset selection, the structures formed
by dependent (respectively independent) variables in the connected
components are of interest to us. A set of variables in which all elements
are dependent from each other forms a clique. Cliques can overlap,
and a vertex with the largest number of cliques to which it belongs
is called a dominating variable of a connected component. Notice that
a dominating variable is not necessarily unique. If we want to select
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only one variable from a connected component for the model forming,
a dominating variable is a reasonable choice because it represents, in a
way, the information of the entire connected component. Alternatively,
we may want to choose from a connected component the maximum
number of variables that are independent among themselves. The cor-
responding structure in the graph is a maximum independent set in
which all elements are not directly connected to each other.

Both the maximum clique and the independent set problems are
known to be NP-complete (see e.g. Even, 1979). However, if the size
of the connected component is relatively small, the cliques and in-
dependent sets can be found in an acceptable time. The size of the
connected component is, in the worst case, equal to the number of
variables. Even if this is not the case, the size of the component may
be too large for searching cliques and independent sets. When the size
of the component hinders us to �nd the cliques and independent sets,
the following heuristic can be used. Vertices with the largest degrees
are probably the most dominating ones, and, thus, we can select one
of them. Respectively, vertices with the lowest degrees belong probably
to maximum independent sets that can be formed by selecting vertices
with the lowest degrees. The number of the vertices included in an
independent set must be adjusted experimentally.

Dependability of the variables de�nes the density of the graph. Vari-
ables that all are dependent from each other induce a complete graph,
whereas a variable set with a low number of dependencies induces a
parse graph. The threshold value establishing connections between the
vertices can be used to regulate the density of the graph. The lower
the threshold value is, the denser the graph becomes, and vice versa.
In the selection of the threshold value, rules of thumb suggested for the
interpretation of association measures can be used. For the Pearsons
product moment correlation coeÆcient, for example, the following rule
has been proposed: 0.00-0.29 weak, 0.30-0.49 low, 0.50-0.69 moderate,
0.70-0.89 strong, and 0.90-1.00 very strong (Pett, 1997). If the graph is
too dense resulting in too large connected components, the threshold
value can be increased. However, the used value should be reasonable
from the viewpoint of the application area in question.

The algorithm outputs the found variable groups with detailed in-
formation about them: degrees of variables, maximum cliques and inde-
pendent sets. The output of the algorithm can be utilised by inputting
it to a system that forms variable subsets by selecting from each vari-
able group one of the dominating variables or one of the maximum
independent sets. The formed variable subsets are, in turn, inputs for
a model forming method.



6 Viikki

3. Concluding remarks

A variable grouping method based on graph theoretic techniques was
presented. The applicability of the method does not restrict to the
variable grouping but it can be applied to any elements (cases in data
sets), for which an association or a similarity measure can be de�ned.

Our preliminary studies with medical data (Viikki et al., 2001) sug-
gested that �nding the cliques and independent sets in an acceptable
time is possible in this application area. However, one of the future aims
is to �nd guidelines for forming independent sets in a heuristic way by
selecting variables with the lowest degrees. The problem of adjusting
the threshold value establishing the connections between vertices is also
an interesting question. The preliminary results with the medical data
(Viikki et al., 2001) showed that the variable grouping method is useful.
It found variable groups that were reasonable and informative in the
opinion of the medical expert and can be used in the variable subset
selection. Future work will include development of a feature subset
selection system that utilises the method.
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