
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

A GENETIC ALGORITHM FOR

DETERMINING THE THICKNESS

OF A GRAPH

Erkki M�akinen, Timo Poranen

and Petri Vuorenmaa

DEPARTMENT OF COMPUTER AND INFORMATION

INFORMATION SCIENCES

UNIVERSITY OF TAMPERE

REPORT A-2000-5



UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

SERIES OF PUBLICATIONS A

A-2000-5, MARCH 2000

A GENETIC ALGORITHM FOR

DETERMINING THE THICKNESS

OF A GRAPH

Erkki M�akinen, Timo Poranen

and Petri Vuorenmaa

University of Tampere

Department of Computer and Information Sciences

P.O.Box 607

FIN-33014 University of Tampere, Finland

ISBN 951-44-4793-X

ISSN 1457-2060



A genetic algorithm for determining the thickness of a

graph

Erkki M�akinen1, Timo Poranen2 and Petri Vuorenmaa3

Dept. of Computer and Information Sciences, P.O. Box 607,
FIN-33014 UNIVERSITY OF TAMPERE, Finland

Abstract

The thickness of a graph is the minimum number of planar subgraphs

into which the graph can be decomposed. Determining the thickness

of a given graph is known to be a NP-complete problem. This paper

discusses the possibility of determining the thickness of a graph by a

genetic algorithm. Our tests show that the genetic approach outperforms

the earlier heuristic algorithms reported in the literature.

1Work supported by the Academy of Finland (Project 35025), e-mail: em@cs.uta.�
2Corresponding author, e-mail: tp@cs.uta.�
3e-mail: pv54521@uta.�



1 Introduction

One way to characterize the embeddability of a graph G is to determine its
thickness �(G), i.e., to determine the minimum number of planar subgraphs into
which G can be decomposed. The thickness of complete graphs and complete
bipartite graphs is known [7], but on the other hand, very little is known about
the thickness of an arbitrary graph (see [1, 7, 12] for recently results, and [17]
for a survey).

Determining the thickness of a given graph is known to be a NP-complete
problem [15]. Hence, heuristic methods are needed for �nding the thickness.
Cimikowski [6] has introduced certain heuristics with reasonable performance.
His heuristics are based on algorithms for �nding a maximal planar subgraph
of a non-planar graph [5, 13]. In this paper we study the possibilities of ap-
plying genetic algorithms for determining the thickness of a given graph. Our
tests show that the genetic approach outperforms those presented earlier in the
literature.

A well-known approach is to extract maximal planar subgraphs from original
graph and to continue this until the remaining graph is planar. This gives as
an approximation for the thickness.

To �nd maximal planar subgraphs there are two classical algorithms. The
�rst one [5] is based on Hopcroft and Tarjan's planarity testing algorithm [10]
and the second one [13] is based on Booth and Lueker's [4] PQ-tree approach.
Cimikowski has �rst applied these approaches to determine the thickness of
arbitrary graphs in [6]. Another implementation of these approaches can be
found in [17]. We call these heuristics (following [6, 17]) ThickHT and ThickPQ.

J�unger and Mutzel have also tested a branch and cut algorithm to determine
the thickness of a graph [17, 11]. Their algorithm, ThickJM , produces only
slightly better results than ThickHT or ThickPQ.

Extracting a maximal planar subgraph from original graph will not necesser-
ily give the solution for the thickness problem. A counterexample where remov-
ing maximal planar subgraph leads to a non-optimal result can be found from
[17].

2 Genetic algorithms

The general principle underlying genetic algorithms is that of maintaining a pop-
ulation of possible solutions, which are often called individuals. In our problem
a population is a set of partitions of the edges of the input graph. The number
of partitions is �xed to be constant in each run of the genetic algorithm. The
population undergoes an evolutionary process which imitates the natural bio-
logical evolution. In each generation better individuals have greater possibilities
to reproduce, while worse individuals have greater possibilities to die and to be
replaced by new individuals. To distinguish between \good" and \bad" indi-
viduals we need an evaluation function. Our evaluation function is presented in
the next section.

The general structure of a genetic algorithm is as follows (see e.g. [16] for
further details concerning genetic algorithms):

1



procedure ga
begin

t := 0;
create the initial population P(0);
evaluate the initial population;
while not Termination-condition do

t := t + 1;
select individuals to be reproduced;
recombine (i.e. apply genetic operations to create the new

population P(t));
evaluate(P(t));

od

end;

There are several parameters to be �xed. First, we have to decide how
to represent the set of possible solutions. In \pure" genetic algorithms only bit
string representations were allowed, but we allow any representation that makes
eÆcient computation possible. In our algorithm we divide edges to partitions,
which represents subgraphs of original graph.

Second, we have to choose an initial population. We create initial popula-
tions by a method similar to ThickHT heuristic with information on the lower
bound for the thickness.

Third, we have to design the genetic operations which alter the composition
of children during reproduction. The two basic genetic operations are the mu-
tation operation and the crossover operation. Mutation is a unary operation
which increases the variability of the population by making pointwise changes in
the representation of the individuals. Usually crossover combines the features of
two parents to form two new individuals by swapping corresponding segments
of parents' representations. In our genetic algorithm also crossover operation
is unary. It is like a mutation, but it modi�es the individual much more than
mutation.

3 The algorithm

In this section we introduce our genetic algorithm (ThickGA), but �rst we give
some theoretical bounds for thickness. We use these results as lower and upper
bounds to direct the genetic algorithm.

Theorem 3.1 [2] For complete graphs, �(Kn) = bn+7
6

c, except that �(K9) =
�(K10) = 3.

As an example, see Figure 1 where a decomposition of K9 into three planar
subgraphs is shown.

Theorem 3.2 [3] For complete bipartite graphs, �(Kn;n) = bn+5
4

c.

Theorems 3.1 and 3.2 above can be used as upper bounds for graphs, which
are not complete. The next (folklore) theorem is based on Euler's formula. If
a graph is planar, it has at most 3jV j � 6 edges. This formula can be used to
derive a lower bound for thickness.

2



1

4

56

7

38

9 2

1

2

47

9

6

2

1

4

56

7

9

8 3 8 3

5

1

4

56

7

38

9 2

Figure 1: K9 and a minimum planar decomposition of K9.

Theorem 3.3 Let G = (V;E) be a graph with jV j = n and jEj = m, then
�(G) � d m

3n�6
e.

In our algorithm every partition of edges is a possible solution, provided that
every subset in the partition induces a planar subgraph. The number of such
subsets is an upper bound for the thickness of the graph in question.

We obtain an initial result for thickness by using ThickHT heuristics until
all subsets are planar. The number of such subsets is an upper bound for the
thickness of the given graph. We also know a lower bound (see Theorem 3.3)
for arbitrary graphs or exact value for thickness (see Theorem 3.1) for complete
graphs and for complete bipartite graphs (see Theorem 3.2).

Let k be the lower bound for the thickness obtained from Theorem 3.1, 3.3
or 3.2. We divide edges into k subsets with maximal planarisation algorithm
such that the resulting subsets P1; :::; Pk�1 consist of edges from maximal planar
subgraphs. The last subset Pk consists of the remaining edges. Clearly, the �rst
k � 1 subsets are planar and if also the last subset is planar, we have achieved
a possible solution. If the last subset is not planar, genetic algorithm tries to
make it planar without a�ecting the planarity of the other subsets.

Genetic algorithm produces new generations until the terminal condition (to
be �xed later) is reached. Algorithm also terminates, if a solution is found. If
ThickGA is not able to �nd a solution (to make last subset planar), we increment
the number of subsets and start from beginning. In the case where no solution

3



is found before the number of subsets given by ThickHT is reached, we output
the result of ThickHT .

Let G = (V;E) be a graph. If G is planar, there is only one planar subset
of edges, the set E. If G = K9 then one solution is any collection of subsets
of the edges which induces planar subgraphs. The optimal solution for K9 has
three subsets (see Figure 1). For arbitrary graphs we don't know whether or
not the obtained solution is optimal, we only know lower and upper bounds for
thickness.

procedure ThickGA
begin

t := 0;
p := lower bound for thickness;
ub := solution from ThickHT algorithm ;
while p < ub or not solution found do

create the initial population P(0) with maximal planarisation algorithm
such that �rst p� 1 subsets are planar and rest edges are in subset p;

evaluate the initial population;
while not solution found or terminal condition do

t := t + 1;
select best individuals to be saved for use in future;
select individuals to be reproduced;
apply mutation and crossover operations to individuals;
create the new population P(t) from this generation and

from earlier generations;
evaluate(P(t));

od

if solution found exit;
p := p + 1;
od

end;

Now we are ready to introduce our evaluation function. If a is the number
of K5 subgraphs, b is the number of K3;3 subgraphs and c is the number of
edges violating planarity in the last subset Pk , then we have following form for
evaluation function

ef = 3 � a+ 2 � b+ c:

Evaluation function tells how \bad" is the last subset. If evaluation function
gets value 0, we have succeeded to make the last subset planar, and we have
found a possible solution to the problem. Values a and b are counted by starting
to search K5 subgraphs from vertices, whose degree is greater than or equal to
four and K3;3 subgraphs from vertices, whose degree is greater than or equal
to three. Value c is counted by the maximal planarization algorithm. If an
edge does't belong to a maximal planar subgraph, it violates planarity and
increments value c. The numbers ofK5 and K3;3 subgraphs are approximations.
For example, if we �nd K6 subgraph, it will increase value a only by two.

To de�ne the mutation operation, consider a graph with 10 edges which
are divided into three subsets P1 = fe1; e2; e6; e9g, P2 = fe3; e4; e5; e7g and

4



P3 = fe8; e10g. We denote the number of edges by k and the number of subsets
by p. First we generate a random real number from the interval [0::1]. If the
random number is not greater than the mutation rate (to be �xed later) we
perform a mutation operation as follows. We generate one random integer i
from [1::k]. Integer i tells the edge to be moved to last subset p. Suppose that
we have i = 3. Then we move edge e3 from subset P2 to subset P3. Now subsets
P1; : : : ; Pp�1 are still planar.

Usually the crossover operation transforms two individuals into two new
individuals, but in our algorithm crossover is also a unary operation. Also now
we generate �rst a random real number from [0::1]. Crossover operation will
be applied to an individual if generated random number is not greater than
the crossover rate (to be �xed later). If the last subset has K5 or K3;3 as
subgraphs, as many as possible of their edges will be moved to other subsets
(without a�ecting the planarity of them). If we cannot easily break K5 or K3;3

we search maximal planar subgraphs from the last subset. Then we also �nd
edges which violates planarity. First we try to move those edges to other subsets.
If they cannot be moved, we try to swap them with edges in the other subsets.

Clearly, if crossover or mutation operation succeeds to make the last subset
planar, we have found a possible solution for the thickness problem. In case
that all individuals have edges violating planarity in the last subset, the new
population will consist of best individuals from this generation (with respect to
our evaluation function) and best individuals from earlier populations. Genetic
algorithm saves few best individuals from each generations. An individual is
better than another one if it has lower value for evaluation function.

4 Tests

In this section we describe our software and test runs. The implementation
uses the GAlib [8] genetic algorithm package, and for data structures and graph
algorithms we used LEDA [14].

Population size is an important parameter of a genetic algorithm. Population
size should be large enough to give an unbiased view of the search space. On the
other hand, too large population size makes the algorithm too slow. We tested
the e�ect of population size by counting the number generations needed to �nd
a solution for thickness. If the size of population was more than 50, results was
not signi�cantly di�erent than with the population size 50. Only the time of
computationtime increased remarkably.

The intutition behind the mutations is that they increase the variability of
population. Naturally, there is again a trade-o� situation: if mutation rate
becomes too large, the algorithm wanders aimlessly in the search space. In our
algorithm also the crossover operations are unary, and the idea behind them
was to make last subset planar. We made test runs with di�erent values of
mutation rate and crossover probability and found out that solution was found
fastest with mutation rate 0:2 and crossover probability 0:9.

The number of generations is also an important parameter of genetic algo-
rithms. If the situation is stabilized, there is no sense to create new generations.
In our test runs, we noticed that the minimum value for evaluation function was
found average in 500 generation. Often the result for thickness was obtained in
�rst ten generations, but there were few test runs, where making the last subset

5



150
140
130
120
110
100
90
80
70
60
50
40
30
20
10

100 200 300 400 500 600 700 800 900 1000

seconds/generation

edges

Figure 2: Evaluation time in seconds for one generation in function of edges.

planar needed over 1000 generations.
We have compared our results to four other heuristics, ThickHT , ThickPQ,

Thick2 and ThickJM , for determining the thickness. Thick2 heuristic [6] is
a combination of ThickHT and ThickPQ. Thick2 uses also local optimization
strategy for maximal planar subgraphs. Figure 3 shows results for the thickness
of complete graphs Kn where n = 10; 15; : : : ; 50. Values with brackets are taken
from [6] and all other are taken from [17]. If there was di�erent value for same
graph in [6] and [17], we have taken them both. The results where ThickGA has
improved earlier results, are marked with �.

Genetic algorithm has outperformed earlier heuristic results with n < 30,
but with higher values of n there are no improvements.

In Figure 4 there are results for complete bipartitite graphs. Now every
result for ThickGA has same value than best earlier heuristic.

In Figure 5 there are results for random graphs with same number of vertices
and edges as in [6]. Graphs were generated with LEDA's [14] functions for
random graphs.

5 Conclusions

We have found out that genetic algorithm can be used to sharpen the results
obtained by previously known heuristics for the thickness of the graph. Best
results are achieved for complete graphs with less than 30 vertices.

6



n ThickHT ThickPQ Thick2 ThickJM ThickGA �(Kn)

10 3 3 (3) 3 3 3
15 4 4 (4) 4 3* 3
20 5 6(5) (5) 5 4* 4
25 7 7(6) (6) 6 5* 5
30 8(9) 8 (7) 7 7 6
35 9(10) 9 (8) 8 8 7
40 10(11) 11(10) (9) 9 9 7
45 11(12) 12(11) (10) 10 10 8
50 13(15) 13(14) (11) 11 11 9

Figure 3: Heuristic results for complete graphs Kn.

n ThickHT ThickPQ Thick2 ThickJM ThickGA �(Kn)

10 4 4 (3) 4 3 3
15 6 6 (5) 5 5 5
20 7(8) 7 (6) 7 6 6
25 9(10) 9 (7) 8 7 7
30 10(12) 10(11) (9) 9 9 8
35 12(14) 12 (10) 11 10 10
40 13(16) 14(15) (13) 12 12 11
45 15(17) 15(16) (13) 13 13 12
50 16(19) 17(18) (15) 14 15 13

Figure 4: Heuristic results for complete bipartitite graphs Kn;n.

References

[1] I. Aho, E. M�akinen, and T. Syst�a, \Remarks on the thickness of a graph,"
Info. Sci., 108 (1998), 1{4.

[2] V.B. Alekseev, and V.S. Gonchakov, \Thickness for arbitrary complete
graphs," Mat. Sbornik., 143 (1976), 212{230.

[3] L.W. Beineke, F. Harary, and J.W. Moon, \On the thickness of the complete
bipartite graphs," Proc. Cambridge Phil. Soc., 60 (1964), 1{5.

[4] K.S. Booth, and G.S. Lueker, \Testing for the consecutive ones property,
Interval graphs and graph planarity testing using PQ-tree algorithms," J.
Comp. and System Sci., 13 (1976), 335{379.

[5] J. Cai, and X. Han, and R.E. Tarjan, \An O(m logn)-time algorithm for
maximal planar subgraph problem" SIAM J. Comput., 22 (1993), 1142{
1162.

[6] R. Cimikowski, \On heuristics for determining the thickness of a graph,"
Info. Sci., 85 (1995), 87{98.

[7] A.M. Dean, J.P. Hutchinson, and E.R. Scheinerman, \On the thickness and
arboricity of a graph," J. Comb. Theory (B), 52 (1991), 147{151.

7



n m LB ThickHT ThickPQ Thick2 ThickGA UB

10 25 2 (2) (2) (2) 2 2
20 92 2 (3) (3) (3) 3 4
30 230 3 (5) (5) (4) 4 6
40 311 3 (5) (5) (5) 4* 7
50 495 4 (7) (6) (5) 5 9
60 556 4 (7) (6) (5) 5 11
70 766 4 (8) (7) (6) 6 12
80 939 5 (8) (8) (7) 7 14
90 1263 5 (10) (9) (7) 8 16
100 1508 6 (12) (11) (8) 9 17

Figure 5: Heuristic results for random graphs with n vertices and m edges.

[8] galib, software available in http://lancet.mit.edu/ga/.

[9] J.H. Halton, \On the thickness of graphs of given degree," Info. Sci., 54
(1991), 219{238.

[10] J. Hopcroft, and R.E. Tarjan, \EÆcient planarity testing," J. ACM, 21
(1974), 549-568.

[11] M.J�unger, and P. Mutzel, \Maximum planar subgraph and nice embed-
dings: Practical layout tools," Algorithmica, 16 (1996), 33{59.

[12] M.J�unger, P. Mutzel, T. Odenthal, and M. Scharbrodt, \The thickness of
a minor-excluded class of graphs," Discrete Math., 182 (1998), 169{176.

[13] G. Kant, \An O(n2) maximal planarization algorithm based on PQ-trees,"
Utrecht University, Technical Report RUU-CS-92-03, (1992).

[14] LEDA, software available in http://www.mpi-sb.mpg.de/LEDA/.

[15] A. Mans�eld, \Determining the thickness of graphs is NP-hard," Math.
Proc. Camb. Phil. Soc., 93 (1983), 9{23.

[16] M. Mitchell, An Introduction to Genetic Algorithms . The MIT Press, 1996.

[17] P. Mutzel, T. Odenthal, and M. Scharbrodt, \The thickness of graphs: a
survey," Graphs and Combinatorics, 14 (1998), 59{73.

8


