SE-SYSTEMS, TIMING MECHANISMS, AND TIME-VARYING CODES

F.L. ŢIPLEA, ERKKI MÄKINEN

AND CONSTANTIN ENEA

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

UNIVERSITY OF TAMPERE
REPORT A-2000-17

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER AND
INFORMATION SCIENCES
SERIES OF PUBLICATIONS A
A-2000-17, DECEMBER 2000

SE-SYSTEMS, TIMING MECHANISMS, AND TIME-VARYING CODES

F.L. ŢIPLEA, ERKKI MÄKINEN

AND CONSTANTIN ENEA

University of Tampere
Department of Computer and Information Sciences
P.O.Box 607
FIN-33014 University of Tampere, Finland

SE-systems, Timing Mechanisms, and Time-Varying Codes

Ferucio Laurenţiu Ţiplea ${ }^{1}$
Faculty of Computer Science, "Al.I.Cuza" University of Iasi, 6600 Iasi, Romania

Erkki Mäkinen ${ }^{2}$
Department of Computer and Information Sciences, P.O. Box 607, FIN-33014 University of Tampere, Finland
Constantin Enea
Faculty of Computer Science, "Al.I.Cuza" University of Iasi, 6600 Iasi, Romania

Abstract

We show that synchronize extension systems [11] can be succesfully used to simulate timing mechanisms incorporated into grammars and automata [$2,9,5-7]$. Further, we introduce the concept of a time-varying code as a natural generalization of L-codes, and the relationship with classical codes, gsm codes and SE-codes is established. Finally, a decision algorithm for periodically time-varying codes is given.

Keywords: formal languages, time-varying grammars, codes, synchronized extension systems.

1 Introduction and Preliminaries

A synchronized extension system (SE-system, for short) is a new powerful and elegant rewriting formalism which has proved to be useful in various kinds of problems in formal language theory [11-14].

In this paper we show how SE-systems can be used to simulate timing mechanisms used in grammars and automata. Further, we introduce the concept of a time-varying code as a natural generalization of L-codes, and the relationship

[^0]with classical codes, gsm codes and SE-codes is established. Finally, a decision algorithm for periodically time-varying codes is given.

We assume the reader to be familiar with the basic concepts of formal languages and automata as given e.g. in [4,9]. For the sake of self-containment, we recall some notations.

An alphabet is a finite non-empty set of symbols. For an alphabet V, V^{*} denotes the free monoid generated by V with the unit $\lambda ; V^{+}$is then $V^{*}-\{\lambda\}$. The elements of V^{*} are called words.

For a binary relation ρ over a set $A, \rho^{+}\left(\rho^{*}\right)$ denotes the transitive (reflexive and transitive) closure of ρ. \mathbf{N} denotes the set of natural numbers and $\mathcal{P}(A)$ is the powerset of the set A. Given two natural numbers i and $p \geq 1, i \bmod p$ denotes the remainder (residue) of i modulo p.

Recall now some basic concepts from [11]. An $S E$-system is a 4 -tuple $G=$ (V, L_{1}, L_{2}, S), where V is an alphabet and L_{1}, L_{2}, and S are languages over $V . L_{1}$ is called the initial language, L_{2} the extending language, and S the synchronization set of G. For an SE-system G, define the binary relations $\Rightarrow_{G, r}, \Rightarrow_{G, r^{-}}, \Rightarrow_{G, l}$ and $\Rightarrow_{G, l^{-}}$over V^{*} as follows:
$-u \Rightarrow_{G, r} v$ iff $\left(\exists w \in L_{2}\right)(\exists s \in S)\left(\exists x, y \in V^{*}\right)(u=x s \wedge w=s y \wedge v=x s y) ;$
$-u \Rightarrow_{G, r^{-}} v$ iff $\left(\exists w \in L_{2}\right)(\exists s \in S)\left(\exists x, y \in V^{*}\right)(u=x s \wedge w=s y \wedge v=x y)$;
$-u \Rightarrow_{G, l} v$ iff $\left(\exists w \in L_{2}\right)(\exists s \in S)\left(\exists x, y \in V^{*}\right)(u=s x \wedge w=y s \wedge v=y s x)$;
$-u \Rightarrow_{G, l^{-}} v$ iff $\left(\exists w \in L_{2}\right)(\exists s \in S)\left(\exists x, y \in V^{*}\right)(u=s x \wedge w=y s \wedge v=y x)$.
In an SE-system $G=\left(V, L_{1}, L_{2}, S\right)$, the words in S act as synchronization words. They can be kept or neglected in the final result, and r, r^{-}, l, and l^{-} are called (basic) modes of synchronizations. In this paper we restrict ourselves to the mode r^{-}.

We say that an SE-system $G=\left(V, L_{1}, L_{2}, S\right)$ is of type $\left(p_{1}, p_{2}, p_{3}\right)$ if L_{1}, L_{2}, and S are languages having the properties p_{1}, p_{2}, and p_{3}, respectively. We use the abbreviations f and reg for the properties of finiteness and regularity, respectively.

A derivation $u \stackrel{*}{\Rightarrow}_{r^{-}} v$ is called an r^{-}derivation of $v($ from $u)$. The language of type r^{-}generated by an SE-system $G=\left(V, L_{1}, L_{2}, S\right)$, denoted by $L^{r^{-}}(G)$, is the set of all words v having at least one r^{-}-derivation, that is

$$
L^{r^{-}}(G)=\left\{v \in V^{*} \mid \exists u \in L_{1}: u \stackrel{*}{\Rightarrow}_{G, r^{-}} v\right\}
$$

(naturally, the other modes of synchronization define their own classes of languages, but we do not need them here.)

The following important result has been proved in [11].

Theorem 1 For any SE-system G of type (reg,reg, f), the language $L^{r^{-}}(G)$ is regular.

2 SE-Systems and Time-Varying Grammars

A time-varying grammar ([9]) is a couple (G, φ), where $G=\left(V_{N}, V_{T}, X_{0}, P\right)$ is a grammar and φ is a function from \mathbf{N} into $\mathcal{P}(P)$. For a number $i \in \mathbf{N}$ and for words u and v, we write

$$
(u, i) \Rightarrow_{(G, \varphi)}(v, i+1)
$$

iff there is a rule $\alpha \rightarrow \beta \in \varphi(i)$ such that $u=u_{1} \alpha u_{2}$ and $v=u_{1} \beta u_{2}$.
The language generated by (G, φ) is defined by

$$
L(G, \varphi)=\left\{w \in V_{T}^{*} \mid\left(X_{0}, 0\right) \stackrel{*}{\Rightarrow}_{(G, \varphi)}(w, i), \text { for some } i \in \mathbf{N}\right\} .
$$

If the timing function φ is not restricted, then time-varying regular grammars (TVRG, for short) generate all the recursively enumerable languages ([9]). SEsystems can also generate all the recursively enumerable languages - we can easily construct an SE-system "simulating" a Chomsky grammar of type 0 . However, for our purposes it is preferable to simulate TVRG's by SE-systems. In order to do that we will write natural numbers in a unary notation in which i is encoded by a sequence of $i+1$ copies of 1 . For example, the unary notation of 4 is 11111 . For notational convenience, we use the notation [i] for the unary encoding of i.

Theorem 2 Every recursively enumerable language can be expressed as an intersection between a language of type r^{-}generated by an SE-system and a regular language.

Proof. Let L be a recursively enumerable language. Then there is a TVRG (G, φ), where $G=\left(V_{N}, V_{T}, X_{0}, P\right)$, such that $L=L(G, \varphi)$. Consider the SEsystem $H=\left(V, L_{1}, L_{2}, S\right)$ given by
$-V=V_{N} \cup V_{T} \cup\{1\}$,

- $L_{1}=\left\{X_{0}[0]\right\}$,
- $L_{2}=\{A[i] a B[i+1] \mid i \in \mathbf{N} \wedge A \rightarrow a B \in \varphi(i)\} \cup$ $\{A[i] a \mid i \in \mathbf{N} \wedge A \rightarrow a \in \varphi(i)\}$,
$-S=\{A[i] \mid i \in \mathbf{N} \wedge A \in \operatorname{lhs}(\varphi(i))\}$, where $\operatorname{lhs}(\varphi(i))$ is the set of all left hand sides of the rules in $\varphi(i)$.

It is clear that $L(G, \varphi)=L^{r^{-}}(H) \cap V_{T}^{*}$, which proves the theorem.

The construction in the proof of Theorem 2 can be easily adapted to simulate time-varying non-deterministic finite automata with λ-moves (TVNFA with λ-moves, for short) defined as in [5]. Such a device is a system $A=$ $\left(Q, \Sigma, \delta, q_{0}, Q_{f}\right)$, where Q is the set of states, $q_{0} \in Q$ is the initial state, $Q_{f} \subseteq Q$ is the set of final states, Σ is the (input) alphabet, and δ is a function from $Q \times \mathbf{N} \times(\Sigma \cup\{\lambda\})$ into $\mathcal{P}(Q)$. The computation defined by A is given by

$$
(q, i, a w) \vdash_{A}\left(q^{\prime}, i+1, w\right) \quad \Leftrightarrow \quad q^{\prime} \in \delta(q, i, a),
$$

for all $q, q^{\prime} \in Q, i \geq 0, w \in \Sigma^{*}$, and $a \in \Sigma \cup\{\lambda\}$.
An SE-system simulating a TVNFA with λ-moves can be constructed by associating to each move $q^{\prime} \in \delta(q, i, a)$ the extending word $q[i] a q^{\prime}[i+1]$ and the synchronization word $q[i]$.

If the timing function φ of a time-varying grammar is periodic (that is, there is $p \geq 1$ such that $\varphi(i)=\varphi(i \bmod p)$ for all $i \geq p$), the construction of an SE-system simulating a time-varying grammar can be simplified by replacing each occurrence of $[j]$ by $[j \bmod p]$, for all $j \geq 0$. Then, the languages L_{2} and S become finite and, therefore, the SE-system obtained is of type (f, f, f). A similar construction can be done for periodic time-varying automata. Therefore, by Theorem 1, the following result holds.

Theorem 3 All the languages generated by periodic TVRG's or accepted by periodic TVNFA's with λ-moves are regular.

The regularity of languages accepted by periodic time-varying deterministic finite automata has been proved already in [5], but the result in Theorem 3 is more general.

3 Time-Varying Codes

In this section we introduce the concept of a time-varying code which is a natural generalization of the concept of an L-code [8]. First, we recall the concept of a code (for details, the reader is referred to $[3,10]$).

Let Δ be an alphabet. A code over Δ is any subset $C \subseteq \Delta^{+}$such that each word $w \in \Delta^{+}$has at most one decomposition over C. Alternatively, one can say that C is a code over Δ if there is an alphabet Σ and a function $h: \Sigma \rightarrow \Delta^{+}$ such that the unique homomorphic extension $\bar{h}: \Sigma^{*} \rightarrow \Delta^{*}$ of h defined by $\bar{h}(\lambda)=\lambda$ and $\bar{h}\left(a_{0} \cdots a_{n-1}\right)=h\left(a_{0}\right) \cdots h\left(a_{n-1}\right)$, for all $a_{0} \cdots a_{n-1} \in \Sigma^{+}$, is injective.

Definition 4 Let Σ and Δ be alphabets. A function $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$is
called a time-varying code over Δ (TV-code over Δ, for short) if the function $\bar{h}: \Sigma^{*} \rightarrow \Delta^{*}$ given by $\bar{h}(\lambda)=\lambda$ and

$$
\bar{h}\left(a_{0} \cdots a_{n-1}\right)=h\left(a_{0}, 0\right) \cdots h\left(a_{n-1}, n-1\right),
$$

for all $a_{0} \cdots a_{n-1} \in \Sigma^{+}$, is injective.
A TV-code $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$is called periodic if there is $p \geq 1$ such that $h(a, i)=h(a, i \bmod p)$, for all $a \in \Sigma$ and $i \geq p$; the number p is called a period of h.

Remark 5 Let Σ and Δ be alphabets.
(1) Any code $g: \Sigma \rightarrow \Delta^{+}$is a TV-code. Indeed, let $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$be defined by $h(a, i)=g(a)$ for all $a \in \Sigma$ and $i \in \mathbf{N}$. Then, it is clear that $\bar{g}=\bar{h}$.
(2) Let $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$be a function. If the set $h(\Sigma \times \mathbf{N})$ is a code then h is a TV-code, but the converse does not hold generally.

In what follows, we relate TV-codes to different classes of codes introduced in the literature.

TV-codes and L-codes. L-codes have been introduced in [8] as functions $g: \Sigma \rightarrow \Sigma^{+}$such that $\bar{g}: \Sigma^{*} \rightarrow \Sigma^{*}$ given by $\bar{g}(\lambda)=\lambda$ and

$$
\bar{g}\left(a_{0} \cdots a_{n-1}\right)=g^{1}\left(a_{0}\right) \cdots g^{n}\left(a_{n-1}\right),
$$

for all $a_{0} \cdots a_{n-1} \in \Sigma^{+}$, is injective. Here, g^{i} denotes the $i^{\text {th }}$ iteration of the unique homomorphic extension of g, for all $i \geq 1$. (If g denotes also the unique homomorphic extension of g on Σ^{*}, then $g^{1}=g$ and $g^{i+1}=g^{i} \circ g$ for all $i \geq 1$, where " 0 " is the function composition.)

Any L-code $g: \Sigma \rightarrow \Sigma^{+}$is a TV-code. Indeed, let $h: \Sigma \times \mathbf{N} \rightarrow \Sigma^{+}$be defined by $h(a, i)=g^{i+1}(a)$, for all $a \in \Sigma$ and $i \in \mathbf{N}$. Then, it is clear that $\bar{g}=\bar{h}$.

Proposition 6 There are TV-codes that are not L-codes.
Proof. Notice first that for each L-code $g: \Sigma \rightarrow \Sigma^{+}$and each symbol $a \in \Sigma$ such that $g(a)=a^{k}$, for some $k>1$, we have $g^{i}(a)=a^{k^{i}}$, for all $i \geq 1$.

Consider $h: \Sigma \times \mathbf{N} \rightarrow \Sigma^{+}$defined by $h(a, 1)=a^{2}$ and $h(a, 2)=a$, for some $a \in \Sigma$. (The values $h(i, x),(x, i) \in \Sigma \times \mathbf{N}$, are not of interest, provided that h is a TV-code.)

If there were an L-code g with the property $\bar{h}=\bar{g}$, the relation $\bar{h}(a)=\bar{g}(a)$ would imply $g(a)=a^{2}$, and $\bar{h}(a a)=\bar{g}(a a)$ would imply

$$
a a a=\bar{h}(a a)=\bar{g}(a a)=g(a) g^{2}(a)=a^{6},
$$

which is a contradiction.

TV-codes and gsm-codes. Generalized Sequential Machines can be used in a very natural way as coders (see for example [1]): the input is the sequence to be encoded, and the output is the result.

A generalized sequential machine (gsm, for short) is a 6-tuple [4]

$$
M=\left(Q, \Sigma, \Delta, \delta, q_{0}, F\right)
$$

where Q is the set of states, $q_{0} \in Q$ is the initial state, $F \subseteq Q$ is the set of final states, Σ is the input alphabet, Δ is the output alphabet, and δ is a function from $Q \times \Sigma$ into the powerset of $Q \times \Delta^{*}$.

We consider only gsm's with the following properties:

- F is the empty set; therefore, we omit it from the notation above;
$-\delta(q, a)$ is a singleton subset of $Q \times \Delta^{+}$, for all $q \in Q$ and $a \in \Sigma$; therefore, we write $\delta: Q \times \Sigma \rightarrow Q \times \Delta^{+}$and say that M is deterministic and λ-free.

Notice that under these considerations δ is a total function (defined for all pairs $(q, a) \in Q \times \Sigma)$.

A gsm M defines a function $g_{M}: \Sigma^{*} \rightarrow \Delta^{*}$ by letting $g_{M}(\lambda)=\lambda$ and

$$
g_{M}(w a)=g_{M}(w) p r_{2}\left(\delta\left(p r_{1}\left(\tilde{\delta}\left(q_{0}, w\right)\right), a\right)\right),
$$

for all $w \in \Sigma^{*}$ and $a \in \Sigma$, where $p r_{1}\left(p r_{2}\right)$ is the first (second) projection function and $\tilde{\delta}$ is the usual extension of δ to $Q \times \Sigma^{*}$.

A gsm coder is a gsm M such that g_{M} is injective; in this case, g_{M} is called a gsm code.

In order to relate gsm-codes to TV-codes we encounter a problem similar to that in Figure 3. That is, there are two states q_{1} and q_{2} in M which both can be reached from q_{0} in equal number of steps (here in one step), and in these states the symbol a is encoded in two different ways. In such a case, we can not associate a TV-code h to g_{M}. For example, in the case of Figure 3, we have to define $h(a, 1)=a b$ and $h(a, 1)=b a$.

Definition $7 A$ gsm M is called equal if there are two distinct states q and q^{\prime} and an input symbol a such that q and q^{\prime} can both be reached from q_{0} in equal number of steps, and $p r_{2}(\delta(q, a)) \neq \operatorname{pr}_{2}\left(\delta\left(q^{\prime}, a\right)\right)$.

If a gsm is not equal we call it equal-free. Now, we can prove:

Fig. 1. An equal gsm
Proposition 8 If an equal-free gsm M is a coder, then there is a TV-code h such that $\bar{g}_{M}=\bar{h}$.

Proof. Let $M=\left(Q, \Sigma, \Delta, \delta, q_{0}\right)$ be an equal-free gsm. Define $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$ by

$$
h(a, i)=p r_{2}(\delta(q, a)),
$$

for all $a \in \Sigma$ and $i \in \mathbf{N}$, where q is a state reachable in i steps from $q_{0}\left(q_{0}\right.$ is reachable from itself in 0 steps).

It follows from the equal-freeness of M that h is well-defined. Then, we can easily check that $\bar{g}_{M}=\bar{h}$.

Not all gsm coders are equal-free as the gsm in Figure 3 shows us (it is a coder but it does not have the equal-freeness property).

The equal-freeness can be effectively checked. Indeed, for a gsm M we define the sequence of sets $A_{i}, i \geq 0$, as follows:
(i) $A_{0}=\left\{q_{0}\right\}$;
(ii) $A_{i+1}=\left\{p r_{1}(\delta(q, a)) \mid q \in A_{i}, a \in \Sigma\right\}$, for all $i \geq 0$.

The sets A_{i} are finite because they are subsets of the finite set Q and, therefore, there are k and i_{0} such that $k<i_{0}$ and $A_{k}=A_{i_{0}}$. Then, for each $j<i_{0}$, check for each pair of distinct states $q, q^{\prime} \in A_{j}$, and for each input symbol $a \in \Sigma$, whether or not $\delta(q, a)=\delta\left(q^{\prime}, a\right)$. If the relation $\delta(q, a)=\delta\left(q^{\prime}, a\right)$ holds at least once, then M is equal; otherwise, it is equal-free.

A gsm coder can encode a symbol a only by the maximum of its outputs. Therefore, by using a similar idea than that in the previous paragraph, we can show that there are gsm codes (defined for equal-free gsm's) that are not L-codes.

TV-codes and SE-codes. Next we show that TV-codes are particular cases of SE-codes and, in case of a periodic function $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$, we can effectively decide whether or not h is a TV-code.

Two r^{-}-derivations

$$
u_{1} \Rightarrow_{r^{-}} u_{2} \Rightarrow_{r^{-}} \cdots \Rightarrow_{r^{-}} u_{n}
$$

and

$$
u_{1}^{\prime} \Rightarrow_{r^{-}} u_{2}^{\prime} \Rightarrow_{r^{-}} \cdots \Rightarrow_{r^{-}} u_{m}^{\prime}
$$

are called distinct if $n \neq m$ or there is an index i such that $u_{i} \neq u_{i}^{\prime}$.
An SE-system G is called r^{-}-ambiguous if there is a word v having at least two distinct r^{-}-derivations in G. If G is not r^{-}-ambiguous then we say that it is r^{-}-nonambiguous.

An r^{-}-derivation $u_{1} \Rightarrow_{r^{-}} u_{2} \Rightarrow_{r^{-}} \cdots \Rightarrow_{r^{-}} u_{n}$ is called reduced if it does not contain cycles, that is, there are no i and j such that $i \neq j$ and $u_{i}=u_{j}$. Clearly, any r^{-}-derivation can be reduced in different ways. For example, the r^{-}-derivation

$$
u_{1} \Rightarrow_{r^{-}} u_{2} \Rightarrow_{r^{-}} u_{3} \Rightarrow_{r^{-}} u_{1} \Rightarrow_{r^{-}} u_{4} \Rightarrow_{r^{-}} u_{5} \Rightarrow_{r^{-}} u_{3}
$$

where u_{1}, \ldots, u_{5} are assumed pairwise distinct, can be reduced to

$$
u_{1} \Rightarrow_{r^{-}} u_{4} \Rightarrow_{r^{-}} u_{5} \Rightarrow_{r^{-}} u_{3}
$$

or to

$$
u_{1} \Rightarrow_{r^{-}} u_{2} \Rightarrow_{r^{-}} u_{3} .
$$

If an SE-system has the property that for every word v there is at most a reduced r^{-}-derivation of v, then it is called weak r^{-}-nonambiguous.

It is clear that an r^{-}-nonambiguous SE-system is also weak r^{-}-nonambiguous, but the converse does not hold in general. That is, there exist SE-systems G and words v with more than two r^{-}-derivations. But, in this case, all the r^{-}derivations of such a word can be reduced, by removing cycles, to a unique reduced r^{-}-derivation.

An $S E$-system $G=\left(V, L_{1}, L_{2}, S\right)$ is said to be non-returning if the following property holds:

$$
\left(\forall s_{1} \in S\right)\left(\forall v \in L_{2}\right)\left(v=s_{1} v^{\prime} \Rightarrow\left(\forall s_{2} \in S\right)\left(v^{\prime} \nless_{s u f} s_{2}\right)\right) .
$$

In [11] it has been proved that the (weak) r^{-}-nonambiguity property is decidable for non-returning SE-systems of type (f, f, f). The proof is based on constructing a finite graph and checking the existence of some paths (with
some properties). The relationship between codes and weak nonambiguous SE-systems has been also pointed out in [11]. That is, a set $C \subseteq \Delta^{+}$is a code over Δ if and only if the $\operatorname{SE-system}(V, C, C,\{\lambda\})$ is (weak) r^{-}-nonambiguous.

Let $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$be a function. We associate to h the SE-system $H=$ (V, L_{1}, L_{2}, S) given by:
$-V=\Sigma \cup\{1\}$,

- $L_{1}=\{h(a, 0)[1] \mid a \in \Sigma\}$,
$-L_{2}=\{[i] h(a, i)[i+1] \mid(a, i) \in \Sigma \times \mathbf{N}\} \cup\{[i] h(a, i) \mid(a, i) \in \Sigma \times \mathbf{N}\}$,
$-S=\{[i] \mid i \in \mathbf{N}\}$
($[i+1]$ in a word $[i] h(a, i)[i+1]$ indicates the "next time").
Proposition 9 Let $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$be a function and H be the SE-system associated to h. Then, the following properties hold true:
(1) H is a non-returning $S E$-system;
(2) h is a $T V$-code iff H is (weak) r^{-}-nonambiguous.

Proof. Claim (1) follows directly from the definitions, and Claim (2) is an straightforward consequence of the following equivalences:
h is a TV-code iff $\left(\forall v \in \Delta^{+}\right)\left(\right.$there is at most an $u \in \Sigma^{+}$s.t. $\left.\bar{h}(u)=v\right)$
iff $\left(\forall v \in \Delta^{+}\right)$(there is at most an r^{-}-derivation of v in H).

Consider now a periodic function $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$, and $p \geq 1$ a period of h. Modify the SE-system H associated to h by replacing each unary notation $[j]$ by [$j \bmod p$], for all $j \geq 0$. Let H_{p} be the SE-system such obtained.

Proposition 10 Let $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$be a periodic function with period p, and let H_{p} be the SE-system associated to h as above. Then the following properties hold true:
(1) H_{p} is a non-returning SE-system of type (f, f, f);
(2) h is a TV-code iff H_{p} is (weak) r^{-}-nonambiguous.

Proof. Similar to that of Proposition 9 with the exception that there are only a finite number of residues modulo p.

Now, we can obtain the following result regarding periodic TV-codes.
Theorem 11 It is decidable whether a periodic function $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$is a TV-code or not.

Proof. Let $p \geq 1$ be a period of h. Then, from Proposition 10 it follows that h is a TV-code if and only if H_{p} is r^{-}-nonambiguous. Because H_{p} is a nonreturning SE-system of type (f, f, f), it follows, by Theorem 4.2 of [11], that it is decidable whether or not H_{p} is r^{-}-nonambiguous.

The proof of Theorem 11 suggests the following algorithm to check whether a periodic function $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$is a TV-code or not.

Algorithm.

input: a periodic function $h: \Sigma \times \mathbf{N} \rightarrow \Delta^{+}$with period p;
output: "yes" if h is a TV-code, otherwise "no";
begin

1. construct the SE-system H_{p};
2. check whether or not H_{p} is r^{-}-nonambiguous;
3. if H_{p} is r^{-}-nonambiguous then answer "yes" else answer "no" end.

The correctness of the algorithm above follows immediately from Proposition 10 and Theorem 11 (the checking operation from line 2 can be performed by an algorithm as the one in [11], Theorem 4.2).

References

[1] A. Atanasiu, A class of coders based on gsm, Acta Inform. 29 (1992) 779-791.
[2] R.M. Baer, E.H. Spanier, Referenced automata and metaregular families, J. Comput. Syst. Sci. 3 (1969) 423-446.
[3] J. Berstel, D. Perrin, Theory of Codes, Academic Press, 1985.
[4] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.
[5] K. Krithivasan, A. Das, Time varying finite automata, Int. J. Comput. Math. 19 (1986) 103-123.
[6] K. Krithivasan, V. Srinivasan, Time varying pushdown automata, Int. J. Comput. Math 24 (1988) 223-236.
[7] C. Matei, Time-varying grammars and referenced automata, In Gh. Păun (ed.), Mathematical Aspects of Natural and Formal Languages, World Scientific Series in Computer Science vol. 43 World Scientific, 1994, 285-292.
[8] H.A. Maurer, A. Salomaa, D. Wood, L codes and number systems, Theoret. Comput. Sci. 22 (1983) 331-346.
[9] A. Salomaa, Formal Languages, Academic Press, 1973.
[10] A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, 1981.
[11] F.L. Ţiplea, E. Mäkinen, C. Apachiţe, Synchronized extension systems. To appear in Acta Inform.
[12] F.L. Ţiplea, E. Mäkinen, A note on synchronized extension systems. To appear in Inform. Process. Lett.
[13] F.L. Ţiplea, E. Mäkinen, A note on SE-systems and regular canonical systems. Technical Report A-2000-14, Department of Computer and Information Sciences, University of Tampere (Finland), October 2000, http://www.cs.uta.fi/reports/r2000.html (Submitted).
[14] F.L. Ţiplea, E. Mäkinen, On SE-systems and monadic string rewriting systems. Technical Report A-2000-15, Department of Computer and Information Sciences, University of Tampere (Finland), November 2000, http://www.cs.uta.fi/reports/r2000.html (Submitted).

[^0]: ${ }^{1}$ E-mail:ftiplea@infoiasi.ro
 ${ }^{2}$ E-mail: em@cs.uta.fi. Work supported by the Academy of Finland (Project 35025).

