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Abstract

We show that synchronize extension systems [11] can be succesfully used to sim-
ulate timing mechanisms incorporated into grammars and automata [2,9,5-7]. Fur-
ther, we introduce the concept of a time-varying code as a natural generalization of
L-codes, and the relationship with classical codes, gsm codes and SE-codes is es-
tablished. Finally, a decision algorithm for periodically time-varying codes is given.

Keywords: formal languages, time-varying grammars, codes, synchronized
extension systems.

1 Introduction and Preliminaries

A synchronized extension system (SE-system, for short) is a new powerful and
elegant rewriting formalism which has proved to be useful in various kinds of
problems in formal language theory [11-14].

In this paper we show how SE-systems can be used to simulate timing mecha-
nisms used in grammars and automata. Further, we introduce the concept of a
time-varying code as a natural generalization of L-codes, and the relationship
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with classical codes, gsm codes and SE-codes is established. Finally, a decision
algorithm for periodically time-varying codes is given.

We assume the reader to be familiar with the basic concepts of formal lan-
guages and automata as given e.g. in [4,9]. For the sake of self-containment,
we recall some notations.

An alphabet is a finite non-empty set of symbols. For an alphabet V', V* denotes
the free monoid generated by V' with the unit A; V' is then V* — {A}. The
elements of V* are called words.

For a binary relation p over a set A, p™ (p*) denotes the transitive (reflexive
and transitive) closure of p. N denotes the set of natural numbers and P(A)
is the powerset of the set A. Given two natural numbers ¢ and p > 1, ¢ mod p
denotes the remainder (residue) of i modulo p.

Recall now some basic concepts from [11]. An SE-system is a 4-tuple G =
(V, Ly, Ly, S), where V' is an alphabet and L, L, and S are languages over
V. Ly is called the initial language, Ly the extending language, and S the
synchronization set of GG. For an SE-system G, define the binary relations
=G >Gr > ~>a, and =g over V™ as follows:

)

—u=g,viff (Jw € Ly)(Is € S)(Fz,y e V) (u=2s AN w=sy N v=usy);
—u=g— viff (Gw e Ly)(Is € S)Fz,y e V) (u=25s N w=sy A v=ury);
).
)

—u=gyviff (Gw e Ly)(Is € S)3r,y e V)(u=sz N w=ys N v=uysz);
—u=g- viff (Gw € Ly)(Fs € S)(Fz,y e V*)(u=s2 AN w=ys A v=yz).

In an SE-system G = (V| Ly, Ly, S), the words in S act as synchronization
words. They can be kept or neglected in the final result, and r, r—, [, and [~
are called (basic) modes of synchronizations. In this paper we restrict ourselves
to the mode r~.

We say that an SE-system G = (V, Ly, Lo, S) is of type (p1,p2,p3) if Ly, Lo,
and S are languages having the properties p;, ps, and ps, respectively. We
use the abbreviations f and reg for the properties of finiteness and regularity,
respectively.

A derivation u =, v is called an r~-derivation of v (from u). The language
of type r~ generated by an SE-system G = (V, Ly, Lo, S), denoted by L" (G),
is the set of all words v having at least one r~-derivation, that is

L" (G)={veV*|FueL : u>g, v}

(naturally, the other modes of synchronization define their own classes of lan-
guages, but we do not need them here.)

The following important result has been proved in [11].



Theorem 1 For any SE-system G of type (reg,reg, f), the language L™ (G)
s reqular.

2 SE-Systems and Time-Varying Grammars

A time-varying grammar ([9]) is a couple (G, ), where G = (Vy, Vy, Xo, P)
is a grammar and ¢ is a function from N into P(P). For a number i € N and
for words u and v, we write

(u,7) = (@) (v,7+1)
iff there is a rule @ — f € ¢(i) such that u = ujaus and v = u; fus.
The language generated by (G, ¢) is defined by
L(G, ) = {w € V} | (Xo,0) =(g,p) (w,1), for some i € N}.

If the timing function @ is not restricted, then time-varying regular grammars
(TVRG, for short) generate all the recursively enumerable languages ([9]). SE-
systems can also generate all the recursively enumerable languages - we can
easily construct an SE-system “simulating” a Chomsky grammar of type 0.
However, for our purposes it is preferable to simulate TVRG’s by SE-systems.
In order to do that we will write natural numbers in a unary notation in which
1 is encoded by a sequence of i+ 1 copies of 1. For example, the unary notation
of 4 is 11111. For notational convenience, we use the notation [i] for the unary
encoding of ¢.

Theorem 2 FEvery recursively enumerable language can be expressed as an
intersection between a language of type r~ generated by an SE-system and a
reqular language.

Proof. Let L be a recursively enumerable language. Then there is a TVRG
(G, ), where G = (Vy, Vr, Xo, P), such that L = L(G, ¢). Consider the SE-
system H = (V, Ly, L, S) given by

- V=VyuVpu({l},
o Ll = {XO[O]}a
— Lo ={A[i]aB[i+1]|i e N A A— aB € p(i)} U
{Afila|ie N N A—a € p(i)},
- S ={A[i]|t € N N A € lhs(p(i))}, where lhs(p(i)) is the set of all left
hand sides of the rules in (7).

It is clear that L(G, ) = L™ (H) NV}, which proves the theorem.



The construction in the proof of Theorem 2 can be easily adapted to sim-
ulate time-varying non-deterministic finite automata with A-moves (TVNFA
with A-moves, for short) defined as in [5]. Such a device is a system A =
(@,%,6,q0,Qy), where @ is the set of states, gy € @ is the initial state, Qs C @
is the set of final states, X is the (input) alphabet, and ¢ is a function from
Q x N x (XU {A}) into P(Q). The computation defined by A is given by

(q,i,aw) Fa (¢, +1,w) & ¢ €68(q,i,a),
forall g, € Q,1 >0, we X* and a € XU {\}.

An SE-system simulating a TVNFA with A-moves can be constructed by as-
sociating to each move ¢’ € 6(q,7,a) the extending word ¢l[i]aq’[i + 1] and the
synchronization word g(i].

If the timing function ¢ of a time-varying grammar is periodic (that is, there
is p > 1 such that ¢(i) = ¢(i mod p) for all i > p), the construction of an
SE-system simulating a time-varying grammar can be simplified by replacing
each occurrence of [j] by [j mod p], for all j > 0. Then, the languages Ly and
S become finite and, therefore, the SE-system obtained is of type (f, f, f). A
similar construction can be done for periodic time-varying automata. There-
fore, by Theorem 1, the following result holds.

Theorem 3 All the languages generated by periodic TVRG’s or accepted by
periodic TVNFA’s with A\-mowves are reqular.

The regularity of languages accepted by periodic time-varying deterministic
finite automata has been proved already in [5], but the result in Theorem 3 is
more general.

3 Time-Varying Codes

In this section we introduce the concept of a time-varying code which is a
natural generalization of the concept of an L-code [8]. First, we recall the
concept of a code (for details, the reader is referred to [3,10]).

Let A be an alphabet. A code over A is any subset C' C A™ such that each
word w € AT has at most one decomposition over C. Alternatively, one can
say that C'is a code over A if there is an alphabet ¥ and a function h : ¥ — A*
such that the unique homomorphic extension h : £* — A* of h defined by
h(A) = X and h(ag---a, 1) = h(ag)---h(an 1), for all ag---a, ; € X7, is
injective.

Definition 4 Let ¥ and A be alphabets. A function h : ¥ x N — A* is



called a time-varying code over A (T'V-code over A, for short) if the function
h:¥* — A* given by h(\) = X\ and
h(ag- - - an_1) = h(ap,0) - - - h(ap_1,n — 1),

for all ag---a,_1 € X7, is injective.

A TV-code h : ¥ x N — A" is called periodic if there is p > 1 such that
h(a,i) = h(a,i mod p), for all a € ¥ and ¢ > p; the number p is called a period
of h.

Remark 5 Let X and A be alphabets.

(1) Any code g : ¥ — AT is a TV-code. Indeed, let h : ¥ x N — A™ be defined
by h(a,i) = g(a) for alla € ¥ and i € N. Then, it is clear that § = h.

(2) Let h : X x N — A™ be a function. If the set h(X x N) is a code then h is
a TV-code, but the converse does not hold generally.

In what follows, we relate TV-codes to different classes of codes introduced in
the literature.

TV-codes and L-codes. L-codes have been introduced in [8] as functions
g : X — X1 such that g : ¥* — 3* given by g(\) = X and

glao- - an-1) = g'(ag) - - g*(an-1),

for all ag---a,_; € X7F, is injective. Here, ¢* denotes the i'* iteration of the
unique homomorphic extension of g, for all ¢ > 1. (If g denotes also the unique
homomorphic extension of g on ¥*, then ¢' = g and ¢'™! = g'og for all i > 1,

where “0” is the function composition.)

Any L-code g : ¥ — X7 is a TV-code. Indeed, let i : ¥ x N — X% be defined
by h(a,i) = g"™1(a), for all a € ¥ and 7 € N. Then, it is clear that § = h.

Proposition 6 There are TV-codes that are not L-codes.

Proof. Notice first that for each L-code g : ¥ — X% and each symbol a € ¥
such that g(a) = a*, for some k > 1, we have ¢¢(a) = a*', for all i > 1.

Consider h : ¥ x N — X% defined by h(a,1) = a? and h(a,2) = a, for some
a € 3. (The values h(i,z), (z,i) € ¥ x N, are not of interest, provided that h
is a TV-code.)

If there were an L-code g with the property h = g, the relation h(a) = g(a)
would imply g(a) = a?, and h(aa) = g(aa) would imply

aaa = h(aa) = j(aa) = g(a)g*(a) = a’,



which is a contradiction.

TV-codes and gsm-codes. Generalized Sequential Machines can be used
in a very natural way as coders (see for example [1]): the input is the sequence
to be encoded, and the output is the result.

A generalized sequential machine (gsm, for short) is a 6-tuple [4]
M = (Q727A767q07F)7

where @) is the set of states, ¢y € @ is the initial state, F' C @ is the set of final
states, X is the input alphabet, A is the output alphabet, and ¢ is a function
from ) x ¥ into the powerset of ) x A*.

We consider only gsm’s with the following properties:

— F'is the empty set; therefore, we omit it from the notation above;
— 0(g,a) is a singleton subset of @ x A*, for all ¢ € ) and a € ¥; therefore,
we write 0 : Q X ¥ — @ x A" and say that M is deterministic and \-free.

Notice that under these considerations ¢ is a total function (defined for all
pairs (¢g,a) € @ X X).

A gsm M defines a function gy, : ¥* — A* by letting gps(A) = A and

gum(wa) = gM(w)pT’2(5(p7“1(g(QO; w)), a)),

for all w € ¥* and a € ¥, where pry (pr) is the first (second) projection
function and ¢ is the usual extension of § to Q) x X*.

A gsm coderis a gsm M such that g, is injective; in this case, g, is called a
gsm code.

In order to relate gsm-codes to TV-codes we encounter a problem similar to
that in Figure 3. That is, there are two states ¢; and ¢» in M which both can
be reached from ¢y in equal number of steps (here in one step), and in these
states the symbol a is encoded in two different ways. In such a case, we can
not associate a TV-code h to gj;. For example, in the case of Figure 3, we
have to define h(a,1) = ab and h(a,1) = ba.

Definition 7 A gsm M 1is called equal if there are two distinct states q and
q" and an input symbol a such that q and q' can both be reached from qy in
equal number of steps, and pro(d(q,a)) # pra(d(qd’, a)).

If a gsm is not equal we call it equal-free. Now, we can prove:



Fig. 1. An equal gsm

Proposition 8 If an equal-free gsm M is a coder, then there is a T'V-code h
such that gy = h.

Proof. Let M = (Q, %, A, 0, q) be an equal-free gsm. Define h : ¥ x N — A*
by

h(a’ Z) = pr2(6(Qa CI,)),
for all a € ¥ and i € N, where ¢ is a state reachable in i steps from ¢g (go is
reachable from itself in 0 steps).

It follows from the equal-freeness of M that h is well-defined. Then, we can
easily check that gy = h.

Not all gsm coders are equal-free as the gsm in Figure 3 shows us (it is a coder
but it does not have the equal-freeness property).

The equal-freeness can be effectively checked. Indeed, for a gsm M we define
the sequence of sets A;, ¢ > 0, as follows:

(i) Ao = {qo};
(ii) Aip1 ={pri(6(q,a)) | g€ A;, a € X}, for all i > 0.

The sets A; are finite because they are subsets of the finite set ) and, therefore,
there are k£ and ¢y such that k < ip and Ax = A;,. Then, for each j < g, check
for each pair of distinct states ¢,¢' € A;, and for each input symbol a € X,
whether or not 6(q,a) = d(¢’, a). If the relation §(q,a) = §(¢’,a) holds at least
once, then M is equal; otherwise, it is equal-free.

A gsm coder can encode a symbol a only by the maximum of its outputs.
Therefore, by using a similar idea than that in the previous paragraph, we
can show that there are gsm codes (defined for equal-free gsm’s) that are not
L-codes.



TV-codes and SE-codes. Next we show that TV-codes are particular cases
of SE-codes and, in case of a periodic function A : ¥ x N — AT, we can
effectively decide whether or not h is a TV-code.

Two r~-derivations
Uy =p= U =p— " =Pp= Up
and

/
m

Uy =y Uy =y o = U

are called distinct if n # m or there is an index 7 such that u; # ;.

An SE-system G is called r~-ambiguous if there is a word v having at least
two distinct r~-derivations in G. If G is not r~-ambiguous then we say that
it is r~-nonambiguous.

An r~-derivation u; =,- uy =,- -+ =,- u, is called reduced if it does not
contain cycles, that is, there are no ¢ and j such that ¢ # j and u; = u;.
Clearly, any r~-derivation can be reduced in different ways. For example, the
r~-derivation

Uy =p— U2 =p- U3 =p— Ul =p— U4 =p— Us = p— U3,
where uq, ..., us are assumed pairwise distinct, can be reduced to
Uy = p— Uy = p— Us = p— U3

or to
Ul =>p— Uy =>p— U3.

If an SE-system has the property that for every word v there is at most a
reduced r~-derivation of v, then it is called weak r~-nonambiguous.

It is clear that an r~-nonambiguous SE-system is also weak r~-nonambiguous,
but the converse does not hold in general. That is, there exist SE-systems G
and words v with more than two r~-derivations. But, in this case, all the r~-
derivations of such a word can be reduced, by removing cycles, to a unique
reduced r~-derivation.

An SE-system G = (V, Ly, Lo, S) is said to be non-returning if the following
property holds:

(Vs1 € S)(Yv € Ly)(v=s510" = (V82 € S)(V Lsus 52)).
In [11] it has been proved that the (weak) r~-nonambiguity property is de-

cidable for non-returning SE-systems of type (f, f, f). The proof is based on
constructing a finite graph and checking the existence of some paths (with



some properties). The relationship between codes and weak nonambiguous
SE-systems has been also pointed out in [11]. That is, a set C' C A* is a code
over A if and only if the SE-system (V, C, C, {A}) is (weak) r~-nonambiguous.

Let h : ¥ x N — AT be a function. We associate to h the SE-system H =
(V, Ly, Ly, S) given by:

- V=XuU{1},

— Ly = {h(a,0)[1] | a € X},

— Ly = {[i]h(a,d)[i + 1] | (a,i) € ¥ x N} U{[i]h(a,i) | (a,i) € ¥ x N},
S =A{[i] | i € N}

([¢ + 1] in a word [i]h(a,i)[i + 1] indicates the “next time”).

Proposition 9 Let h: ¥ x N — A™ be a function and H be the SE-system
associated to h. Then, the following properties hold true:

(1) H is a non-returning SE-system;
(2) his a TV-code iff H is (weak) r~-nonambiguous.

Proof. Claim (1) follows directly from the definitions, and Claim (2) is an
straightforward consequence of the following equivalences:
h is a TV-code iff (Vv € A*)(there is at most an u € XF s.t. h(u) = v)

iff (Vv € A™)(there is at most an r~-derivation of v in H).

Consider now a periodic function A : ¥ x N — A™, and p > 1 a period of h.
Modify the SE-system H associated to h by replacing each unary notation [j]
by [j mod p], for all j > 0. Let H, be the SE-system such obtained.

Proposition 10 Let h : ¥ x N — A" be a periodic function with period
p, and let H, be the SE-system associated to h as above. Then the following
properties hold true:

(1) H, is a non-returning SE-system of type (f, f, f);
(2) his a TV-code iff H, is (weak) r~ -nonambiguous.

Proof. Similar to that of Proposition 9 with the exception that there are only
a finite number of residues modulo p.

Now, we can obtain the following result regarding periodic TV-codes.

Theorem 11 [t is decidable whether a periodic function h : X x N — A™ is
a TV-code or not.



Proof. Let p > 1 be a period of h. Then, from Proposition 10 it follows that
h is a TV-code if and only if H, is r~-nonambiguous. Because H, is a non-
returning SE-system of type (f, f, f), it follows, by Theorem 4.2 of [11], that
it is decidable whether or not H,, is r~-nonambiguous.

The proof of Theorem 11 suggests the following algorithm to check whether a
periodic function h : ¥ x N — AT is a TV-code or not.

Algorithm.

input: a periodic function i : ¥ x N — AT with period p;
output: “yes” if h is a TV-code, otherwise “no”;

begin

1. construct the SE-system H,;

2. check whether or not H, is r -nonambiguous;

3. if H, is r -nonambiguous then answer “yes” else answer “no”
end.

The correctness of the algorithm above follows immediately from Proposition
10 and Theorem 11 (the checking operation from line 2 can be performed by
an algorithm as the one in [11], Theorem 4.2).
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