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Abstract

We show that synchronize extension systems [11] can be succesfully used to sim-
ulate timing mechanisms incorporated into grammars and automata [2,9,5{7]. Fur-
ther, we introduce the concept of a time-varying code as a natural generalization of
L-codes, and the relationship with classical codes, gsm codes and SE-codes is es-
tablished. Finally, a decision algorithm for periodically time-varying codes is given.

Keywords: formal languages, time-varying grammars, codes, synchronized
extension systems.

1 Introduction and Preliminaries

A synchronized extension system (SE-system, for short) is a new powerful and
elegant rewriting formalism which has proved to be useful in various kinds of
problems in formal language theory [11{14].

In this paper we show how SE-systems can be used to simulate timing mecha-
nisms used in grammars and automata. Further, we introduce the concept of a
time-varying code as a natural generalization of L-codes, and the relationship
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with classical codes, gsm codes and SE-codes is established. Finally, a decision
algorithm for periodically time-varying codes is given.

We assume the reader to be familiar with the basic concepts of formal lan-
guages and automata as given e.g. in [4,9]. For the sake of self-containment,
we recall some notations.

An alphabet is a �nite non-empty set of symbols. For an alphabet V , V � denotes
the free monoid generated by V with the unit �; V + is then V � � f�g. The
elements of V � are called words.

For a binary relation � over a set A, �+ (��) denotes the transitive (reexive
and transitive) closure of �. N denotes the set of natural numbers and P(A)
is the powerset of the set A. Given two natural numbers i and p � 1, i mod p

denotes the remainder (residue) of i modulo p.

Recall now some basic concepts from [11]. An SE-system is a 4-tuple G =
(V; L1; L2; S), where V is an alphabet and L1, L2, and S are languages over
V . L1 is called the initial language, L2 the extending language, and S the
synchronization set of G. For an SE-system G, de�ne the binary relations
)G;r, )G;r�, )G;l and )G;l� over V � as follows:

{ u)G;r v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = xs ^ w = sy ^ v = xsy);
{ u)G;r� v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = xs ^ w = sy ^ v = xy);
{ u)G;l v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = sx ^ w = ys ^ v = ysx);
{ u)G;l� v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = sx ^ w = ys ^ v = yx).

In an SE-system G = (V; L1; L2; S), the words in S act as synchronization
words. They can be kept or neglected in the �nal result, and r, r�, l, and l�

are called (basic)modes of synchronizations. In this paper we restrict ourselves
to the mode r�.

We say that an SE-system G = (V; L1; L2; S) is of type (p1; p2; p3) if L1, L2,
and S are languages having the properties p1, p2, and p3, respectively. We
use the abbreviations f and reg for the properties of �niteness and regularity,
respectively.

A derivation u
�

)r� v is called an r�-derivation of v (from u). The language
of type r� generated by an SE-system G = (V; L1; L2; S), denoted by Lr�(G),
is the set of all words v having at least one r�-derivation, that is

Lr�(G) = fv 2 V � j 9u 2 L1 : u
�

)G;r� vg

(naturally, the other modes of synchronization de�ne their own classes of lan-
guages, but we do not need them here.)

The following important result has been proved in [11].
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Theorem 1 For any SE-system G of type (reg; reg; f), the language Lr�(G)
is regular.

2 SE-Systems and Time-Varying Grammars

A time-varying grammar ([9]) is a couple (G;'), where G = (VN ; VT ; X0; P )
is a grammar and ' is a function from N into P(P ). For a number i 2 N and
for words u and v, we write

(u; i))(G;') (v; i+ 1)

i� there is a rule �! � 2 '(i) such that u = u1�u2 and v = u1�u2.

The language generated by (G;') is de�ned by

L(G;') = fw 2 V �

T j (X0; 0)
�

)(G;') (w; i); for some i 2 Ng:

If the timing function ' is not restricted, then time-varying regular grammars
(TVRG, for short) generate all the recursively enumerable languages ([9]). SE-
systems can also generate all the recursively enumerable languages - we can
easily construct an SE-system \simulating" a Chomsky grammar of type 0.
However, for our purposes it is preferable to simulate TVRG's by SE-systems.
In order to do that we will write natural numbers in a unary notation in which
i is encoded by a sequence of i+1 copies of 1. For example, the unary notation
of 4 is 11111. For notational convenience, we use the notation [i] for the unary
encoding of i.

Theorem 2 Every recursively enumerable language can be expressed as an
intersection between a language of type r� generated by an SE-system and a
regular language.

Proof. Let L be a recursively enumerable language. Then there is a TVRG
(G;'), where G = (VN ; VT ; X0; P ), such that L = L(G;'). Consider the SE-
system H = (V; L1; L2; S) given by

{ V = VN [ VT [ f1g,
{ L1 = fX0[0]g,
{ L2 = fA[i]aB[i+ 1] j i 2 N ^ A! aB 2 '(i)g [

fA[i]a j i 2 N ^ A! a 2 '(i)g,
{ S = fA[i] j i 2 N ^ A 2 lhs('(i))g, where lhs('(i)) is the set of all left
hand sides of the rules in '(i).

It is clear that L(G;') = Lr�(H) \ V �

T , which proves the theorem.
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The construction in the proof of Theorem 2 can be easily adapted to sim-
ulate time-varying non-deterministic �nite automata with �-moves (TVNFA
with �-moves, for short) de�ned as in [5]. Such a device is a system A =
(Q;�; Æ; q0; Qf ), where Q is the set of states, q0 2 Q is the initial state, Qf � Q

is the set of �nal states, � is the (input) alphabet, and Æ is a function from
Q�N� (� [ f�g) into P(Q). The computation de�ned by A is given by

(q; i; aw) `A (q0; i+ 1; w) , q0 2 Æ(q; i; a);

for all q; q0 2 Q, i � 0, w 2 ��, and a 2 � [ f�g.

An SE-system simulating a TVNFA with �-moves can be constructed by as-
sociating to each move q0 2 Æ(q; i; a) the extending word q[i]aq0[i+ 1] and the
synchronization word q[i].

If the timing function ' of a time-varying grammar is periodic (that is, there
is p � 1 such that '(i) = '(i mod p) for all i � p), the construction of an
SE-system simulating a time-varying grammar can be simpli�ed by replacing
each occurrence of [j] by [j mod p], for all j � 0. Then, the languages L2 and
S become �nite and, therefore, the SE-system obtained is of type (f; f; f). A
similar construction can be done for periodic time-varying automata. There-
fore, by Theorem 1, the following result holds.

Theorem 3 All the languages generated by periodic TVRG's or accepted by
periodic TVNFA's with �-moves are regular.

The regularity of languages accepted by periodic time-varying deterministic
�nite automata has been proved already in [5], but the result in Theorem 3 is
more general.

3 Time-Varying Codes

In this section we introduce the concept of a time-varying code which is a
natural generalization of the concept of an L-code [8]. First, we recall the
concept of a code (for details, the reader is referred to [3,10]).

Let � be an alphabet. A code over � is any subset C � �+ such that each
word w 2 �+ has at most one decomposition over C. Alternatively, one can
say that C is a code over � if there is an alphabet � and a function h : �! �+

such that the unique homomorphic extension �h : �� ! �� of h de�ned by
�h(�) = � and �h(a0 � � � an�1) = h(a0) � � � h(an�1), for all a0 � � � an�1 2 �+, is
injective.

De�nition 4 Let � and � be alphabets. A function h : � � N ! �+ is
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called a time-varying code over � (TV-code over �, for short) if the function
�h : �� ! �� given by �h(�) = � and

�h(a0 � � � an�1) = h(a0; 0) � � � h(an�1; n� 1);

for all a0 � � � an�1 2 �+, is injective.

A TV-code h : � � N ! �+ is called periodic if there is p � 1 such that
h(a; i) = h(a; i mod p), for all a 2 � and i � p; the number p is called a period
of h.

Remark 5 Let � and � be alphabets.

(1) Any code g : �! �+ is a TV-code. Indeed, let h : ��N! �+ be de�ned
by h(a; i) = g(a) for all a 2 � and i 2 N. Then, it is clear that �g = �h.

(2) Let h : ��N! �+ be a function. If the set h(��N) is a code then h is
a TV-code, but the converse does not hold generally.

In what follows, we relate TV-codes to di�erent classes of codes introduced in
the literature.

TV-codes and L-codes. L-codes have been introduced in [8] as functions
g : �! �+ such that �g : �� ! �� given by �g(�) = � and

�g(a0 � � � an�1) = g1(a0) � � � g
n(an�1);

for all a0 � � � an�1 2 �+, is injective. Here, gi denotes the ith iteration of the
unique homomorphic extension of g, for all i � 1. (If g denotes also the unique
homomorphic extension of g on ��, then g1 = g and gi+1 = gi Æ g for all i � 1,
where \Æ" is the function composition.)

Any L-code g : �! �+ is a TV-code. Indeed, let h : ��N! �+ be de�ned
by h(a; i) = gi+1(a), for all a 2 � and i 2 N. Then, it is clear that �g = �h.

Proposition 6 There are TV-codes that are not L-codes.

Proof. Notice �rst that for each L-code g : �! �+ and each symbol a 2 �
such that g(a) = ak, for some k > 1, we have gi(a) = ak

i

, for all i � 1.

Consider h : � �N ! �+ de�ned by h(a; 1) = a2 and h(a; 2) = a, for some
a 2 �. (The values h(i; x), (x; i) 2 ��N, are not of interest, provided that h
is a TV-code.)

If there were an L-code g with the property �h = �g, the relation �h(a) = �g(a)
would imply g(a) = a2, and �h(aa) = �g(aa) would imply

aaa = �h(aa) = �g(aa) = g(a)g2(a) = a6;
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which is a contradiction.

TV-codes and gsm-codes. Generalized Sequential Machines can be used
in a very natural way as coders (see for example [1]): the input is the sequence
to be encoded, and the output is the result.

A generalized sequential machine (gsm, for short) is a 6-tuple [4]

M = (Q;�;�; Æ; q0; F );

where Q is the set of states, q0 2 Q is the initial state, F � Q is the set of �nal
states, � is the input alphabet, � is the output alphabet, and Æ is a function
from Q� � into the powerset of Q���.

We consider only gsm's with the following properties:

{ F is the empty set; therefore, we omit it from the notation above;
{ Æ(q; a) is a singleton subset of Q��+, for all q 2 Q and a 2 �; therefore,
we write Æ : Q� �! Q��+ and say that M is deterministic and �-free.

Notice that under these considerations Æ is a total function (de�ned for all
pairs (q; a) 2 Q� �).

A gsm M de�nes a function gM : �� ! �� by letting gM(�) = � and

gM (wa) = gM (w)pr2(Æ(pr1(~Æ(q0; w)); a));

for all w 2 �� and a 2 �, where pr1 (pr2) is the �rst (second) projection
function and ~Æ is the usual extension of Æ to Q� ��.

A gsm coder is a gsm M such that gM is injective; in this case, gM is called a
gsm code.

In order to relate gsm-codes to TV-codes we encounter a problem similar to
that in Figure 3. That is, there are two states q1 and q2 in M which both can
be reached from q0 in equal number of steps (here in one step), and in these
states the symbol a is encoded in two di�erent ways. In such a case, we can
not associate a TV-code h to gM . For example, in the case of Figure 3, we
have to de�ne h(a; 1) = ab and h(a; 1) = ba.

De�nition 7 A gsm M is called equal if there are two distinct states q and
q0 and an input symbol a such that q and q0 can both be reached from q0 in
equal number of steps, and pr2(Æ(q; a)) 6= pr2(Æ(q

0; a)).

If a gsm is not equal we call it equal-free. Now, we can prove:
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a/a
b/b

a/a
b/b

a/a
b/b

b/b

a/ab

b/b

a/a

a/ba

b/b
q0

q1

q3

q4

q2

q5

Fig. 1. An equal gsm

Proposition 8 If an equal-free gsm M is a coder, then there is a TV-code h
such that �gM = �h.

Proof. LetM = (Q;�;�; Æ; q0) be an equal-free gsm. De�ne h : ��N! �+

by

h(a; i) = pr2(Æ(q; a));

for all a 2 � and i 2 N, where q is a state reachable in i steps from q0 (q0 is
reachable from itself in 0 steps).

It follows from the equal-freeness of M that h is well-de�ned. Then, we can
easily check that �gM = �h.

Not all gsm coders are equal-free as the gsm in Figure 3 shows us (it is a coder
but it does not have the equal-freeness property).

The equal-freeness can be e�ectively checked. Indeed, for a gsm M we de�ne
the sequence of sets Ai, i � 0, as follows:

(i) A0 = fq0g;
(ii) Ai+1 = fpr1(Æ(q; a)) j q 2 Ai; a 2 �g, for all i � 0.

The sets Ai are �nite because they are subsets of the �nite setQ and, therefore,
there are k and i0 such that k < i0 and Ak = Ai0 . Then, for each j < i0, check
for each pair of distinct states q; q0 2 Aj, and for each input symbol a 2 �,
whether or not Æ(q; a) = Æ(q0; a). If the relation Æ(q; a) = Æ(q0; a) holds at least
once, then M is equal; otherwise, it is equal-free.

A gsm coder can encode a symbol a only by the maximum of its outputs.
Therefore, by using a similar idea than that in the previous paragraph, we
can show that there are gsm codes (de�ned for equal-free gsm's) that are not
L-codes.
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TV-codes and SE-codes. Next we show that TV-codes are particular cases
of SE-codes and, in case of a periodic function h : � � N ! �+, we can
e�ectively decide whether or not h is a TV-code.

Two r�-derivations
u1 )r� u2 )r� � � � )r� un

and

u01 )r� u02 )r� � � � )r� u0m

are called distinct if n 6= m or there is an index i such that ui 6= u0i.

An SE-system G is called r�-ambiguous if there is a word v having at least
two distinct r�-derivations in G. If G is not r�-ambiguous then we say that
it is r�-nonambiguous.

An r�-derivation u1 )r� u2 )r� � � � )r� un is called reduced if it does not
contain cycles, that is, there are no i and j such that i 6= j and ui = uj.
Clearly, any r�-derivation can be reduced in di�erent ways. For example, the
r�-derivation

u1 )r� u2 )r� u3 )r� u1 )r� u4 )r� u5 )r� u3;

where u1; : : : ; u5 are assumed pairwise distinct, can be reduced to

u1 )r� u4 )r� u5 )r� u3

or to

u1 )r� u2 )r� u3:

If an SE-system has the property that for every word v there is at most a
reduced r�-derivation of v, then it is called weak r�-nonambiguous.

It is clear that an r�-nonambiguous SE-system is also weak r�-nonambiguous,
but the converse does not hold in general. That is, there exist SE-systems G
and words v with more than two r�-derivations. But, in this case, all the r�-
derivations of such a word can be reduced, by removing cycles, to a unique
reduced r�-derivation.

An SE-system G = (V; L1; L2; S) is said to be non-returning if the following
property holds:

(8s1 2 S)(8v 2 L2)(v = s1v
0 ) (8s2 2 S)(v0 6<suf s2)):

In [11] it has been proved that the (weak) r�-nonambiguity property is de-
cidable for non-returning SE-systems of type (f; f; f). The proof is based on
constructing a �nite graph and checking the existence of some paths (with
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some properties). The relationship between codes and weak nonambiguous
SE-systems has been also pointed out in [11]. That is, a set C � �+ is a code
over � if and only if the SE-system (V;C;C; f�g) is (weak) r�-nonambiguous.

Let h : � �N ! �+ be a function. We associate to h the SE-system H =
(V; L1; L2; S) given by:

{ V = � [ f1g,
{ L1 = fh(a; 0)[1] j a 2 �g,
{ L2 = f[i]h(a; i)[i+ 1] j (a; i) 2 ��Ng [ f[i]h(a; i) j (a; i) 2 ��Ng,
{ S = f[i] j i 2 Ng

([i+ 1] in a word [i]h(a; i)[i+ 1] indicates the \next time").

Proposition 9 Let h : � �N ! �+ be a function and H be the SE-system
associated to h. Then, the following properties hold true:

(1) H is a non-returning SE-system;
(2) h is a TV-code i� H is (weak) r�-nonambiguous.

Proof. Claim (1) follows directly from the de�nitions, and Claim (2) is an
straightforward consequence of the following equivalences:

h is a TV-code i� (8v 2 �+)(there is at most an u 2 �+ s.t. �h(u) = v)

i� (8v 2 �+)(there is at most an r�-derivation of v in H).

Consider now a periodic function h : � �N ! �+, and p � 1 a period of h.
Modify the SE-system H associated to h by replacing each unary notation [j]
by [j mod p], for all j � 0. Let Hp be the SE-system such obtained.

Proposition 10 Let h : � � N ! �+ be a periodic function with period
p, and let Hp be the SE-system associated to h as above. Then the following
properties hold true:

(1) Hp is a non-returning SE-system of type (f; f; f);
(2) h is a TV-code i� Hp is (weak) r�-nonambiguous.

Proof. Similar to that of Proposition 9 with the exception that there are only
a �nite number of residues modulo p.

Now, we can obtain the following result regarding periodic TV-codes.

Theorem 11 It is decidable whether a periodic function h : ��N! �+ is
a TV-code or not.
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Proof. Let p � 1 be a period of h. Then, from Proposition 10 it follows that
h is a TV-code if and only if Hp is r�-nonambiguous. Because Hp is a non-
returning SE-system of type (f; f; f), it follows, by Theorem 4.2 of [11], that
it is decidable whether or not Hp is r

�-nonambiguous.

The proof of Theorem 11 suggests the following algorithm to check whether a
periodic function h : ��N! �+ is a TV-code or not.

Algorithm.

input: a periodic function h : ��N! �+ with period p;
output:\yes" if h is a TV-code, otherwise \no";
begin

1. construct the SE-system Hp;
2. check whether or not Hp is r

�-nonambiguous;
3. if Hp is r

�-nonambiguous then answer \yes" else answer \no"
end.

The correctness of the algorithm above follows immediately from Proposition
10 and Theorem 11 (the checking operation from line 2 can be performed by
an algorithm as the one in [11], Theorem 4.2).
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