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Abstract

This paper proposes a new algorithm for drawing series-parallel di-
graphs in three dimensions. Our algorithm produces a three dimensional
strictly upward Fary grid drawing with volume O(n3) for an arbitrary
series-parallel digraph. We also prove that if series-parallel digraph is reg-
ular, it can be drawn with volume O(n2) and further, if a series-parallel
digraph is regular and its structure tree ful�ls a simple condition, the
graph can be drawn inside a box having volume O(n).

1 Introduction

Three dimensional drawings of graphs are needed in VLSI-design, modeling
VRML worlds and in user interface design. There is also a great theoretical
interest to learn properties of the three dimensional drawings of graphs.

The �rst theoretical results for the three dimensional graph drawing problem
appeared in [4] where it was proved that a complete graph with n vertices has a
three dimensional Fary grid drawing with volume 2n�2n�n. It was conjectured
that there are other classes of graphs allowing a smaller volume than the general
case.

The next re�nement was given in [2], where it was shown that 2-, 3- and
4-colorable graphs can be drawn with volume O(n2) and that the lower bound
for their drawing is O(n3=2). In [12] it was pointed out that any C-colorable
graph can be drawn with volume O(n2). Further results appeared in [7], where
it was proved that 2- and 3-colorable graphs can be drawn with volume O(n3=2)
and that any C-colorable graph admits a drawing with volume O(C4n3=2).

For series-parallel digraphs a three dimensional drawing algorithm appeared
in [8], but no concrete results was given for the volume of the obtained drawing.
An algorithm based on producing �rst a two-dimensional drawing and then
rotating it to obtain a three dimensional drawing.

In this article we describe an algorithm that directly produces three dimen-
sional drawings for series-parallel digraphs. Our drawing method has similarities
with4-algorithm [1, 3], which produces two-dimensional drawings for series par-
allel digraphs. We show that series-parallel digraphs can be drawn with volume
O(n3) and that there are some classes of series-parallel digraphs that can be
drawn with volume O(n2) and even with volume O(n).
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2 Preliminaries

For the basic graph-theoretical concepts we refer to [13] and for algorithms
and their notations to [6]. Notations and de�nitions for the three dimensional
graph drawing are mostly taken from [4, 2] and for series-parallel digraphs from
[1, 3, 14].

The Fary grid drawing of a graph is a three dimensional drawing where
vertices are placed at integer coordinates, edges are straight-lines and crossings
of edges are not allowed. A drawing of an acyclic digraph is upward, if each edge
is drawn as a curve monotonically nondecreasing in the prede�ned direction. It
is strictly upward, if each edge is drawn as a curve strictly increasing in the
prede�ned direction.

Let D be a three dimensional drawing. The rectangular hull of D is the
smallest rectangular prism with sides parallel to coordinate axis containing the
whole drawing. The volume of D is the product of the lengths of the three sides
of the rectangular hull of D. The footprint of a three dimensional drawing is its
projection on the xy-plane.

A source of a digraph is a vertex without incoming edges and a sink is a
vertex without outgoing edges. An edge (v; u) is transitive if there is directed
path from v to u such that (v; u) doesn't belong to that path.
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Figure 1: Recursive de�nition of a series-parallel digraph: (a) base case, (b)
series composition, (c) parallel composition.

A series-parallel digraph is recursively de�ned as follows:

1. A digraph consisting of two vertices and an edge joining them is a series-
parallel digraph.

2. If G1; : : : ; Gk are series-parallel digraphs so are the digraphs obtained by
the following operations:
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(a) The series composition of digraphs G1; : : : ; Gk with sources s1; : : : ; sk
and sinks t1; : : : ; tk is the digraph obtained by identifying the sink ti
with the source si+1 where 1 � i < k.

(b) The parallel composition of digraphsG1; : : : ; Gk with sources s1; : : : ; sk
and sinks t1; : : : ; tk is the digraph obtained by identifying s1; : : : ; sk
into a single vertex s and identifying t1; : : : ; tk into a single vertex t.

Throughout this paper, we assume that there is no parallel edges. A series-
parallel digraph G is associated with a rooted tree T , called SPQ-tree or decom-

position tree [14, 1, 3]. There are three types of nodes (S-, P - and Q-nodes) in
a decomposition tree:

1. If G is single edge, then T consists of a single Q-node.

2. If G is created by the parallel composition of series-parallel digraphs
G1; : : : ; Gk with decompositions trees T1; : : : ; Tk, then the root of T is
a P -node and its children are subtrees T1; : : : ; Tk.

3. IfG is created by the series composition of series-parallel digraphsG1; : : : ; Gk

with decompositions trees T1; : : : ; Tk, then the root of T is an S-node and
its children are subtrees T1; : : : ; Tk.

See Figure 2 for an example of a series parallel digraph and its decompo-
sition tree.

Q Q Q Q Q Q QQ

S S S S

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

P

Figure 2: A Series-parallel digraph and its decomposition tree.

If G has n vertices, then T has O(n) nodes. T can be constructed in O(n)
time using the recognition algorithm introduced in [14]. The recognition algo-
rithm produces a binary decomposition tree, which is easy to modify [3] to a
tree for which the following two invariants holds:

� If the type of a node is P , then all children are S-nodes except that there
might be one Q-node. If there is a Q-node, then it is a transitive edge.

� If the type of node is S, then all children are P - or Q-nodes.

If these two conditions holds, we call the decomposition tree a structure tree.
The structure tree T of a series-parallel digraph G is symmetric if, for each

node v in T , it holds that if vi and vj are children of v, then subtrees Ti and
Tj with roots vi and vj coincide. If a series-parallel digraph G has a symmetric
structure tree, then we say that G is regular.
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In this article we use simultaneous Cartesian coordinate system and spherical
coordinate system. The spherical coordinates of a point p are (r;�;�), where r
is the radial distance from origin and � ranges from 0 to 2� and � ranges from
0 to �. The transformation relationship between the Cartesian and spherical
coordinates of a point is de�ned as

x = r sin� cos�

y = r sin� sin�

z = r cos�.

Suppose A is a plane, R is a polygonal region in plane A, and P is a point
not in plane A. The set of all segments that join P to a point of region R form
a pyramid [9]. The region R is called the base of the pyramid and the point P
is called the top of the pyramid. A pyramid is a square pyramid if the base is a
square and the other faces than the base are congruent isosceles triangles. The
square pyramid is de�ned by the length of the side of its base and by its height.
A diamond is a polyhedron obtained by combining two equal square pyramids
whose sides are equal to its height, as follows: other pyramid is turned upside
down, and their bases are sticked together (see Figures 3.(a) and 4.(a)). The
base of the diamond is the base of the pyramids and the side of the diamond
is the side of the base of the pyramids. The bottom of the diamond is the
top of the turned pyramid, and the top of the diamond is the top of the other
pyramid. The diameter of the diamond is the height of the pyramid, i.e., the
distance between the bottom and the top.

3 An algorithm for drawing series parallel-dig-

raphs in three dimensions

In this section we introduce a new algorithm for drawing series parallel digraphs
in three dimensional space. The main idea behind our drawing algorithm is
to draw subdrawings inside three dimensional diamonds and then to combine
these diamonds in such a way that the whole graph is drawn correctly. In the
following, we assume that the decomposition (structure) tree is given as input.

Algorithm 1 recursively draws the given graph G inside a three dimensional
diamond �(G). A single edge is drawn inside a diamond having height 2. If G
is a series composition of series-parallel digraphs G1 and G2, the drawings of
G1 and G2 are placed one above the other inside a diamond having diameter
R1 +R2 where R1 +R2 are the diameters of �(G1) and �(G2), respectively.

If G is a parallel composition of series-parallel digraphs G1 and G2, where
G2 is a Q-node, drawings of G1 and G2 are placed inside a diamond �(G) having
diameter 2R1 + 2, such that the bottom and the top of �(G2) are on the same
line as the bottom and the top of �(G), and the drawing of G1 is placed inside
�(G) such that the projection of �(G1) on the xy-plane is in the down left
corner of the projection of �(G).

Notice that the binary decomposition tree assumed in the following algorithm
allways exists as the result of the recognition algorithm introduced in [14].
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Algorithm 1 �� SP
input: a series-parallel digraph G and its binary decomposition tree T
output: a three dimensional upward Fary grid drawing D of G

If G has only a single edge e
then e is drawn as a line of length 2 parallel to z-axis inside
a diamond with diameter R = 2 (See Figures 3.(a) and 4.(a)).

If G is a series composition of G1 and G2

then draw recursively G1 and G2 to obtain drawings D1 and D2

with diameters R1 and R2. Identify the sink of G1 with the source of G2 and
drawings D1 and D2 inside a diamond with diameter R = R1 +R2

such that the bottoms and tops of the D1 and D2 are placed on
the same line (See Figures 3.(b) and 4.(b)).

If G is a parallel composition of G1 and G2

then draw recursively G1 and G2 to obtain drawings D1 and D2

with diameters R1 and R2.
If G1 or G2 consists of a single edge
then

Let D2 be the drawing of a single edge, and let D1 be the drawing of
the other subgraph. Place D1 and D2 inside �(G) with diameter
R = 2R1 + 2 such that the projection of D1 on the xy-plane is in
the down left corner of the projection of �(G) on the xy-plane and
D2 is in the middle of �(G) and that the bases of �(G1);�(G2);�(G)
lie on the same plane (See Figures 3.(c) and 4.(c)).

else

place D1 and D2 inside �(G) with diameter
R1 +R2 such that the projections on the xy-plane of �(G1) and �(G2)
are in the down left corner and in the down-right corner of the
projection of �(G) on the xy-plane and that the bases of �(G1);�(G2)
and �(G) lie on the same plane.

Identify the sources of G1 and G2 by moving them to the bottom of �(G)
and identify the sinks of G1 and G2 by moving
them to the top of �(G) (See Figures 3.(d) and 4.(d)).

If G2 is not a Q-node, then the drawings of G1 and G2 are placed inside
a diamond �(G) having diameter R1 + R2 such that the projections on the
xy-plane of �(G1) and �(G2) are in the down left corner and in the down
right corner of the projection of �(G) on the xy-plane and that the bases of
�(G1);�(G2) and �(G) lie on the same plane. Figures 3 and 4 illustrate the
series and parallel compositions.

Next we prove that Algorithm 1 works correctly and, after that, we investi-
gate the volume of the obtained drawing.
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a) b)

c) d)

Figure 3: Illustration of �-SP Algorithm: (a) a digraph consisting of a single
edge; (b) a series composition; (c) parallel composition; (d) a parallel composi-
tion with a transitive edge. Figures are projections on the yz-plane.

Theorem 3.1. Let G be a series-parallel digraph with decomposition tree T .
Algorithm �-SP produces a three dimensional strictly upward Fary grid drawing
of G.

Proof. The correctness of Algorithm 1 can be proved by showing that the fol-
lowing invariants hold after each parallel or series composition:

1. The drawing of G is contained inside a three dimensional diamond �(G)
having diameter R.

2. The source s is placed at the bottom of �(G) and the sink t is placed at
the top of �(G).

3. For any vertex v adjacent to the source s of G, the spherical wedge r <
0; 3�=4 � � � 5�=4; 0 � � � �=2 contains only s.

4. For any vertex adjacent v to the sink t of G, the spherical wedge r >
0; 3�=4 � � � 5�=4; 0 � � � �=2 contains only t.

5. For the top of �(G) the spherical wedge ��=4 � � � �=4 contains all
vertices and edges of G.

The proof is by induction on the vertices in the decomposition tree T . In
each step we prove that each invariant holds after a series composition or after
a parallel composition. Invariants 1 and 2 guarantee that the drawing is placed
inside �, and the last three invariants guarantee that the vertices s and t can
be moved to the top and to the bottom of the new drawing without creating
crossings.
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Figure 4: Illustration of �-SP Algorithm: (a) a digraph consisting of a single
edge; (b) a series composition; (c) parallel composition; (d) a parallel composi-
tion with a transitive edge. Figures are projections on the xy-plane

If T has one node, then this node is Q which is associated to edge (v; u).
Clearly all �ve invariants hold.

Suppose �rst that the node in the decomposition tree is of type S, i.e., G is
the series composition of digraphs G1 and G2, with the drawings D1 and D2.
Since series-parallel digraphs G1 and G2 are drawn correctly by the induction
hypothesis, the invariants 1 and 2 are satis�ed by the construction of algorithm.
Also invariants 3� 5 are satis�ed since the relative positions of the vertices of
G1 and G2 are not changed.

Suppose next that the node in the decomposition tree is is of type P , i.e.,
G is the parallel composition of digraphs G1 and G2, with the drawings D1 and
D2.

Now we have two di�erent cases, depending on graph G2 (If G1 is a Q-node,
we can swap G1 and G2 to have that G2 is a Q-node).

Case 1: If G2 is a transitive edge, then it is drawn in the middle of �(G)
having diameter 2R1 + 2, and G1 is drawn such that the projection of �(G1)
on the xy-plane is in the down left corner of the projection of �(G). Also the
bases of �(G1);�(G2) and �(G) lie on the same plane.

By the construction of algorithm, invariants 1 and 2 hold for the drawing of
the graph G.

To see that invariant 5 holds, make projections of �(G1) and �(G2) and
spherical wedge ��=4 � � � �=4 from the top of �(G) on the xy-plane. Now
the projection of the wedge contains the projections of �(G1) and �(G2).

7



Invariants 3 and 5 for G1 imply that the source s0 of G1 can be moved to
the bottom of the �(G) without creating crossings (see [1] for exact reasoning
for the two dimensional case), and hence invariant 3 for G holds. Invariant 4
can be proved with a similar reasoning.

Case 2: If G2 is not a transitive edge, then the drawings of G1 and G2 are
placed inside a diamond �(G) having diameter R1+R2 such that the projections
of �(G1) and �(G2) on the xy-plane are in the down left corner and in the down
right corner of the projection of �(G) on the xy-plane and that the bases of
�(G1);�(G2) and �(G) lie on the same plane.

By the construction of algorithm, invariants 1 and 2 hold for the drawing of
the graph G.

To see that invariant 5 holds, make projections of the spherical wedge��=4 �
� � �=4, �(G1) and �(G2) on the xy-plane. Now the projection of the wedge
contains the projections of �(G1) and �(G2).

Invariants 1 and 5 for G1 imply that the source s0 of G1 can be moved to
the bottom of �(G) without creating crossings (see [1] for exact reasoning for
the two dimensional case), hence invariant 3 holds for G. Invariant 4 can be
proved with a similar reasoning.

Algorithm 2 describes a recursive method to calculate exact diameters for
� consisting the drawing of the graph to be drawn. If all diameters of nested
diamonds are known, it is easy to compute the coordinates of vertices.

Algorithm 2 �� SP � Label
input: the binary decomposition tree T of a series-parallel digraph G
output: labeling of each subtree of T with diameter R

If the root of T is a Q-node
then

R(T ) = 2
else

let T1 and T2 be the left and right subtrees of T , respectively
for each i = 1; 2 do

�� SP � Label(Ti)
if the root of T is an S-node
then

R(T ) = R(T1) +R(T2)
else

if G1 is a Q-node
then

swap G1 and G2 to have that G2 is a Q-node
if G2 is a Q-node
then

R(T ) = 2 �R(T1) + 2
else

R(T ) = R(T1) +R(T2).

Next we prove an upper bound for the volume of the drawing produced by
Algorithm 1.
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Theorem 3.2. Let G be a series-parallel digraph having m edges. Then Algo-
rithm 1 produces a three dimensional strictly upward Fary grid drawing of G
with volume 8m3.

Proof. Let G be a series-parallel digraph consisting of series-parallel digraphs
G1 and G2. By the construction of Algorithm 1, the height of the diamond
�(G) of G is at most 2(m1+m2) = 2m, where m1 and m2 are the diameters of
�(G1) and �(G2), respectively.

Since the diameter of �(G) is 2m, the projection of �(G) on the xy-plane
is a square with sides of length 2m and parallel to x- and y-axis. Hence, the
volume of the drawing is 2m� 2m� 2m = 8m3.

If the series-parallel digraph doesn't contain any transitive edges, we can
prove a slightly better upper bound.

Theorem 3.3. Let G be a series-parallel digraph having m edges such that there
is no transitive edges. Then Algorithm 1 produces a three dimensional strictly
upward Fary grid drawing of G with volume m�m�m.

Proof. By the construction of Algorithm 1, the diameter of the diamond �(G)
is the sum of the diameters of the diamonds �(G1) and �(G1). Hence, the
diameter of �(G) is m and the volume of the drawing is m�m�m.

4 Special cases

In this section we investigate improvements to the volume of drawing produced
by Algorithm 1. We show that there are special cases when series-parallel di-
graphs can be drawn with lower volume than O(n3). We prove that if the
series-parallel digraph G is regular, it can be drawn inside a box having volume
O(n2). Moreover, if G is regular and the number of the children of a P -node in
the decomposition tree T is always k2, where k � 2, graph can be drawn inside
a box having volume O(n).

In the previous section we drawn components of the given series-parallel
digraph inside a diamond. For regular series-parallel digraphs, we can draw
components strictly inside a box which base is a square.

Next we give two simple lemmas, without proofs.

Lemma 4.1. Let S = fp1; : : : ; pkg be a set of points which are located on the
plane L and let p be a point not in L. Then the set of lines f(p1; p); : : : ; (pk; p)g
do not intersect except at point p.

Lemma 4.2. [5, 10, 11] Let S = fs1; : : : ; skg be a set of equal squares, and let
t be the side of a square. Then all squares from set S can be packed, with sides
parallel to x- and y-axis, inside a square of side lt, where (l� 1)2 < k � l2 and
l 2 Z+. The equality holds, if

p
k = l.

If a series-parallel digraph is regular, it can be drawn such that all the
adjacent vertices of the source (sink) lie on the same plane. This property
yields that the source (sink) can be moved upward (downward) in any direction
without creating crossings (Lemma 4.1).

We can now prove that regular series-parallel digraphs can be drawn with
volume O(n2).
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Algorithm 3 �� regular � SP
input: a regular series-parallel digraph G with structure tree T
output: a three dimensional strictly upward Fary grid
drawing D of G

If G has only a single edge e
then e is drawn as a line of length 1 parallel to z-axis inside a box having
dimension 1� 1� 1.

If G is a series composition of digraphs G1; : : : ; Gk

then draw recursively G1; : : : ; Gk to obtain drawings D1; : : :Dk having
dimensions x� x� z. Identify the sink of Gi with the source of Gi+1, where
1 � i � k � 1 and place drawings inside a box having dimension x� x� zk.

If G is a parallel composition of G1; : : : ; Gk

then draw recursively G1; : : : ; Gk to obtain drawings D1; : : : ;Dk

having dimensions x� x� z. Place the drawings inside a box having
dimensions lx� lx� z, where (l � 1)2 < k � l2. Identify the sources of
G1; : : : ; Gk by moving them to the any point of the bottom-side of the box
and identify the sinks of G1; : : : ; Gk by moving them to the any point of
the top-side of the box.

Theorem 4.1. Let G be a regular series-parallel digraph having n nodes and let
T be the structure tree for G. Then Algorithm 3 produces a three dimensional
strictly upward Fary grid drawing of graph G with volume O(n2).

Proof. The proof is by induction on vertices in the structure tree T . We prove
that the following invariants are satis�ed after each series or a parallel compo-
sition:

1. The drawing of G is contained inside a three dimensional box �(G) whose
bottom is a square.

2. The source s is placed at the bottom of �(G) and the sink t is placed at
the top of �(G).

3. For all vertices v adjacent to the source s of G, vertices lie on the same
plane parallel to the xy-plane.

4. For all vertices v adjacent to the sink t of G, vertices lie on the same plane
parallel to the xy-plane.

5. The volume of �(G) is O(m2).

If T has one node, then this node is of type Q. The corresponding single
edge can be drawn inside a box having dimensions 1� 1� 1 = O(m2).

Case 1: Suppose that the node in the structure tree is of type S having k
children. Note that all the children of S-node are P -nodes or Q-nodes since G
is regular.

By the induction hypothesis, the common volume of the identical subdraw-
ings D1; : : : ;Dk associated to the children of the S-node is O(m2), where m is
the common number of edges in the corresponding subgraphs. The number of
edges in G is km. Let x�x� z be the dimensions of subdrawing D1. Since the

10



series-parallel digraph is regular, all subdrawings can be drawn as a copy of the
�rst subdrawing, so we have the same dimensions for all subdrawings.

Invariants 3 and 4 are satis�ed since the relative positions of the vertices of
G1 and Gk are not changed.

To prove that invariant 5 is satis�ed, place boxes containing these drawings
one on the other. The drawing so achieved has volume x�x�zk = k(x�x�z) =
kO(m2) = O(m2).

Case 2: Suppose that the node in the structure tree is of type P with k
children. Note that all the children of a P -node are S-nodes, since parallel edges
are not allowed and a single Q-node contradicts regularity.

By the induction hypothesis, the common volume of the identical subdraw-
ings D1; : : : ;Dk associated to the children of the P -node is O(m2), where m is
the common number of edges in the corresponding subgraphs. The number of
edges in G is km. Let x�x� z be the dimensions of D1. Since G is regular, all
subdrawings can be drawn as a copy of the �rst subdrawing.

By Lemma 4.2, these squares can be packed inside a box having footprint l2,
where (l � 1)2 < k � l2. Let A0 be total area of D1; : : : ;Dk. For the footprint
A of the box containing all these subdrawing, we have A � 2A0.

By Lemma 4.1, we can �nd points s and t from the bottom and from the
top of the box such that there doesn't appear any crossings if nodes s1; : : : ; sk
are associated to s and t1; : : : ; tk are associated to t. After this the drawing has
still the property that all adjacent vertices to s and t are located on the same
plane.

The footprint of the box containing all subdrawings is less than twice the
total area of all subdrawings and the height of the drawing is the height of the
subdrawings. Thus, the volume of the box is O(m2) = O(n2). The theorem
follows.

If the parallel composition can be implemented without wasting any space
when boxes are placed to the plane, it is possible to improve the result for the
regular series-parallel digraphs even further. If P -node has always a suitable
number of children, their drawings can be combined more eÆciently. Next
we show that if series-parallel digraph G is regular and if each P -node of its
structure tree T has k2 children where k � 2, then G can be drawn with volume
O(n). Since this is a special case of the Theorem 4.1, we only only sketch the
proof.

Theorem 4.2. Let G = (V;E) be a regular series-parallel digraph having n
nodes. Further, let T be the structure tree for G with the property that each
P -node has k2 children, where k � 2. Then G allow a three dimensional strictly
upward Fary grid drawing with volume O(n).

Proof. The increase of the volume for regular series-parallel digraphs is linear
in series-composition. Also the increase of the volume in parallel composition
is linear if each P -node has k2 children, since the subdrawings of P -node can
be drawn inside a square without wasting any space (by Lemma 4.2). Thus the
volume of the drawing is O(n).
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Figure 5: A three dimensional drawing obtained from the series-parallel digraph
in Figure 1 using Algorithm 2 modi�ed for the special case shown in Theorem
4.2.

5 Conclusions

In this paper we have proved that series-parallel digraphs can be drawn to three
dimensional space inside a box having volume O(n3). We have also shown that
if a series-parallel digraph is regular, then it can be drawn with volume O(n2).
Also this result can be improved, if the series-parallel digraph is regular and
each P -node in the corresponding structure tree has k2; k � 2 children, when it
is possible to draw inside a box having volume O(n).

It is still an open question, if an arbitrary series-parallel digraph can be
drawn with volume less that O(n3).
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