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Abstract

A synchronized extension system is a powerful and elegant rewriting formalism. In
this paper we show how it can be used to improve a well-known result concerning
monadic string rewriting systems. We give a new proof for the fact that if the
rewriting rules of a monadic string rewriting system are applied to the strings of a
regular set L, the set so obtained is also regular. We obtain the result with better
time and space bounds than the earlier proofs.

Keywords: formal languages, monadic string rewriting systems, synchronized
extension system.

1 Introduction and Preliminaries

A synchronized extension system [8,6,7] is a new powerful and elegant rewrit-
ing formalism which has proved to be useful in various kinds of problems in
formal language theory [8], and especially in \pure" systems [7]. In this pa-
per we show how synchronized extension systems can be used to improve a
well-known result concerning monadic string rewriting systems.

In [2] (see also [1]), Book and Otto show, among many other results, that if
the rewriting rules of a monadic string rewriting system are applied to the
strings of a regular set L, the set so obtained (the set of descendants of L) is
also regular (see [3] for historical remarks and related problems). Book and
Otto ([2]) prove the result by transforming the �nite automaton accepting
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L to the automaton accepting the set of descendants. The time and space
complexities of the original algorithm by Book and Otto are later improved
([4,3,5]). Esparza et al. ([5]) proveO(ps3) time and O(ps2) space bounds where
p is the number of rules in the monadic string rewriting system and s is the
number of states in the automaton accepting L. We show that synchronized
extension systems provide a new insight to the problem and allow a O(pr)
time and space solution, where p is as above and r is the number of the rules
in the grammar generating L.

1.1 String Rewriting Systems

We start by recalling some concepts from [2] related to string rewriting sys-
tems. A string rewriting system over an alphabet � (shortly, an STS over �)
is an non-empty subset T � �� � ��. Each element (�; �) 2 T is called a
(rewrite) rule; they are usually denoted by � ! �. The rewriting (or step
derivation) relation induced by T is the binary relation )T on �� given by

u)T v , u = u1�u2 ^ v = u1�u2 ^ �! � 2 T;

for all u; v 2 ��. The re
exive and transitive closure of )T , denoted by
�

)T ,
is called the derivation relation induced by T .

A (non-empty) derivation of u into v by T is a sequence of step derivations

u = u0

0�1u
00

0 )T u0

0�1u
00

0 = u1 = u0

1�2u
00

1 )T � � � )T u0

n�1�nu
00

n�1 = un = v;

where n � 1 and ri : �i ! �i 2 T for all 1 � i � n. Sometimes we will write
u

r1���rn===)T v to denote the fact that u is rewritten into v by the rules r1; : : : ; rn
used in this order (this notation is ambiguous because it does not take into
consideration the places where the rules are applied. However, we will use it
in conjunction with a derivation explicitly given as above in order to simplify
the notation and, therefore, the ambiguities will be avoided.)

For a language L over an alphabet � and an STS T over �, we denote by
��

T (L) the language

��

T (L) = fv 2 ��j9u 2 L : u
�

)T vg:

Amonadic STS (over an alphabet �) is an STS T having the property j�j > j�j
and j�j � 1, for all �! � 2 T .

In [2] it has been proved that for any non-deterministic �nite automaton A

and monadic STS T one can construct in polynomial time a non-deterministic
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�nite automaton B such that L(B) = ��

T (L(A)). In this paper, we give a new
proof for this result.

1.2 Synchronized Extension Systems

Synchronized extension systems (SE-systems, for short) are introduced in [8]
as 4-tuples G = (V; L1; L2; S), where V is an alphabet and L1, L2, and S are
languages over V . L1 is called the initial language, L2 the extending language,
and S the synchronization set of G. For an SE-system G, de�ne the binary
relations )G;r, )G;r� , )G;l and )G;l� over V � as follows:

{ u)G;r v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = xs ^ w = sy ^ v = xsy);
{ u)G;r� v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = xs ^ w = sy ^ v = xy);
{ u)G;l v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = sx ^ w = ys ^ v = ysx);
{ u)G;l� v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = sx ^ w = ys ^ v = yx).

In an SE-system G = (V; L1; L2; S), the words in S act as synchronization
words. They can be kept or neglected in the �nal result, and r, r�, l, and
l� are called (basic) modes of synchronizations. In what follows, we restrict
ourselves to the mode r�.

We say that an SE-system G = (V; L1; L2; S) is of type (p1; p2; p3) if the L1,
L2, and S are languages having the properties p1, p2, and p3, respectively. We
use the abbreviations f and reg for the properties of �niteness and regularity,
respectively.

A derivation u
�

)r� v is called an r�-derivation. The language of type r�

generated by an SE-system G = (V; L1; L2; S) is de�ned as

Lr�(G) = fv 2 V �j9u 2 L1 : u
�

)G;r� vg

(naturally, the other modes of synchronization as well de�ne their own classes
of languages, but we do not need them here.)

The following result is essential for this note.

Theorem 1 ([8]) For any SE-system G of type (reg; reg; f), the language
Lr�(G) is regular.

3



2 Left-to-Right Derivations in STS's

In this section we give technical results concerning the form of derivations in
�nite STS's. The concept of a \derivation from u on x within the decomposi-
tion u = u1xu2" is aimed to capture the idea that the subwords u1 and u2 are
not used (neither partially nor totally) in a derivation. Alternatively, one can
say that the derivation u = u1xu2

�

)T u1yu2 from u on x is obtained from the
(normal) derivation x

�

)T y by catenating to each step the word u1 to the left
and the word u2 to the right.

De�nition 2 Let T be a �nite STS over an alphabet �, u 2 �+ and x a
subword of u. A derivation from u on x within a decomposition u = u1xu2 is
de�ned inductively as follows:

{ if u = u1xu2 = u1x
0�x00u2 and �! � 2 T , then

u = u1xu2 = u1x
0�x00u2 )T u1x

0�x00u2

is a derivation on x;
{ if u = u1xu2

�

)T u1yu2 is a derivation on x and

u = u1yu2 = u1y
0�y00u2 )T u1y

0�y00u2

is a derivation on y (within the decomposition u = u1yu2), then

u = u1xu2
�

)T u1yu2 = u1y
0�y00u2 )T u1y

0�y00u2

is a derivation on x.

Now we are ready to de�ne left-to-right derivations of a �nite STS.

De�nition 3 Let T be a �nite STS over an alphabet �, u 2 �+, and let D
the derivation

D : u
r1���ri�1
===) u1�iu2

ri) u1�iu2
ri+1���rn
===) v:

Let i < j � n.

(1) The step j of D is said to be to the left of the step i if there is a decomposition
u1 = u0

1u
00

1 of u1 such that the derivation

u1�iu2 = u0

1u
00

1�iu2
ri+1���rj�1
====) xy

is on u0

1 or u00

1�iu2 and the step j (of D) is on x.
(2) The step j of D is said to be to the right of the step i if there is a decom-

position u2 = u0

2u
00

2 of u2 such that the derivation

u1�iu2 = u1�iu
0

2u
00

2

ri+1���rj�1
====) xy
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is on u1�iu
0

2 or u00

2 and the step j (of D) is on y.
(3) The step j of the derivation D is said to be dependent on the step i if it is

neither to the left nor to the right of the step i.
(4) The derivation D is called a left-to-right (right-to-left) derivation of u into

v if for every i, 1 � i < n, the step i+1 is not to the left (right) of the step
i.

The following lemma states that it is suÆcient to consider left-to-right deriva-
tions in �nite STS's.

Lemma 4 Let T be a �nite STS over an alphabet �. Then, for every deriva-
tion D of a word u into a word v one can e�ectively construct a left-to-right
derivation D0 of u into v. Moreover, the derivation D0 can be obtained by
changing only the order of steps in the original derivation D.

Proof. Let D be a derivation of u into v,

D : u
s
)T v;

where s = r1 : : : rn 2 T+.

De�ne inductively a sequence s0 = ri1 � � � rin, where i1; : : : ; in 2 f1; : : : ; ng are
pairwise distinct, as follows:

(i) Initially, set s0 := r1;
(ii) Assume that s0 is the sequence obtained by rearranging the subsequence

r1 � � � rk of s, where k < n;
(iii) Consider the rule rk+1 and the following possible cases:

(a) rk+1 is to the left of all rules in s0. Then, de�ne s0 = rk+1s
0;

(b) rk+1 does not depend on any rule in s0. Then, �nd the biggest j such
that rk+1 is to the right of s0(j) and insert rk+1 immediately after
s0(j) (that is, s0 := s0(1) � � � s0(j)rk+1s

0(j+1) � � � s0(p), where js0j = p);
(c) rk+1 depends on some rule in s0, and let j be the biggest index such

that rk+1 depends on s0(j). Then, insert rk+1 immediately after s0(j)
(as above).

The fact that D0 de�ned by s0 is a left-to-right derivation follows directly from
the construction above.

Example 5 Let T = fp1 : abb! ab; p2 : aba! bb; p3 : aa! a; p4 : bab! bbg
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Step 3

Step 4

Step 5

Step 1

Step 2

Fig. 1. The steps of the derivation D

be an STS over � = fa; bg. Consider the derivation

D : u = abaabbaabaaababb
p2)T abaabbaabaabbbb

p1)T abaabaabaabbbb

p3)T ababaabaabbbb

p2
)T abababbabbbb

p4
)T abababbbbbb = v

whose steps are pictorially presented in Figure 5.

It is easy to see that

{ the step 2 is to the left of the step 1;
{ the step 3 depends on step 2, and is to the left of the step 1;
{ the step 4 is to the right of the steps 2 and 3, but to the left of the step 1;
{ the step 5 is to the right of the steps 2 and 3, and depends on the steps 1

and 4.

The algorithm in the proof of Lemma 4 outputs

s0 := r1 (= p2)

s0 := r2r1 (= p1p2)

s0 := r2r3r1 (= p1p3p2)

s0 := r2r3r4r1 (= p1p3p2p2)

s0 := r2r3r4r1r5 (= p1p3p2p2p4):

The last value of s0 de�nes a left-to-right derivation D0 of u into v.

Remark 6 In [2], Book and Otto introduce the concept of a leftmost deriva-

6



tion for STS's. Let T be an STS over an alphabet �. A derivation step u)T v

is called a leftmost derivation step if the following hold:

(i) there is a rule �! � 2 T such that u = u1�u2 and v = u1�u2;
(ii) for every rule �0 ! �0 2 T such that u = u0

1�
0u0

2 we have
{ u1� is a proper pre�x of u0

1�
0, or

{ u1� = u0

1�
0 and u1 is a proper pre�x of u0

1, or
{ u1 = u0

1 and � = �0.

A derivation is called leftmost if each step of it is a leftmost derivation step.

Every two consecutive leftmost derivation steps have the property that the latter
one is not to the left of the �rst one (otherwise, (ii) is contradicted). Therefore,
every leftmost derivation is a left-to-right derivation, but the converse does
not hold (it is not diÆcult to construct a left-to-right derivation which is not
a leftmost derivation of the STS from Example 5).

As a conclusion, derivations of STS are not generally equivalent to leftmost
derivations.

3 The Case of Monadic STS

If the step j (using the rule rj : �j ! �j) of a derivation depends on a step i

(using the rule ri : �i ! �i), then �j uses, directly or indirectly, subwords of
�i. For instance, this is the case of the steps 3 and 5 in Example 5.

Left-to-right derivations of monadic STS have the interesting property that
whenever a step j depends on a step i then it uses the all right hand side of
the rule ri. This property is crucial for the results to be proved in this section.

Let G = (VN ; VT ; X0; P ) be a regular (right-linear) grammar without unit
productions (i.e., rules A ! B where A;B 2 VN), and let T be a �nite
monadic STS over VT . We consider the SE-system H = (V; L1; L2; S), where

{ V = VN [ VT ,
{ L1 = fX0g,
{ L2 = fA�jA! � 2 Pg [ f�A�AjA 2 VN ^ �! � 2 Tg,
{ S = VN [ f�AjA 2 VN ^ (9�)(�! � 2 T )g.

Then, H is an SE-system of type (f; f; f) and, from Theorem 1 it follows that
Lr�(H) is regular. We will prove that ��

T (L(G)) = Lr�(H) \ V �

T .

Theorem 7 Let G, T and H be as above. Then, ��

T (L(G)) = Lr�(H) \ V �

T .

7



Proof. A derivation in G,

X0 )G a1A1 )G � � � )G a1 � � � an�1An�1 )G a1 � � � an�1an;

is simulated in H by synchronized extensions to the right, that is

X0 )r� a1A1 )r� � � � )r� a1 � � � an�1An�1 )r� a1 � � � an�1an

(for some variables A1; : : : ; An�1).

The action of T on u = a1 � � � an is simulated at the time of generating u.
Assume that u is rewritten into v by the sequnce s = r1 � � � rm of rules of T ,
and let D be the derivation

D : X0

�

)G u
s
)T v:

By Lemma 4 we may assume that the derivation of u into v is left-to-right.
Then, D can be simulated by a derivation in H using the following remarks:

(1) if u = u1�u2�
0u3 and r : �! �; r0 : �0 ! �0 2 T , then the derivation

X0

�

)G u = u1�u2�
0u3

rr0

=)T u1�u2�
0u3

can be simulated in H by

X0

�

)r� u1�A

)r� u1�A

�

)r� u1�u2�
0B

)r� u1�u2�
0B

�

)r� u1�u2�
0u3;

for some variables A and B;
(2) if u = u1u2�u3u4, r : � ! �, �0 = u2�u3 and r0 : �0 ! �0 2 T , then the

derivation

X0

�

)G u = u1u2�u3u4
r
)T u1u2�u3u4

r0

)T u1�
0u4

can be simulated in H by

X0

�

)r� u1u2�A

)r� u1u2�A

�

)r� u1u2�u3B

)r� u1�
0B

�

)r� u1�
0u4;

8



(3) since the right hand side of each rule in T is either a symbol or the empty
word, every two rules r and r0 that are applied successively can be related
either as in (1) or as in (2).

Therefore, every derivation in G from X0 to a word u 2 V �

T followed by a
derivation in T from u into a word v can be simulated by a derivation in H

from X0 into v.

Conversely, it is trivial to see that every derivation in H leading to a word
v 2 V �

T is a combination between a derivation in G fromX0 into a word u 2 V �

T

followed then by a derivation in T from u into v.

As a conclusion, ��

T (L(G)) = Lr�(H) \ V �

T .

Corollary 8 For every right-linear grammar G = (VN ; VT ; X0; P ) and every
monadic STS T over VN , the language ��

T (L(G)) is regular.

As already mentioned, Esparza et al. ([5]) prove the bounds O(ps3) andO(ps2)
for time and space, respectively, for the algorithm constructing the �nite au-
tomaton accepting the descendants of a given regular set.

Consider now the complexity of our construction. To the extending language
L2 we take a string for each production in G, and a string for each production
in G and a rule in T . Hence, the cardinality of L2 is O(j P j � j T j). To the
synchronization set S we take a string for each nonterminal in G, and a string
for each nonterminal in G and a left hand side of a rule in T . Thus, the sum
of the cardinalities of L2 and S is O(j P j � j T j). This gives the time and
space bounds for our construction.

Theorem 9 Let G and T be as above. Then, an SE-system H of type (f; f; f)
simulating the computation of ��

T (L(G)) can be constructed in O(j P j � j T j)
time and space.

Theorem 9 gives the complexity of constructing H. Note that the complexity
is dominated by the size of the output; the algorithm itself is straightforward.
Implementing the computation de�ned by H is also possible to perform very
eÆciently. Namely, we can store VN , VT , S, and T in arrays, and maintain the
current string in a stack. A simulation step simply rewrites the right hand side
end of the current string.

4 Final Remarks

Bouajjani et al. ([3]) motivate their study from a pedagogical point of view: the
algorithm constructing the �nite automaton accepting the set of descendants

9



can be used as a uniform basis for several independent algorithms for standard
problems on context-free grammars. The pedagogical relevance is obvious also
in the case of SE-systems. Namely, as shown above and in [6{8], SE-systems
are notationally simple, but yet very powerful formalism which can simulate
various other formalisms of theoretical computer science.
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