ON SE-SYSTEMS AND MONADIC
STRING REWRITING SYSTEMS

F.L. TIPLEA AND ERKKI MAKINEN

DEPARTMENT OF COMPUTER AND
INFORMATION SCIENCES

UNIVERSITY OF TAMPERE

REPORT A-2000-15

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER AND
INFORMATION SCIENCES

SERIES OF PUBLICATIONS A
A-2000-15, NOVEMBER 2000

ON SE-SYSTEMS AND MONADIC
STRING REWRITING SYSTEMS

F.L. TIPLEA AND ERKKI MAKINEN

University of Tampere

Department of Computer and Information Sciences
P.O.Box 607

FIN-33014 University of Tampere, Finland

ISBN 951-44-4987-8
ISSN 1457-2060

On SE-Systems and Monadic String Rewriting Systems

Ferucio Laurentiu Tiplea!

Faculty of Computer Science, “Al.I. Cuza” University of lasi, 6600 lasi, Romania

Erkki Mé#kinen 2

Department of Computer and Information Sciences, P.O. Box 607,
FIN-33014 University of Tampere, Finland

Abstract

A synchronized extension system is a powerful and elegant rewriting formalism. In
this paper we show how it can be used to improve a well-known result concerning
monadic string rewriting systems. We give a new proof for the fact that if the
rewriting rules of a monadic string rewriting system are applied to the strings of a
regular set L, the set so obtained is also regular. We obtain the result with better
time and space bounds than the earlier proofs.

Keywords: formal languages, monadic string rewriting systems, synchronized
extension system.

1 Introduction and Preliminaries

A synchronized extension system [8,6,7] is a new powerful and elegant rewrit-
ing formalism which has proved to be useful in various kinds of problems in
formal language theory [8], and especially in “pure” systems [7]. In this pa-
per we show how synchronized extension systems can be used to improve a
well-known result concerning monadic string rewriting systems.

In [2] (see also [1]), Book and Otto show, among many other results, that if
the rewriting rules of a monadic string rewriting system are applied to the
strings of a regular set L, the set so obtained (the set of descendants of L) is
also regular (see [3] for historical remarks and related problems). Book and
Otto ([2]) prove the result by transforming the finite automaton accepting

I B-mail:fitiplea@infoiasi.ro
2E-mail: em@Qcs.uta.fi. Work supported by the Academy of Finland (Project
35025).

Preprint submitted to Elsevier Science 20 November 2000

L to the automaton accepting the set of descendants. The time and space
complexities of the original algorithm by Book and Otto are later improved
([4,3,5]). Esparza et al. ([5]) prove O(ps?®) time and O(ps?) space bounds where
p is the number of rules in the monadic string rewriting system and s is the
number of states in the automaton accepting L. We show that synchronized
extension systems provide a new insight to the problem and allow a O(pr)
time and space solution, where p is as above and r is the number of the rules
in the grammar generating L.

1.1 String Rewriting Systems

We start by recalling some concepts from [2] related to string rewriting sys-
tems. A string rewriting system over an alphabet ¥ (shortly, an STS over X)
is an non-empty subset 7' C ¥* x ¥*. Each element («,3) € T is called a
(rewrite) rule; they are usually denoted by a — (. The rewriting (or step
derivation) relation induced by T is the binary relation =, on X* given by

U=V < u=uqus N v=ufus N a— T,

for all u,v € ¥*. The reflexive and transitive closure of =7, denoted by =1,
is called the derivation relation induced by T'.

A (non-empty) derivation of u into v by T is a sequence of step derivations
! n ! n !/ n ! n
U = Uy Uy =71 U1y = Uy = UyQaUy =7 === =7 Upy_1PBpUy, 1 = Up =V,

where n > 1 and r; : a; — §; € T for all 1 <7 < n. Sometimes we will write
u == v to denote the fact that u is rewritten into v by the rules ry,...,r,
used in this order (this notation is ambiguous because it does not take into
consideration the places where the rules are applied. However, we will use it
in conjunction with a derivation explicitly given as above in order to simplify

the notation and, therefore, the ambiguities will be avoided.)

For a language L over an alphabet X and an STS T over ¥, we denote by
A%(L) the language

An(L)={veX*|Fue L: urv}
A monadic STS (over an alphabet) is an STS T having the property |a| > |5|
and |[B| <1, foralla — g e€T.

In [2] it has been proved that for any non-deterministic finite automaton A
and monadic STS T one can construct in polynomial time a non-deterministic

finite automaton B such that L(B) = A% (L(A)). In this paper, we give a new
proof for this result.

1.2 Synchronized Extension Systems

Synchronized extension systems (SE-systems, for short) are introduced in [§]
as 4-tuples G = (V, Ly, Lo, S), where V' is an alphabet and Ly, Lo, and S are
languages over V. L, is called the initial language, Ly the extending language,
and S the synchronization set of G. For an SE-system G, define the binary
relations =, =q,—, =q; and =g ;- over V* as follows:

)

~u=g,viff (Gwe Ly)(Is€ S)Fr,y e V) (u=axs A w=sy N\ v=uxsy);
—u=g—-viff (Gw e Ly)(Is€ S)Fz,y e V) (u=2s N w=sy A v=ury);
).
)

—u=gyviff (Gw e Ly)(Is € S)(Fz,y e V*)(u=sz AN w=ys A v=ysz),
—u=gy- viff (Jw e Ly)(Is € S)(Fz,y e V)(u=sz N w=ys A v=yz).

»

In an SE-system G = (V| Ly, Ly, S), the words in S act as synchronization
words. They can be kept or neglected in the final result, and », r—, [, and
[~ are called (basic) modes of synchronizations. In what follows, we restrict
ourselves to the mode r~.

We say that an SE-system G = (V, Ly, L, S) is of type (p1,p2,ps3) if the Ly,
Ly, and S are languages having the properties py, ps, and ps3, respectively. We
use the abbreviations f and reg for the properties of finiteness and regularity,
respectively.

A derivation u =,- v is called an r~-derivation. The language of type r~
generated by an SE-system G = (V, L1, L, S) is defined as

L"(G)={veV*ue L : u=g,- v}

(naturally, the other modes of synchronization as well define their own classes
of languages, but we do not need them here.)

The following result is essential for this note.

Theorem 1 ([8]) For any SE-system G of type (reg,reg, f), the language
L™ (G) is regular.

2 Left-to-Right Derivations in STS’s

In this section we give technical results concerning the form of derivations in
finite STS’s. The concept of a “derivation from » on z within the decomposi-
tion u = ujzus” is aimed to capture the idea that the subwords u; and u, are
not used (neither partially nor totally) in a derivation. Alternatively, one can
say that the derivation u = uy2zus =7 ui1yus from v on z is obtained from the
(normal) derivation x =7 y by catenating to each step the word u; to the left
and the word us to the right.

Definition 2 Let T be a finite STS over an alphabet X, u € ¥ and x a
subword of u. A derivation from u on x within a decomposition u = ujzus is
defined inductively as follows:

—if u = urrug = wir'ax"us and a« — B €T, then
U= u Uy = w1 ax’uy =7 w1’ " us

s a derivation on x;
. * . . .
— if u = urxus =7 U YU @S a derivation on x and

U= uryus = wiy'ay’us =7 ury' By us
is a derivation on y (within the decomposition u = ujyus), then
U = Uy LUy =7 U Yy = ury oy uy =7 ury By us
s a derivation on x.

Now we are ready to define left-to-right derivations of a finite STS.

Definition 3 Let T be a finite STS over an alphabet ¥, u € X7, and let D
the derivation

D u == uaius 25wy Biug =8 .
Let 1 < 5 <n.
(1) The step j of D is said to be to the left of the step i if there is a decomposition
uy = ujuy of uy such that the derivation

w1 Biuy = uyuy Biug ===y
is on u} or u|B;us and the step j (of D) is on x.
(2) The step j of D is said to be to the right of the step i if there is a decom-
position uy = ujuy of uy such that the derivation

1o Tit1 T
u1 Bity = Uy BiugUy ——— TY

is on uyfiul, or uly and the step j (of D) is on y.

(8) The step j of the derivation D is said to be dependent on the step i if it is
neither to the left nor to the right of the step 1.

(4) The derivation D is called a left-to-right (right-to-left) derivation of u into
v if for every i, 1 < i < n, the step i+ 1 is not to the left (right) of the step
i

The following lemma states that it is sufficient to consider left-to-right deriva-
tions in finite STS’s.

Lemma 4 Let T be a finite STS over an alphabet 2. Then, for every deriva-
tion D of a word u into a word v one can effectively construct a left-to-right
derivation D' of u into v. Moreover, the derivation D' can be obtained by
changing only the order of steps in the original derivation D.

Proof. Let D be a derivation of u into v,
D: uqpo,
where s =r;...7, € TT.

Define inductively a sequence s’ = r;, ---r; , where iy,...,i, € {1,...,n} are
pairwise distinct, as follows:

(i) Initially, set s :=ry;
(ii) Assume that s’ is the sequence obtained by rearranging the subsequence
ry---1, of s, where k < n;
(iii) Consider the rule ry; and the following possible cases:
(a) 7y is to the left of all rules in s'. Then, define s’ = ry15';
(b) 741 does not depend on any rule in s’. Then, find the biggest j such
that rg,q is to the right of §'(j) and insert 7, immediately after
s'(j) (that is, s" := (1) --- §'(j)res18' (G +1) - - §'(p), where |§'| = p);
(¢) 7k+1 depends on some rule in s'; and let j be the biggest index such
that 74,1 depends on s'(j). Then, insert r,; immediately after s'(j)
(as above).

The fact that D’ defined by s’ is a left-to-right derivation follows directly from
the construction above.

Example 5 Let T = {p; : abb — ab,ps : aba — bb, p3 : aa — a,py : bab — bb}

Step 1

I Eed |
Step 2 L]

I E=d E=d |
Step 3 L]

L EE B]
Step 4 L]
Step 5 %

LR B

Fig. 1. The steps of the derivation D
be an STS over ¥ = {a,b}. Consider the derivation

D : u = abaabbaabaaababb B abaabbaabaabbbb
2 abaabaabaabbbb
28 ababaabaabbbb
221 abababbabbbb
2L abababbbbbb = v

whose steps are pictorially presented in Figure 5.
It is easy to see that

— the step 2 is to the left of the step 1;

— the step 3 depends on step 2, and is to the left of the step 1;

— the step 4 is to the right of the steps 2 and 3, but to the left of the step 1;

— the step 5 is to the right of the steps 2 and 3, and depends on the steps 1
and 4.

The algorithm in the proof of Lemma 4 outputs

s =nr

S = ToT

The last value of s' defines a left-to-right derivation D' of u into v.

Remark 6 In [2], Book and Otto introduce the concept of a leftmost deriva-

tion for STS’s. Let T be an STS over an alphabet 3. A derivation step u =1 v
1s called a leftmost derivation step if the following hold:

(i) there is a rule « — [€ T such that u = uyaus and v = uiPus;
(ii) for every rule o — (' € T such that u = u\a’ul, we have

- w18 a proper prefic of uia/, or

- wa = ujd and uy is a proper prefix of ul, or

—uy =u} and o = d/.

A derivation is called leftmost if each step of it is a leftmost derivation step.

Every two consecutive leftmost derivation steps have the property that the latter
one is not to the left of the first one (otherwise, (ii) is contradicted). Therefore,
every leftmost derivation is a left-to-right derivation, but the converse does
not hold (it is not difficult to construct a left-to-right derivation which is not
a leftmost derivation of the STS from Example 5).

As a conclusion, derivations of STS are not generally equivalent to leftmost
derivations.

3 The Case of Monadic STS

If the step j (using the rule r; : a; — ;) of a derivation depends on a step ¢
(using the rule r; : o; — ;), then «; uses, directly or indirectly, subwords of
B;. For instance, this is the case of the steps 3 and 5 in Example 5.

Left-to-right derivations of monadic STS have the interesting property that
whenever a step j depends on a step ¢ then it uses the all right hand side of
the rule r;. This property is crucial for the results to be proved in this section.

Let G = (Vn,Vr, X0, P) be a regular (right-linear) grammar without unit
productions (i.e., rules A — B where A, B € Vy), and let T" be a finite
monadic STS over V. We consider the SE-system H = (V, Ly, Lo, S), where

- V=VyUVrp,

o Ll:{XO}a

Lo —{ABJA— B € PYU{aABAJAEVy A a— BET),
- S:VNU{QA|A€VN A (35)(0&—)56’.?)}

Then, H is an SE-system of type (f, f, f) and, from Theorem 1 it follows that
L™ (H) is regular. We will prove that AL(L(G)) = L™ (H)N V.

Theorem 7 Let G, T and H be as above. Then, A% (L(G)) = L™ (H)NV}.

Proof. A derivation in G,
Xo=c A1 =g =g a1 Op_1An_1 =g a1 Ap_10y,
is simulated in H by synchronized extensions to the right, that is
Xo=r A1 = - = A1 Q1 Ap_1 =— Q1 Q10
(for some variables Ay, ..., A,_1).

The action of T on u = a;---a, is simulated at the time of generating wu.
Assume that u is rewritten into v by the sequnce s = rq---r,, of rules of T,
and let D be the derivation

D X02*>Gu:S>TU.

By Lemma 4 we may assume that the derivation of w into v is left-to-right.
Then, D can be simulated by a derivation in H using the following remarks:

(1) if u = yyaugad'ug and r: a — B,7' : &/ — ' € T, then the derivation
* / rr’ /
Xo = ¢ U = urauo uz =7 u1SusS us

can be simulated in H by

Xo =,— ujaA
=,- 1A
=.- ufusd’B
=, u1fux'B

=*>r U15U25'U3,

for some variables A and B;
(2) if u = wjususuy, 7 : @ — B, & = usPuz and ' : o/ — [’ € T, then the
derivation

£ r T"
Xo =6 U = uwusuzuy =1 Uz fusuy =1 w3 ug

can be simulated in H by

Xo =,— ujugaA
=,- U USA
= .- ujugBusB
=,- u1f'B
=*>r uy B'ug;

(3) since the right hand side of each rule in T is either a symbol or the empty
word, every two rules r and 7’ that are applied successively can be related
either as in (1) or as in (2).

Therefore, every derivation in G from X, to a word u € V followed by a
derivation in 7" from wu into a word v can be simulated by a derivation in H
from X into v.

Conversely, it is trivial to see that every derivation in H leading to a word
v € V7 is a combination between a derivation in G from X into a word u € V
followed then by a derivation in 7" from u into v.

As a conclusion, A%(L(G)) = L™ (H)NVj.

Corollary 8 For every right-linear grammar G = (Vy, Vp, Xo, P) and every
monadic STS T over Vy, the language A%(L(G)) is regular.

As already mentioned, Esparza et al. ([5]) prove the bounds O(ps®) and O(ps?)
for time and space, respectively, for the algorithm constructing the finite au-
tomaton accepting the descendants of a given regular set.

Consider now the complexity of our construction. To the extending language
Ly we take a string for each production in GG, and a string for each production
in G and a rule in 7. Hence, the cardinality of Ly is O(| P | - | T |). To the
synchronization set S we take a string for each nonterminal in GG, and a string
for each nonterminal in G' and a left hand side of a rule in 7'. Thus, the sum
of the cardinalities of Ly and S is O(| P | - | T |). This gives the time and
space bounds for our construction.

Theorem 9 Let G and T be as above. Then, an SE-system H of type (f, f, f)
simulating the computation of AL(L(G)) can be constructed in O(| P |- | T |)
time and space.

Theorem 9 gives the complexity of constructing H. Note that the complexity
is dominated by the size of the output; the algorithm itself is straightforward.
Implementing the computation defined by H is also possible to perform very
efficiently. Namely, we can store Vi, Vr, S, and T in arrays, and maintain the
current string in a stack. A simulation step simply rewrites the right hand side
end of the current string.

4 Final Remarks

Bouajjani et al. ([3]) motivate their study from a pedagogical point of view: the
algorithm constructing the finite automaton accepting the set of descendants

can be used as a uniform basis for several independent algorithms for standard
problems on context-free grammars. The pedagogical relevance is obvious also
in the case of SE-systems. Namely, as shown above and in [6-8], SE-systems
are notationally simple, but yet very powerful formalism which can simulate
various other formalisms of theoretical computer science.

References

[1] R.V. Book, F. Otto, Cancellation rules and extended word problems. Inform.
Process. Lett. 20 (1985), 5-11.

[2] R.V. Book, F. Otto, String Rewriting Systems. Springer-Verlag, 1993.

[3] A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems,
P. Wolper, An efficient automata approach to some problems on context-free
grammars. To appear in Inform. Process. Lett.

[4] J. Esparza, P. Rossmanith, An automata approach to some problems on
context-free grammars. In Foundations of Computer Science: Potential, Theory,
Cognition, Lecture Notes in Computer Science 1337, 1997, 143-152.

[56] J. Esparza, P. Rossmanith, S. Schwoon, A uniform framework for problems on
context-free grammars. Bull. EATCS 72 (2000), 169-177.

[6] F.L. Tiplea, E. Mikinen, A Note on synchronized extension systems. To appear
in Inform. Process. Lett.

[7] F.L. Tiplea, E. Mékinen, A note on SE-systems and regular canonical systems.
Dept. of Computer and Information Sciences, University of Tampere, Tech.
Report A-2000-14, October 2000. Submitted.

[8] F.L. Tiplea, E. Mé&kinen, C. Apachite. Synchronized extension systems. To
appear in Acta Inform.

10

