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Abstract

Motivation: Polyproline type II stretches are rather rare among proteins, and, therefore,
it is a very challenging task to try to find them computationally. In the present study our
aim was to consider especially the preprocessing phase, which is important for any
machine learning method. Preprocessing includes selection of relevant data from Protein
Data Bank and investigation of learnability properties. These properties show whether
the material is suitable for neural network computing. In addition, algorithms in
connection with data selection and other preprocessing steps were considered.
Results: We found that feedforward perceptron neural networks were appropriate for the
prediction of polyproline type II as well as relatively effective in this task. The problem is
very difficult because of high similarity of the two classes present in the classification.
Still neural networks were able to recognize and predict about 75 % of secondary
structures.
Contact: Markku.Siermala@uta.fi
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Introduction

The present study considered preprocessing tasks necessary to predict secondary
structures of polyproline type II (PPII) with neural networks. Proteins are one of the most
essential compounds in nature. Polyproline II structures have quite rare occurrences and
are therefore difficult to detect. As known, an amino acid sequence forms the primary
structure, and a secondary structure as well also other higher order structures are
composed of energetically and spatially favourable elements. Obviously, PPII secondary
structures had not yet been tried to predict computationally. Neural networks are effective
tools, which can recognize complicated relations. They have recently been applied also in
bioinformatics, for example Cai and Chan (1995); Fariselli and Casadio (1996); Frishman
and Argos (1997); Hanke and Reich (1996); Katz et al. (1992); Petersen et al. (1990);
Rost (1997). In fact, preprocessing, especially in terms of neural networks, has to be
executed very carefully and effectively so that the best possible results can be gained in
the final prediction.
  First, we briefly describe how the sequence data was chosen. For the alignment of
sequences the algorithm of Needleman and Wunsch (1970) was employed in a
conventional way. We analyzed the time complexity of this algorithm. Protein three-
dimensional structures were taken from Protein Data Bank (PDB). Two windowing
techniques of sequences were treated and tested to localize occurrences for the PPII class.
These occurrences were used as elements in learning and test sets of neural networks.
The distributions of the PPII class and non-PPII class were scrutinized, and their
relatedness was calculated using Hamming distance. Also learnable relationships were
studied based on the entropies according to Swingler (1996). Finally, results of our neural
network predictions were surveyed and discussed in relation to the preprocessing.

Selection of polyproline II data for preprocessing

The structural data was acquired from the Protein Data Bank (see ref. PDB), which
included data of 8165 macromolecules at the moment of the beginning of the current
research, in the autumn 1998. Cases of DNA and RNA were purified and after that there
were 6821 macromolecules to be considered. Then cases with the resolution worse than
2.5 Å were deleted. Also theoretical models were discarded. These diminished the data
down to 5568 macromolecules. The PDB contains lots of identical proteins. For the
entries with identical protein sequences only the one with the highest resolution was
chosen. Thereafter, there were 2937 macromolecules.
  Then the data was divided into protein families to perform identity comparisons
between them. Altogether, 506 protein families were found. Their sizes were very
varying from those of a single protein to the largest of 400 proteins. The selection
program as well as other software were implemented in C++.

Identity comparison of proteins

Next, all the sequences within the families were compared to each other. Since a
sequence length was about 1000 amino acids, two-dimensional matrices used in the
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alignment computation required approximately one million cells. Consequently, this
computational step was somewhat time-consuming.
  Needleman and Wunsch (1970) presented an algorithm for the sequence alignment to
find the most similar subsequences. Although the method is familiar, we present it here
so that the following complexity analysis is possible to understand. The method is formed
on the basis of dynamic programming, which markedly reduces computation compared
with a naïve technique of exhausting search. One protein sequence is represented by the
rows of a matrix and the other by the columns. Each amino acid of either protein handles
one row or column. When the sequences have been aligned, an identity value between
two sequences can be computed. The algorithm presented in the following is an improved
variation of Needleman and Wunsch, which takes advantage of similarity quantities from
the PAM250 table of Mount (1996).
  Firstly, matrix M is constructed, which includes n rows and m columns. It is filled with
similarity values, which map the relatedness of amino acids. At the same time, path
matrix P is generated. Each element of M will contain the cumulative sum of the
preceding path. When the lowest row is reached, there is one or more maximal values t at
the lowest row or rightmost column. Path matrix P shows how a route has been
determined. It also shows jumps, i.e. deletions and insertions in the alignment of
sequences. The maximal t is searched for at the third step, and at the fourth one, an
identity value is computed. Cost is calculated with punishment a+bl, in which a is initial
cost of a jump, b cost of continuation, and l its length. A jump emerged if in the
subtraction of two successive positions (p1, p2) and (r1, r2) there will occur a value greater
than 1 in either of the new positions. In the tests run cost a was equal to 4 and b equal to
2.

Algorithm 1 Alignment of sequences (Needleman and Wunsch).

1. Matrix M is initialized by similarity values from PAM table.
2. Rows i=1,..,n are considered in order. At every row, columns j=1,… ,m are visited

and value M(i,j) = M(i,j) + max(M(i-1,..j-1), M(..i-1,j-1)) is computed, where the
two last terms represent the maximum over columns from 1 to j-1 of row i-1 and
the maximum over rows from 1 to i-1 of column j-1. If a jump exceeds one
column or row, punishment value a+lb is added to the preceding value.  Value
(p1, p2) is stored to element P(i,j), where the maximum is located.

3. The maximal t is searched for from the lowest row or rightmost column. Such a
path is the best of all.

4. Identity value I is equal to q/s, where q is equal to a number of identical amino
acid pairs of the path and s is equal to a number of elements of the path.

Next, we present the analysis of time complexity of the algorithm. At the first step there
are m×n elementary operations for each element of the matrix. Let us assume that m is
less than n. Since each element is visited once, the time complexity of the first step is
O(n2).
  The second step incorporates the largest computational load of the algorithm. At every
row m-1 operations are accomplished, and there exist n–1 rows. In order to compute the
updating of M(i,j), 1+2+… +(m-1) operations, which is equal to (m-1)m/2, are
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accomplished, since there are m-1 columns at every row. Altogether, there are (n-1) (m-
1)m/2 operations. Correspondingly, when the operations are counted column by column,
there are (m-1)(n-1)n/2 operations. By summing up these two results and by simplifying
it a little, we obtain (n-1)(m-1)(m+n)/2. By assuming that m is less than or equal to n, it is
ultimately gained that

.)1(
2

))(1)(1( 2 nnnmmn −≤+−−

From this inequality we obtain an upper bound of the time complexity to be equal to
O(n3). The lower bound is correspondingly Ω (m3) according to the assumption given
above. There exist faster approximative implementations, which apply the Monte Carlo
method, i.e. a solution is found at great probability, but not with entire certainty.
  Large families caused problems, since their computing became so time-consuming.
Consequently, two largest families were compelled to divide into parts. Otherwise, the
largest family of over 400 members would have required a run time of more than 10 days
for a PC. The average identity was 30 – 40 %. If an identity value was above 65 %, the
resolutions of the sequence pair was compared, and the one with the better resolution was
kept, but the other rejected. The high threshold of 65 % was applied to obtain data
sufficiently. At the beginning there were 2937 proteins, and after the identity comparison
1847 proteins were accepted.

Use of structure files

The DSSP method of Kabsch and Sander (1983), which defines secondary structures
from atom coordinates, is based on pattern recognition. Since our final aim was to use
machine learning methods, neural networks, we sampled 10 % of the ultimate material
after the previous preprocessing to a test set and put the rest 90 % to the learning set.
Thus, 10 disjoint test sets were obtained.
   Two windowing techniques were tested to determine whether a part of a sequence has
PPII structure or not. The purpose of the windowing was to choose sequences for neural
networks.  The location of a PPII structure is considered in terms of the middle position
of the window (Figure 1). Ruggiero et al. (1993) have suggested a window length of 13
amino acids in secondary structure predictions.  Since a number of input nodes in a neural
network increases with 20 while increasing the window length with 1, long window
lengths were not feasible. The nominal values of amino acids were encoded so that there
were 20 input nodes for every element of the window. Exactly one of them is equal to 1,
while the others are equal to 0. That one points out which amino acid is present at the
current position. After various experiments, we tested exclusively window lengths of 7
and 13, which gave input vectors of either 140 or 260 bits. The first windowing technique
(Figure 1) produced more than 8000 valid sequences for neural networks.
Correspondingly, the second technique yielded more than 14000 items. When we used
feedforward multilayer perceptron networks with backpropagation learning, we needed
approximately
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cases to the learning set, where l is the length of the window, p is a number of hidden
nodes and there are two output nodes in the three-layer network employed. The number
of output nodes is equal to the number of the classes. The principle of winner taking all
was employed.
   In order to search for PPII structures we applied methods of Adzhubei and Sternberg
(1993). The first condition for structures is set to virtual angle α, which is like a sieve
with the task to prune such candidates, whose angles φ and ψ  are outside a predefined
area or which are not left-handed. Angle α was computed as follows, where i is the index
of an amino acid.

PPII structures appeared round the point α=-110°, φ=-75° and ψ =145° in particular.
Geometrically speaking, these angles define a structure, where there are three amino
acids per cycle. This forms a structure triangularly repeating in the space. Regularity of a
structure was computed with φ and ψ  angles using the subsequent equation when n is the
number of amino acids in a structure.

where

Regularity is an average distance formed with successive angles φ and ψ . Structures were
searched for with the following algorithm.
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Algorithm 2 Searching for structures (parameter: size)

while there exist protein molecules do
  while there exist amino acids do
    if lower bound < α < upper bound do
      the next amino acid is taken under consideration

while lower bound < α < upper bound do
  the next amino acid is considered
end while
if there are more successive structures than value of size then
  regularity computing of the chain (D < 50) with above-mentioned formula
if structure regular and there are more amino acids in the structure than value of
size then

    regularity of every part is checked
    if regularity D of every part < 50 then
      amino acids of part are marked PPII active
    end if
  end if
end if

          end if
          the next amino acid is considered
        end while
        windowing of protein (Algorithm 3)
        the next protein is considered
      end while

The parameter ‘size’ defines how many suitable (in terms of the angles) amino acids are
required for the regularity condition. Sizes of 2 and 3 were tested. The latter was
suggested by Azhubei and Sternberg. The time complexity is O(n2), but in practice its
running time is short, because PPII structures are rare comprising only 1.3 % of the
studied proteins.
   The next algorithm was used to store every case that belonged to class PPII and every
kth case that belonged to class non-PPII. All non-PPII cases were not included, since
there were much more non-PPII cases than PPII cases. The time complexity of this
algorithm is O(n).
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Algorithm 3 Windowing of protein

window is set at the beginning of protein so that it starts from the position of the first
amino acid of the protein
while end of protein is not encountered do
  if there appears PPII structure in the middle of window then
    sequence encountered within window is stored to PPII file
  else
    if this is the next kth non-PPII then
      sequence within window is stored to non-PPII file
    end if
  end if
  window is moved one amino acid forward
end while

Properties of the material

The beginning of a structure was determined to be at the position of the amino acid i that
had angle ψ  with satisfied regularity conditions at position i-1. The end of the structure
was at the position of amino acid k that had angle φ with satisfied regularity condition at
the position k+1 (see Figure 2).
   As mentioned, window lengths 7 and 13 amino acids were widely tested (see also
Siermala et al. 2000), and the latter was found to be better choice. For the former
parameter ‘size’ there was only 1.24 % of the PPII frequency in proteins on average for
the size equal to 3 and about 3 % for the size equal to 2. Out of 1849 proteins 862
contained PPII structures. Since the size of 3 produced better results, only these results
are reported in the subsequent text. The first windowing technique (Figure 1) gave 6950
PPII structures and the second technique 11000 PPII structures. The first windowing
technique generated better results than the second one. Correspondingly, the window
length of 13 evolved better results than 7. Therefore, only the combination of the best
choices is considered in the following. Next, we scrutinized frequencies of different
amino acids in our data selected. Amino acids G, H, L, N, P, S, V, and Y interacted with
PPII, e.g. P occurred very frequently in it, but G rather infrequently.
   In Table 1 there are frequency ratios between the PPI class and the non-PPII class when
the latter was decreased to the size of the former. Decreasing was accomplished by
sampling (as described later) so that the distribution of amino acids within the non-PPI
class was kept unchanged. The decreasing was, however, necessary, since the great
majority of cases were in the latter class. The column of proline P in Table 1 is essential
for PPII, and thus its ratios are high. Especially the 7th row is important, because it is the
middle of the window.
   The classes of PPII and non-PPII structures were found to be rather similar and
therefore we computed Hamming distances between and within the classes to describe
the similarity property. Hamming metric was computed with the equation
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for bit vectors, where xi and yi are the ith variables from the opposite classes. We
computed Hamming distances for window lengths 5, 7, and 13, and results of the last
case are presented in Table 2. It is difficult to separate between the two classes, because
the mode (distance 8) of the PPII class is as far as in the non-PPII class. On the other
hand, there are more cases within the PPII class in connection with small (less than 8)
distances than within the non-PPII class. Corresponding results were obtained when we
applied the PAM250 comparison table and its relatedness values. Relatedness between
two sequences was computed by comparing amino acids at the same positions of the two
sequences. According to such pairs their relatedness values were summed up as the
similarity value of the two sequences. The relatedness values of our data are in Figure 3.
Again, it is seen that the situation does not unfortunately differ essentially between the
classes and within the PPII class.
   Swingler (1996) has presented how learnability of data can be investigated with
entropies. The method is based on Shannon’s information theory. In our data there were
8500 cases, which were randomly distributed to learning and test sets for neural
networks. There were no identical cases within either class, but between the classes there
were 20 cases in both classes. Thus, there were 8460 sequences only in either one or the
other class. Let X be the input cases and Y the output cases. Their entropy values are
calculated according to

in which pi is the probability of case i and log is the natural logarithm. For the input
vectors of a neural network the probability is equal to 1/8500 that a case occurs only in
one of the classes, and correspondingly 2/8500 that it occurs in both. Thus, we obtained
an entropy value H(X) of X which was equal to approximately 9.01. There are two output
classes (PPII and non-PPII) and their probabilities were 1/2. Consequently, an entropy
value H(Y) was obtained for both classes as log 2, which is approximately 0.69.
   Conditional entropy deals with entropy of class ui, when it belongs to input vj. This is
defined by

where p(ui,vj) means the probability that both class ui and case vj occur. If an element
appears only in one of the classes, p(ui,vj) is equal to p(vj), and the value of log expression
is then equal to 0. When an element occured in both classes (20 pieces) and there were
always double such elements, we got

and
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All over, there were 40 such cases. Thus, a conditional entropy value of approximately
0.0033 was obtained. Further, we achieved

,0048.0
)(

)( ≈
YH
XYH

which is near 0 at the interval of (0,1). This means highly learnable data by Swingler
(1996). Mutual information is defined with the subsequent formula.

)()();( YXHXHYXI −=

This is equivalent to

).()();();( XYHYHXYIYXI −==

Thus we obtained

.69.0003.02 log);( ≈−=XYI

Ultimately, according to Swingler (1996) when a ratio of

95.0
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);( ≈
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is near the upper bound 1 of the interval (0,1), the material is highly learnable.
   Scarcity of PPII cases in the material was a hard problem for neural networks and
obviously also for any detection and prediction technique. We chose the most “secure”
means, in the sense of neural network computation, to exceed this difficulty by
decreasing the non-PPII class remarkably. The non-PPII class was decreased with
systematic and random sampling to modify it along with the uniform distribution jointly
with the PPII class. Nevertheless, our sampling technique guarantees that the similar
distribution inside the non-PPII class was preserved in spite of decreasing.

Neural network tests and their results

We accomplished wide test series by varying several parameters (Siermala et al. 2000),
part of which has already been described above. However, in this context it is reasonable
and sufficient to present the most successful parameter combinations. On the other hand,
differences between results of several combinations were often rather small. Altogether
we tested 32 networks of different topologies. We implemented three-layer preceptrons

.
8500
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with the backpropagation learning algorithm in Matlab (MathWorks Inc.) programming
environment. Two windowing techniques and three sequence lengths were perused with
4, 8, 15, or 25 hidden nodes in networks. Validation sets were applied to prevent
overlearning. The data coding was depicted earlier. Crossvalidation was used in the tests.
    The results were compared with t test. The window length 13 was significantly better
than 5 or 7. Moreover, the first windowing technique was also significantly better than
the second one. The numbers 2 and 4 of the hidden nodes were significantly better than
the others. In principle more hidden nodes in a perceptron neural network allows more
complicated decision surfaces. On the other hand, larger numbers of hidden nodes require
larger learning sets and there were only a limited number of cases.
   Lastly, the optimal results were obtained with the network with 4 hidden nodes and
window length 13. The recognition accuracy of PPII structures is defined as usual

and the prediction accuracy is

where tp is true positive, fn false negative and fp false positive PPII cases according to
decisions made by the neural network. The method recognized 72.6 % and predicted 74.1
% of all PPII cases on average when eight disjoint test sets and eight partially different
(dependent on the sampling of the corresponding test set) learning sets were used for
crossvalidation. From the non-PPII class the neural network was able to recognize 74.7 %
and to predict 73.3 % cases on average. The total accuracy is defined to be

where tn is true negative cases. A total accuracy of 73.7 % was obtained for PPII. PPII
structures have not been predicted computationally previously, but a number of neural
networks have been trained to predict α helices and β strands, e.g. by Ruggiero et al.
(1993), who obtained accuracy of 72.5 %. Using statistical methods lower values, such as
49 %, 50 – 60 %, and 68.5 %, were obtained in various articles, e.g. by Rost and Sander
(1998).
   Ultimately, we tested naturally distributed (non-uniformally) test sets from the material,
when the non-PPII class was not yet reduced to the similar size as the PPII class. The
PPII cases accounted only for 1.3 % of the length of the tested sequences. Nevertheless,
the neural network succeeded in recognizing 72.0 % of PPII and 74.5 % of non-PPII on
average. However, there still remain a large number of false positive PPII findings, which
is a problem, which is not due to the neural network method, but because of the very
skewed distribution.
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Conclusions

Feedforward perceptron neural networks were quite efficient to solve the classification
problem of PPII, although the similarity between the two classes was high as indicated by
Hamming distances. The conditional entropies computed showed that material was well
learnable for neural networks. Still the learnability property seems to be at a high level
and is not able to take into account all important issues that may be present in the
material. The windowing technique was very effective with the window length of 13
amino acids. The best three-layer (one hidden layer) neural network included 4 hidden
nodes.
   The neural network correctly predicted about three fourths of all cases. The natural,
very skewed distribution was still difficult because of a large number of false positive
findings. Such a difficulty has not been discussed elsewhere, since other studies have
concerned much more common secondary structures like α helices and β strands. We
will try to increase the effectiveness of our approach also in this respect. To conclude, the
significance of careful preprocessing of the material for neural network approach was
well seen in this study. Secondly, neural networks are efficient for solving these
complicated prediction problems related to protein structures.
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Table 1. Ratios between the frequencies of the PPII class and those of the non-PPII class.
Columns are the 20 different amino acids, and rows are positions of the window, where
the middle (7th) one is essential. The ratios of proline P are naturally high, i.e. important
for PPII.

Table 2 Hamming distances in percents computed in the case of the window length of 13
amino acids between the classes of PPII and non-PPII, and within PPII.

type distance
0 1 2 3 4 5 6 7 8 9

between 1 1 0 0 0 0 1 15 67 15
classes
within PPII 7 4 4 3 4 0 6 22 45 5

A C D E F G H I K L M N P Q R S T V W Y
1 0,83 0,93 0,79 0,93 0,86 1,09 0,95 1,11 1,00 0,96 0,65 1,10 1,47 1,05 1,22 1,09 0,98 0,92 0,88 1,03
2 0,81 1,05 0,87 0,94 0,97 1,19 0,96 0,91 1,06 0,97 0,82 1,01 1,26 1,02 1,10 1,08 0,92 0,87 0,88 1,08
3 0,72 1,23 0,73 0,91 0,99 1,10 0,97 1,21 1,10 0,89 0,87 0,93 1,50 1,01 1,37 1,07 1,03 0,89 0,75 1,06
4 0,84 1,09 0,75 0,92 1,17 0,93 0,97 1,02 1,14 0,99 0,83 0,73 1,73 0,98 1,20 0,94 0,95 1,06 0,77 1,00
5 0,83 1,24 0,65 0,87 1,23 0,78 0,90 1,15 1,07 1,07 0,77 0,68 2,28 0,98 1,20 0,82 1,04 1,15 0,62 0,88
6 0,85 1,06 0,67 0,87 0,99 0,63 0,77 1,05 0,98 1,14 0,70 0,63 2,68 0,99 1,16 1,10 1,10 1,06 0,58 0,77
7 0,93 0,73 0,81 1,03 0,87 0,30 0,83 0,98 1,07 1,09 0,65 0,62 4,08 1,06 1,22 0,96 0,93 1,07 0,60 0,59
8 0,98 0,66 0,92 1,08 0,80 0,49 0,72 0,94 0,96 1,01 0,63 0,78 3,52 0,89 1,01 1,10 0,97 0,95 0,63 0,58
9 0,89 0,73 1,03 1,26 0,63 0,62 0,71 0,86 0,98 0,94 0,55 0,88 3,12 1,02 1,01 1,28 1,05 0,85 0,50 0,59

10 0,84 0,78 1,28 1,21 0,70 0,76 0,87 0,68 0,85 0,91 0,71 0,91 2,39 1,07 1,01 1,30 1,00 0,84 0,63 0,76
11 0,85 1,06 1,15 1,22 0,82 0,86 0,97 0,83 0,85 0,88 0,71 1,01 2,12 1,06 1,05 1,24 0,98 0,82 0,73 0,74
12 0,82 0,81 1,19 1,23 0,82 0,99 0,96 0,79 0,96 0,83 0,72 0,95 1,41 1,12 1,16 1,27 1,01 0,85 0,88 0,96
13 0,92 1,24 0,98 1,36 0,82 0,94 1,23 0,95 0,91 0,90 0,75 0,98 1,34 1,24 0,87 1,17 1,00 0,84 0,86 1,03



14

Figure captions

Figure 1. Two windowing techniques are presented in connection with the window length
of 13 amino acids. The grey positions indicate localized PPII structures. The first
technique accepts a string of the exact window length to the PPII class if the structure is
located at the position of the middlemost amino acid. The second technique accepts a
string to the PPII class if the structure is within the three middlemost amino acids.
Otherwise, the content of the window is determined to the non-PPII class.

Figure 2. A sequence is encoded to the form (bit vector) “understood” by the neural
network. The angles of the structure file in the polygon implies a PPII structure. Amino
acids K, A, and P are set to PPII active. Sequences are assigned to the PPII and non-PPII
classes by applying the window. From each window a long bit vector of ones and zeros
are input to the neural network.

Figure 3. Relatedness frequencies of the test material. Relatedness of amino acids was
computed between the cases of the PPII and non-PPII classes in the upper part and within
the PPII class in the lower part. Relatedness between two sequences was computed by
comparing amino acids at the same positions of the two sequences, and these values were
summed up to be the similarity value.
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Figure 1
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Figure 2
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Figure 3


