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Abstract

We analyze a dynamic programming (DP) solution for cutting the overload

in electricity consumption. We are able to considerably improve the earlier DP

algorithms presented in the literature. Our improvements make the method

practical so that it can be used more often or, alternatively, new state variables

can be added into the state space to make the results more accurate. We also

propose a way to add a new state variable to the state space. By using di�erent

numbers of state variables we can build up a hierarchy of solutions, in which

we can trade between rapidity and accuracy. A similar trade-o� situation

occurs also between low and high number of states a variable is allowed to

have.

1 Introduction

Shortage of electricity may cause supplier to use direct load control (DLC); the sup-

plier may turn o� the electricity from some of its customers or may start generators

to meet the demand. The goal is to minimize the losses by buying minimum amount

of the (expensive) electricity from other suppliers to cover the demand after DLC.

Some customers have a consumption pro�le containing payback. A typical example

of control group with payback is a residential appliance with electricity heaters or air

conditioners. When the supplier controls the devices, a consumption peak appears

after the control period when the devices go back to their normal state [1].
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DLC has been solved by using various algorithms. Typically, objectives, models

and methods di�er from paper to paper. In [2] we study a simple model, interactive

knapsacks, which is a common simpli�cation to many earlier models. We show

that several problems associated to interactive knapsacks are NP-complete [2], i.e.

computationally intractable (see [3] for NP-theory). We also show a simpli�cation

of the present successive approach to control a group at time to be NP-complete, if

the group has payback [2]. Hence, it is reasonable to study successive approaches

separately, too. (It is an open question, how the �xed maximum length of payback

a�ects the NP-status.)

Di�erent solution methods include DP [1, 4, 5, 6], linear programming (LP) [7, 8],

heuristics [1, 9], enumeration methods and other optimization methods (see [4]), like

hybrids of LP and DP [10].

Objectives include load reduction minimization [4, 5, 6], peak load minimization

[10, 7], minimizing production costs [4, 6], and maximization of pro�ts [8].

DLC is often combined with unit commitment and economic dispatch, and the

applied methods include DP [11] (fuzzy DP [12, 13], stochastic DP [14]), binary

network 
ow formulation [15], and evolutionary strategies [16]. Yan and Luh [17]

consider unit commitment with \purchasing emergency power with very high prices",

a similar motivation as we have. See also [18].

Our method is somewhat similar to that of [4, 5], and our model has a \similar

spirit" than [8]. We have earlier [1] developed the models and methods of [4, 5] by

adding new properties to them. DP solutions of [4] is not optimal, if applied to

a group at a time and if the loads are evened out on hourly bases [1]. New state

variables improve the results. Moreover, DP of [5] optimizes several groups at a

time and therefore needs too large state space to be practical in our case.

The present work further deepens the results of [1] by focusing on DP solution

and its properties. Our solution determines the number of controls needed, and a

starting time with a duration and resting time for each control (we use 5 minutes

precision). Number of controls can also be used as a restriction. Our solution can

be used as a successive optimization method.

Our objective is \in between" the minimizing of load reduction and the mini-

mizing of peak load and is di�erent from the objectives presented in other papers.

Purchase transactions of electricity and own production give optimum level to be

resold at each hour, while load over the optimum level has (very) high price. If

demand is higher than our prede�ned level, we want to cut (expensive) \over loads"

and at the same time minimize the losses caused by decreased sales. Optimum level

is not usually attainable exactly (because of discretisation). We also use purchasing
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and reselling prices (time-of-use rates) in the formulation of the objective.

Furthermore, our solution can use di�erent objectives without major modi�ca-

tions of the method. The same holds for the prices, if one needs more complex price

structures, and for energy storages of [19, 20].

Subsections 2.1 and 2.2 describe the model in its present augmented form, and

Subsection 2.3 derives the DP solution used. The main results concern the \wait

states" and \worsening states" (state variables) needed in DP are given in Section 3.

We also build up a hierarchy of DP solutions so that it is possible to choose between

fast and inaccurate and slow but accurate methods. We show in Subsection 3.1 how

the number of wait states needed can be diminished to be about half of the number

used in [1]. This fastens the whole optimization process approximately by the same

factor. State space can also be decreased with multi-pass DP of [6], but then one

should be able to relax some constraints (method is presented for DLC dispatch

problem in [6]).

In Subsection 3.2 we show how to add a fourth state variable (worsening states)

into the model of [1]. Extensive testing is reported in Section 4, supporting the

assumption that we need wait and worsening states in order to get good results.

2 Model

First we describe the model for the problem and give some de�nitions. The model to

be given is a slight simpli�cation of the model used in load clipping [1]. In Subsection

2.1 we give the base of the model and in Subsection 2.2 we discuss on real world

restrictions and on the goal functions. Table 1 contains relevant symbols used in

this work.

2.1 Basic model

An interval [a; b] is the set a; a+1; : : : ; b (a < b) of integers. The length of an interval

[a; b] is b � a + 1. A clipping situation s is a vector s0; s1 : : : ; sN (N > 0) of reals

representing the di�erence between electricity demand and electricity production

in time interval [0; N ]. The domain [0; N ] is called the optimization interval and

values si are called either overload or underload. Overload represents a situation,

where demand is higher than combined production and electricity purchases (si � 0)

and underload represents a situation, where combined production and purchases of

electricity is above the level of consumption, i.e. demand (si � 0). The element i

of optimization interval [0; N ] is called a time point. The phrase \time point i" is
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Table 1: Used symbols

Clipping situation s = [s0; s1; : : : ; sN ] Set of controls C

Prices p = [p0; p1; : : : ; pN ] Control capacity Cc

Revenue r = [r0; r1; : : : ; rN ] Control length Cl

Length of hour hl Resting time Cr

Time interval or control [a; b] Minimum control length Cm

Loss of incomes R(s) Maximum control length CM

Optimal control plan R�(s) Maximum control times CT

Dynamic forward recursion R0(s; S0; k + 1) Control time Ct

Stage change R00(s; S0; S; k + 1) Length of payback P l

Wait state W Amount of paybacka P c

Worsening state B Impact of a control I([a; b]; s)(k)

State (3 variable) S = (Ct;W;Cl) Impacts of all controls I 0(C; s)

State (4 variable) S = (Ct; B;W;Cl)

aAmount of payback corresponds to capacity explaining the c-superscript.

used also for the interval [i; i].

Every time point i with overload has a positive real pi called the price factor

(buying price of electricity). If at time point i there is underload, the positive real

r(i) is the revenue factor (selling price of electricity). The overload interval is an

interval [a; b] � [0; N ] such that at every time point i 2 [a; b] there is overload.

The clipping situation is partitioned into hours 0 = a1; a2; : : : ; an+1 = N , of

equal length, i.e. ai+1 � 1 � ai + 1 = ai � ai�1 (2 � i � n). The length ai+1 � ai

of an hour is denoted by hl. Hour i refers to the interval [ai; ai+1 � 1]. Overloads

(underloads), revenue and price factors do not change during an hour, because of

the system used in electricity trading. Thus, we have sj = sj+1, pj = pj+1 and

rj = rj+1, where j 2 [ai�1; ai � 2] (2 � i � n).

The total loss is

R(s) =
X

i2[0;N ]

K(i; si); (1)

where

K(i; si) =

(
�pisi; if si � 0,

risi; otherwise.
(2)

Hence, we always have K(i; si) � 0. If there is underload, we lose income (revenue)

and if there is overload, we have to pay some extra. The sum (1) counts the money

lost, so its best possible value is 0.

A group can lower the overload with a control, i.e. an interval [a; b]. The control-

ling capacity of a group, denoted by Cc, is the amount by which the group can lower
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the load in an hour. The hours [ai; a; ai+1; : : : ; aj�1; b; aj], where ai � a < ai+1 and

aj�1 < b � aj (and a < b) have to be taken into account when making a control.

The total in
uence of a control is called the control amount and it is the product of

the controlling capacity Cc and of the control length b� a+ 1.

2.2 Payback, restrictions and goal function

Function P l : N ! N maps the control length b� a + 1 to the length of a payback

and function P c : N � N ! R describes the amount of the payback of a control of

length b � a + 1 at time i. Moreover, we always have P c(b � a + 1; i) � 0, where

i 2 [b; b + P l(b� a + 1)], and otherwise P c(b� a + 1; i) = 0. Further, \in practice"

we have

X
k2[b;b+P l(b�a+1)]

P c(b� a + 1; k) � Cc(b� a+ 1)

meaning that a payback does not exceed the control amount.

Next we de�ne the impact of a control and its payback to a clipping situation s

as a function I and then we show how one can calculate all controls into the clipping

situation, function I 0. The hours to be a�ected are [ai; a; b; aj; b+ P l(b� a+ 1); al].

With function

I([a; b]; s)(k) =

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

sk; when 0 � k < ai,

sk � Cc(ai+1 � a)=hl; when ai � k < ai+1,

sk � Cc; when ai+1 � k < aj�1,

sk � Cc(aj � b)=hl+
aj�1X
k0=b

P c(b� a+ 1; k0)

hl
;

when aj�1 � k < aj,

sk +

ak0+1�1X
k00=ak0

P c(b� a+ 1; k00)

hl
;

when j � k0 < l

and ak0 � k < ak0+1,

sk +

al�1X
k0=b

P c(b� a+ 1; k0)

hl
; when al�1 � k < al,

sk; when al � k � N ,

(3)

(0 � k � N) we obtain the total in
uence of control [a; b] into the clipping situation.

(It would simplify formula (3) a bit if we were not to hourly even out the a�ects.

Another alternative is to let the overloads and underloads vary within the hours and

even out the loads when calculating the results.) If the control starts and stops in

the same hour, we have to replace the second, third and fourth line of (3) with the
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Figure 1: Realistic and theoretic clipping situation with a control. Controlled group

can store energy and has payback.

line

sk � Cc(b� a + 1)=hl +

aj�1X
k0=b

P c(b� a+ 1; k0)=hl; (4)

where aj�1 � k < aj. If the payback starts and stops in the same hour, we have

to make a correction similar to (4) to the calculation of the e�ects of payback.

Energy storage capability is similar to payback: storage appears before control while

payback appears after the control.

In function I of (3) the �rst and last lines leave the uncontrolled hours as they

are. The second line calculates the e�ects for the hour where the control starts

(either the overload gets lower or the underload grows). The third line handles

hours that are between the starting and stopping hours, if any. The fourth line

handles the hour where the control stops. The payback starts here. The payback

increases the overload and the rest of the control decreases it. The third last line

calculates the payback for hours, where the payback does not end and the second

last line deals with the last payback hour.

Figure 1 shows two examples of a control. The left picture describes a control in

a realistic situation and the right one in a theoretical situation. The vertical lines

are hours. The dotted line is clipping situation without control and the straight

line is a clipping situation with control. The left picture shows the advantage of

a control: if a group has payback (can store energy), we can \move" the overload

(stored energy) to the next (previous) hour where the overload is cheaper.

The e�ects of all controls C can be calculated recursively by the function

I 0(C; s) =

(
I 0
�
C� [a; b]; I([a; b]; s)

�
; if [a; b] 2 C,

s; if C = ;.
(5)

When all controls have been calculated, we can use (1) to �nd out the value of the

new clipping situation.

Next we look at the restrictions. First, the controls must be separate such that

for all [a; b]; [c; d] 2 C we have

[a; b] 6= [c; d]) [a; b] \ [c; d] = ;: (6)
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Further, during resting time it is not allowed to start a new control. Function

Cr : N ! N is increasing and it maps the length of a control to the length of a

resting time. So, for all [a; b]; [c; d] 2 C we have

[a; b] \ [c; d] = ; ) [b; b + Cr(b� a + 1)] \ [c; d] = ;: (7)

Notice that a new control can be started even if the payback still occurs if the

resting time does not overlap with the new control. Usually, the resting time is used

to prevent a new control to start in the beginning of the payback, when the need

for extra electricity is the largest. If we start a new control at the end of a payback,

the change in the payback of the new control is so small that it is not usually taken

into account. We could also modify equation (3) to take into account the previous

control (or controls) and its (their) possible potency to the payback of the present

control, when using too short resting time.

We also need theminimum andmaximum control times Cm and CM , respectively,

and hence

cm � b� a+ 1 � CM : (8)

Sometimes we also restrict the amount of control times
P

[a;b]2C 1 by CT , a positive

integer.

We can suppose that at every time point k the price factor pk is (much) larger

than the revenue rk. By making controls we can a�ect the clipping situation, so the

optimization problem can be given in the form

max
C

NX
k=0

R(k; I(C; s)) (9)

with restrictions (6){(8). The objective indicates the income lost and its theoretic

maximum is 0.

2.3 Solution with dynamic programming

The problem (9) can be solved with dynamic programming (DP) [1, 4, 5, 18]. One

way is to use a very large state space to �nd optimal control plan C, for example

R�(s) = max
[a;b]

R�(I 0(C [ [a; b]; s)): (10)

In solution (10) di�erent controls form the state space and the number of control

times form the stages. This solution enumerates numerous di�erent controls and

the state space grows too large. Moreover, this solution is sub-optimal (as well as
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the method to be presented). The dynamic programming (10) at stage n is equal

to the optimization problem

R�(s) = max
[a;b]1

� � �max
[a;b]n

R�(I 0([a; b]1 [ � � � [ [a; b]n)):

At the �rst stage we have to check approximately (CM � Cm)N states, where Cm

is the minimum length, CM is the maximum length and N is the number of time

points in the optimization interval. At the second stage, when we form the second

control, we need to �nd a connection to all (CM � Cm)N states. The connection

can point to approximately (CM � Cm)N states. Hence, we should check about

(CM � Cm)2N2 states, which is too much as both CM � Cm and N can grow large

enough to make this method unpractical.

If we have found optimal �ve controls �rst giving clipping situation s0 and then

�nd other �ve controls being optimal against s0, the global optimum is not neces-

sarely found. We may achieve better results by using only nine controls having no

common control with the previous two sub plans. Principle of optimality (see [21])

is not ful�lled.

Cohen and Wang [4] use two state variables, the control times and control length.

Our tests [1] indicated that two state variable systems are fast enough so that we

can add (see [21], pp. 30{34) at least one state variable to make results better.

In this work we use the state variables control time Ct, wait state W and control

length C l. This way we have a slower but more accurate system than those with

two state variables. Each of these variables are de�ned in �nite integer domain. The

wait states are used to delay the start of a control while Ct and C l have obvious

meaning.

In the state space we need the control length, so that DP can form the optimal

control length and at the same time consider the restriction (8). The variable control

length C l contains the control length and the resting time. Without the control

times DP will �nd only one control, if DP obeys conditions (6){(8). With these

state variables we have one state of stage k 2 [0; N ] as a triple

(Ct;W; C l)(k): (11)

A system in state (Ct;W; C l) is de�ned to be a C l long Ctth control, of which start

is delayed W time points. Our tests demonstrate that the three variable (Ct;W; C l)

solution does not give the optimal solution in every situation, especially if there is

payback (see Section 4).

The phrase \stage k" refers to a time point. In practice we have to determine

upper bound for the wait states W . Theorem 2 gives an upper bound for W when
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the group does not have payback. If the group does have payback, we assume that

W can have hl � 1 (hl is the length of an hour) di�erent values (we also test other

amounts, see Section 4).

In the next equation we use the notations S = (Ct;W; C l) and S 0 = (C 0t;W 0; C 0l).

The variables with primes are \new" ones and the variables without the primes are

\old" ones, when we form the connections from the \new" stage k + 1 to the \old"

stage k. The function

R00(s; S 0; S; k + 1) =8>>>><
>>>>:

0; when (15){(18),

�P 0; when (19),

R(I([k � Ct; k]; s))� R(s); when (20),

�1; otherwise,

(12)

gives the change in the value, when we move from the state (Ct;W; C l) of the stage

k into the state (C 0t;W 0; C 0l) of the stage k+1. In other words, R00 equals the value

of the connection between states (Ct;W; C l) and (C 0t;W 0; C 0l) at the stages k and

k+1, respectively. The �rst line is used, when the value does not change. The third

line is applied, when we make a decision about the best control judged by (1), and

the second line is used, when we start a new control. In these situations, we add

to the value the cost of making a control. The last line is used with every other

values of the variables S and S 0. They are impossible since they do not have any

reasonable real world interpretation.

The dynamic forward recursion equation is

R0(s; S 0; k + 1) = max
S

�
R0(s; S; k) +

R00(s; S 0; S; k + 1)
� (13)

and

R0(s; (Ct;W; C l); 0) =

(
R(s); when Ct = W = C l = 0,

�1; otherwise.
(14)

When

C 0t = Ct + 1; W 0 = C 0l = 0; 0 � W � hl � 2;

and Cr(Cm) � C l � CM + 1 � Cr(CM);
(15)

we think that control at the stage k and in the state (Ct;W; C l) has stopped, which

in turn increases the amount of control times by one (C 0t = Ct + 1). The next

control starts in the state (C 0t; 0; 0) at the stage k+1. We use C l�CM +1, because
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C l indexes both the control length and the resting time (see Figure 2). The states

corresponding to resting are located next to the control lengths. Notice, that we

restrict the number of wait states by hl � 2 (wait states can get hl � 1 di�erent

values).

Moreover, it is possible that \old" optimal plan at the stage k does not change

(or be better) when we move to the stage k + 1, and so

C 0t = Ct; W 0 = C 0l = 0; and W = C l = 0: (16)

This is the only case with conditions (15) and (20), when DP (recursion formula

(13)) can make choices about the optimal path. If two paths give the same result,

DP (13) chooses the one with a later control. This does not have any impact on the

result, but in practice we usually want to do the controls as late as possible. When

C 0t = Ct; W 0 = W + 1; and C 0l = C l = 0; (17)

we \move some information from the past to the present". With this information

we can check what result can be achieved, if we choose the best path W stages ago

instead of some other control plan from the interval [k �W; k]. When

C 0t = Ct; W 0 =W; C 0l = C l + 1

and (C 0l 6= 1; C 0l 6= CM + 1);
(18)

we increase the control length by one time point (the control started C l time points

ago). When

C 0t = Ct W 0 =W; and 1 = C 0l = C l + 1; (19)

we have started a new control. In this situation we add to the result the cost of

control P 0. When

C 0t = Ct W 0 =W; C 0l = CM + 1;

and Cm � C l � CM ;
(20)

we can calculate the impact of a legal control on a clipping situation. Figure 2 shows

the state space.

For each state (Ct;W; C l) and for each stage k > 0, we save the connection

pointing to some state of the previous stage. The connections form a path. When

we have the values

R0(s; (Ct;W; C l); N)

with appropriate values in Ct, W and C l, we can form the control plan C by

traversing the path formed by the connections. The path is optimal with respect to

the state space used (but not with respect to the problem).

We end this section by noticing that the functions R0 and R00 in equations (12){

(14) do not violate the conditions (6){(8).
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wait state 1

wait state 5

wait state 3 wait

state 1

wait

state 2

control length 0

control length 2

resting state 2

control length 4
resting state 1

time 0

control

time 1

control

time 2

control

Worsening states

are similar to control

times, except that they 

do not choose the best

available control plan.

Figure 2: The structure of the state space.

3 The properties of the state space

Next we study the properties of the dynamic recursion formula (13){(14). In Sub-

section 3.1 we study how many wait states we need when there is no payback. In

Subsection 3.2 we embed worsening state variables into our state space system.

3.1 Paybacks of length zero

Consider a stage i. A local control for state (Ct + 1; 0; 0) is a control formed at the

control time Ct+1, stopped at the stage j > i+Cr(Cm), and using the control plan

formed at the stage i for the state (Ct; 0; 0). The stages k > i do not belong to the

local control, provided that we do not use the control plan of the state (Ct; 0; 0)(i)

at stage k. This means that the wait states are not considered when forming a local

control.

In the next theorem we suppose that all references to wait states have been

omitted from the conditions (15), (16), (19) and (20).

Theorem 1 With the state space (Ct; C l) we will �nd, for each stage i, the best

local control following stage i.

Proof. Consider the controls starting after stage i from state (Ct; 0) and using

the control plan C determined by i and (Ct; 0). Conditions (15) and (16) choose

the best control for the state (Ct + 1; 0)(j), according to the equation (13). The

condition (15) gives the maximum because of the conditions (19) and (20). �

Corollary 1 State (1; 0; 0)(N) gives the best possible control plan having one con-

trol.
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Notice that the length or the amount of payback do not have any consequences

in the case of Theorem 1. State space (Ct; C l) gives sub-optimal results [1], which

can be improved with wait states (still being sub-optimal).

Let Ci;Ci+1; : : : ;Ca be the control plans of the control time Ct = k and the

stages (time points) i; i + 1; : : : ; a, respectively, i being the �rst time point of an

hour. In the next theorem we show that it is enough to choose between the control

plans Ci;Ci+1; : : : ;Ca, when forming [a; b]. This refers to the situation in condition

(15) of the equation (13), where we check, how well the control plans of states

(Ct; 0; 0)(i); (Ct; 0; 0)(i + 1); : : : ; (Ct; 0; 0)(a) work with the control starting at the

time point a.

Intuitively the next theorem is based on the property that if the last control of

some control plan stops with resting time in the \previous hour", it will not have

any impact on the controls in the \present hour".

Theorem 2 Suppose there is no payback. Suppose further that from the stage a we

start a new control for the control time Ct, which will stop at the stage b locally

maximizing the control plan Ca. Let i be the �rst moment of the hour containing

a. When forming a new control [a; b], it is enough to choose (with the wait states)

from the set of control plans Ci;Ci+1; : : : ;Ca.

Proof. We show that it is not necessary to reach time points earlier than the start

of the present hour. To do so we consider situations where it is possible to choose

between the control plan Ci�1 of time point i � 1, some earlier control plan Ci�n

(n > 1) and the control plans Ci;Ci+1; : : : ;Ca, when forming [a; b].

Consider the control [a; b] started at the time point a and control time Ct. To

derive contradiction we suppose some control plan Ci�n (n > 0), when deciding

the proper control plan for [a; b]. It follows that at least one of the control plans

Ci�n+1; : : : ;Ci gives at least as good result at the stage i than Ci�n, because DP

(13) chooses always maximum. We can suppose that the control plan in question is

Ci, since the result of Cj improves when j increases (not necessarily monotonically).

If we choose some of the control plans Ci�n; : : : ;Ci�1 to be used with a control that

starts from a, we obtain better result with the control plan Ci. (Notice that the

absence of payback is crucial here.)

The last control moments of the control plans Ci�n; : : : ;Ci�1 including their

resting times are on the earlier hour than a. Suppose next that we choose some

control plan C0 2 fCi�n; : : : ;Ci�1g and with it a control [a0; b0], where a0 is on

the same hour than a. Suppose further, that C0 [ [a0; b0] gives better result than

Ci [ [a; b]. According to the previous paragraph, Ci [ [a0; b0] gives better result
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than C0 [ [a0; b0]. So, we do not have to check the control plans Ci�n; : : : ;Ci�1.

(If a0 is in some earlier hour than a, the control [a0; b0] can choose between control

plans Ci�n; : : : ;Ca0 , so there is no problem.) Hence, it is not necessary to check the

control plans Ci�n; : : : ;Ci�1, when starting to form a new control from time point

a. �

Thus, we need one wait state at the �rst time point of an hour, two at the second

time point and �nally hl� 1 at the last time point of an hour (hl is the length of an

hour). In other words, we need on the average (hl � 1)=2 wait states at each time

point. (In [1] we used hl � 1 wait states at each time point.)

3.2 Worsening states

Even though we showed in Theorem 2 that the results do not improve by increasing

the number of wait states, the state space (Ct;W; C l) does not achieve optimal result

when the length of payback is non-zero (a sample case is analyzed in Section 4).

We need at least one more state variable B into the state construction (see [21],

pp. 30{34) to be able to form a better path. With variable B we check the paths,

which are not maximums according to (13) for the three state variable system.

A local worsening of stage i is a control, which stops at the stage i including the

resting time and which is not chosen into the control plan by the previous equations

and conditions. A three variable system chooses the best alternative among several,

as shown in the left side of Figure 2. We set this to be worsening state one. In the

worsening state two, we choose the second best path from the control time Ct for

the �rst state of control time Ct + 1. The third worsening state uses the third best

path found so far and so on.

Now our state is S = (Ct; B;W;C l). Instead of (12) we use

R00(s; S 0; S; k + 1) =8>>>><
>>>>:

0; when (15){(18),

�P 0; when (19),

R(I([k � Ct; k]; s)(i))� R(s); when (20) or (22),

�1; otherwise,

(21)

When

C 0t = Ct + 1; W 0 = C 0l = 0 and

W and C l such that

R0
�
s; (Ck; B;W;C l); k

�
is the B0th best

(22)
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we choose the B0th best path from control time Ct and set it to the �rst state of the

B0th worsening state of control time Ct + 1 (we allow B to vary in its range, when

we are looking for the B0th best path). Condition (22) can be taken into account

in the implementation of dynamic forward recursion formula (13). When we are

looking for the best path, we can easily cater the required amount of paths to �nd

the B0th path. Moreover, the solution (a path) given by condition (16) has also to

be checked when we are looking for the number of best paths.

Starting con�guration (14) and transition conditions (15){(20) work with wors-

ening states without major modi�cations. Starting solution is calculated only for

the �rst worsening state and conditions (15){(20) work inside a worsening state just

as in the case of three variable system.

Now we have applied worsenings to a situation where we choose between di�er-

ent control plans. We could also apply worsenings in the control length decision

(condition (20)).

4 Tests

First we made two sets of tests: one for testing the running times and the other

for comparing the accuracy of results. In the �rst test set we had a group with

no payback: its control capacity was 0.8 MW, minimum control length 30 minutes

while the maximum control length varied from 100 minutes (1 hour 40 minutes) to

1 000 minutes (16 hours 40 minutes).

On the left side of Figure 3 is the clipping situation: each hour has 0.5 MW

overload except the two last ones. Each hour is discretized to twelve points. Hence,

with 40 minutes control (8 discretized time points) one gets 0.53 MWh cutting

capacity. Clipping situation is 25 hours (a day + an extra for current hour). The

right side shows the running times for old DP (with full state space) and for the

new one (with half state space). DP with new state space is about twice as fast as

old one, which is consistent with the theory.

90
60
30

120
150
180

new

oldseconds

max length

100 300 500 700 900

0.5

0.0

-0.5

overload, MW

time

Figure 3: Running time on maximum control length and clipping situation.
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Both DP's gave the same control plan. It contained twelve controls each cutting

two hours at a time with 80 minutes control. After controls, there remains 0.03 MW

underload in each hour (shown as grey area), except the last two. In both cases

the obtained result was �1 590. (In the beginning the value was �1 139 400. If all

overloads were to be cut exactly, which is not possible with this group and time

discretization, the value would have been �900.) Only the running times di�ered.

and its

0

1 2 3

0

0

0

test 2

0

test 3 test 4 test 5 test 6

0 0 0 0

0 0 0 0

test 10test 9test 8test 7

0

0

0

0

0

0

0

0

test 14test 13test 12test 11

0

1 hour
control payback

test 1

8 16 24 8 16 24 8 16 24 8 16 24

8 16 24 8 16 24 8 16 24 8

8 16 24 8 16 24

0 0 0 0

0 8 16 24 0 8 16 24 168 24 0 8 16 24

2416

Figure 4: Payback used in the tests and the test cases.

In the next test series we wanted to see whether the paybacks a�ect the solutions

given by the new DP. As we will see, the paybacks a�ect the results of computations.

Because of this, we tried to improve accuracy by increasing the number of wait states.

Intuitively, the wait states starting from point b can only \look up" that far later

on at the moment a. So if b is the beginning of an hour, we \don't see" into the

previous hour at moment a and cannot a�ect decision made before, i.e. change the

choice between di�erent control plans. When there is no payback, the number of

wait states equaling to the number of time points after a start of an hour a mod hl

is enough, because a control �nished in the previous hour does not a�ect the present

hour to be cut. (This does not mean that the system is optimal. All we know is

that there is no need to increase the number of wait states.)

However, when we are using payback, we need to be able to look further into

the previous hours in order to increase the accuracy. As the number of wait states
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is a mod b where b typically is the length of one hour (b = hl) and a is the current

time point, we can increase the number of states in two ways. On one hand, we can

increase b or, on the other hand, we can directly increase the number of wait states

to c+ (a mod b).

We tested both ways and noticed that increasing b does not improve the solutions

much. Modulus a mod b forms a cyclical group and the cycles divide the time line

into disjoint intervals of length b. We cannot \see" into the previous interval and

basically, our problem remains. The time line is still divided into disjoint areas and

the optimum is easily lost, because paybacks can arbitrarily have a�ect on the next

interval. By adding c states we improve the ability to see to earlier hours (or into

earlier \cycle intervals"). We are tempted to think that increasing c will improve

the solution. Our tests, however, show that while this is mostly true, there are

exceptions.

In the tests we used payback shown in the upper left corner in Figure 4. We

tested the group with 14 di�erent clipping situations, of which 10 were quite arti�cial

while 4 (tests 6{9) could be normal clipping situations occurring in reality. Tests

6{9 are similarly shaped and contain \morning and afternoon" consumption peaks.

The shapes are at di�erent levels giving tests of di�erent diÆculty. Test 11 contains

only morning peak while test 12 contains afternoon peak. Other tests are arti�cial.

When load curve is above 0, we have overload that should be cut o�. One tick

stands for 1 MW. (Horizontal axis are for time.)

Again, each hour is discretized into twelve time points. We used a group having

1.2 MW control capacity (i.e. 0.1 for �ve minutes). For example, in the �rst test we

could cut the overload from each overload hour exactly with the presented group with

25 minutes control (�ve discretized moments), if there were no payback. Payback,

however, a�ects the underload hours (improving the result at the same time) as well

as the next hour to be cut (increasing the amount to be cut), because the payback

is two hours long. The minimum control length is 30 minutes and the maximum

control length is one hour. One MW overload costs �99 000 and underload �900.

Resting time is 10 minutes. Starting values (total losses without controls) are given

in Table 2.

Figure 5 contains running times (in seconds) for the old DP solution and for

DP's with c = 0; 1; 2; 3; 5 and 11 (horizontal axis). Moreover, b = 12 = hl and a

is the moment between hours (or the time point). We see that the running times

increase almost linearly on the number of waits states.

Table 3 contains results for the tests used in Figure 5. If a solution is presented

only for the old DP, other DP's with di�erent values for c achieved the same result.
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Figure 5: Running times.

Here we see that, in general, the results improve if the number of wait states is

increased.

In the seventh test, however, we see that increasing the number of wait states

has decreased the result between DP's with c = 3 and c = 5. This somewhat

non-intuitive result follows from the fact that our DP solutions do not ful�ll the

optimality principle usually stated for dynamic programming solutions, because of

paybacks (see [21] p. 16).

The optimality principle is lost because we cannot guarantee that optimal solu-

tion at the stage i (time point i) entails optimal solution for the rest of the time

line. Reason for this is the payback: it can a�ect later hours and decisions made

later. This information should be available at the moment when we are deciding

the length of a control. Similarly, if we can �rst �nd the best control, we cannot be

sure that the second control | even if optimal after the �rst one | gives optimal

solution for the whole optimization problem.

In the seventh test, DP with c = 5 �nds in one crucial time point better solution

than DP with c = 3. It turns out that locally better solution is worse for the rest

of the optimization in this case. Larger number of additional states handle the

situation correctly.

We did not use any worsening states in the test series reported in Table 3 and

Figure 5. We run the same test series using 2, 5, 10 and 15 worsening states. Table 4

contains the best solutions found among all the test series. Results are remarkable:

results were improved in the most cases. Moreover, improvements were relatively

high (much over 10% in some tests) and even the old DP solution was improved in

some cases.

Test 14 demonstrates informatively how results improve as the number of wait

states or worsening states (or both) increases. Test 14 has 0.5 MW overload in

every other hour and the rest have the same amount of underload (there are two
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underload hours, 9 to 11, \changing overload phases", see Figure 4). Results and

running times of the test 14 are shown in Figures 6 and 7.
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Figure 6: Wait and worsening states, results for test 14.
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Figure 7: Wait and worsening states, running times for test 14.

Starting solution (no control plan) gives �550 800. DP with one and two worsen-

ings build up similar control plans till the stage 81 (i.e. 6 hours 45 minutes after the

beginning). The best result found so far gives �355 171 with controls [0,6], [18,29],

[42,53] and [66,77]. At the stage 82, DP with two worsening states found a plan

giving �355 089:2 with controls [0,5], [8,13], [22,31], [46,57] and [66,77]. By choosing

the second best control plan ([0,5], [8,13], [22,31] and [46,57] with �405 807:7) at the

stage 66 we have found better control plan than by using the locally best alternative

([0,6], [18,29], [42,53] with �404 157:9).

The second best plan at stage 66 has cut overload more accurately (there is

not so much underload than with the best plan). It also incurs more payback into

the seventh hour so that the result is not the best (overload costs much more than

underload). This increase caused by the payback is less than the amount of control

being one moment longer, which, in turn, causes also the seventh hour to be cut

more precisely with the second best path than with the best. By increasing the

number of worsenings to 15, the �rst di�erent stage is 56. Similarly to the previous

case, the old plan at phase 42 ([0,6] and [18,29]) is locally better than [4,9], [20,30]
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(at least 15th best) but after control [42,53] at the stage 56 a worser plan at the

stage 42 gives better result than the best plan.

We also tried DP's with 30 and 100 worsening states. System with 30 states

improves the result �rst time from 15 state system at stage 80 and system with 100

states improves the result �rst time from 30 state system at stage 61.

Table 2: Starting values of the tests 1{14.

Test 1 Test 2 Test 3 Test 4 Test 5

�1 141 200 �1 402 200 �852 300 �3 418 200 �1 839 600

Test 6 Test 7 Test 8 Test 9 Test 10

�699 480 �341 100 �1 499 400 �797 310 �228 600

Test 11 Test 12 Test 13 Test 14

�550 980 �550 980 �1 639 800 �550 800

DP with 15 worsening states gives �8 336, with 30 states �7 872 and with 100

states �7 214, which is better than the solution given by 15 worsenings and 11

additional wait states (see Table 4). Our conclusion is that a clipping situation with

many overload intervals most likely bene�ts from the use of worsening states.

We also studied how worsening states and wait states improve the results together

and how they a�ect the running times. The left hand side of Figure 6 contains results

for di�erent worsening state amounts (1, 2, 5, 10 and 15). As the number of wait

states is increased, the results improve in general. There are few exceptions, however.

We see that few wait states may do worse than DP with c = 0 (see lines for B5 and

B15). Most of the time 11 additional states to wait states gives better results than

less wait states. By using only one worsening state (corresponds to a system, where

no worsening state usage is implemented), the number of used additional wait states

is irrelevant.

On the right side the same data is plotted for �ve di�erent additional wait state

amounts as well as for the old DP system. We conclude that the number of worsening

states is much more crucial for the results than the number of wait states. Both

state variables are needed, though. Worsening states improve also the results of DP

system with �xed amount of wait states (old DP, c = hl � 1, no a mod b part).

We didn't try to �nd the best combination for the number of worsening and wait

states as we wanted to keep the running times tolerable for the test runs. In practise,

we need the results in �ve minutes after the hourly load forecast is obtained. One

hour is discretized into �ve minute intervals and if we are going to fully cut the �rst
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Table 3: Solutions without worsening states (empty means the solution given by the

DP old).

Test old DP c = 0 c = 1 c = 3 c = 5 c = 11

1. �3 091

2. �532 670

3. �11 288

4. �1 323 150

5. �483 773 �484 248 �484 248 �483 773 �483 773 �483 773

6. �144 478

7. �15 603 �15 662 �15 662 �15662 �15778 �15 603

8. �368 665 �371 296 �370 238 �368 665 �368 665 �368 665

9. �174 490 �175 668 �175 668 �175 668 �175 668 �174 490

10. �8 874 �9 131 �9 131 �8 990 �8 874 �8 874

11. �68 059 �70 494 �69 657 �68 059 �68 059 �68 059

12. �68 059 �70 494 �69 657 �68 059 �68 059 �68 059

13. �366 669

14. �9 860

Table 4: The best solutions with worsening states (empty means the solution given

by the DP old).

Test old DP c = 0 c = 1 c = 3 c = 5 c = 11

1. �3 091 �3 091 �3 091 �2975 �2975 �2975

2. �532670

3. �10 823 �10 823 �10 823 �10 823 �10 823 �10707

4. �1323150

5. �483 773 �483 773 �483 773 �483705 �483705 �483705

6. �144478

7. �15 603 �15 662 �15 662 �15487 �15487 �15487

8. �368 373 �369 069 �368046 �368 162 �368 278 �368 373

9. �174 490 �175 668 �175 543 �174398 �174398 �174 490

10. �8 410 �7365 �7365 �7 713 �8 202 �8 177

11. �67827 �69 242 �68 613 �67827 �67827 �67827

12. �67827 �68 778 �68 613 �67827 �67827 �67827

13. �366669

14. �8 956 �8 336 �8 351 �8 186 �7 742 �7538
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hour, the control plan has to be ready in less than �ve minutes. Figure 7 contains

running times for test 14. Execution decelerates almost linearly as the number of

worsening states is increased. The same holds also for the number of wait states.

The number of wait states in one hour is
Phl�1

a=0

�
c + (a mod hl)

�
(where c =

0; : : : ; hl � 1 and a is the moment). Hence, the increase of c by one gives hl � 1

additional wait states for one hour. This is proportionally less than the increase

brought by the increase of the number of the worsening states by one, which is

the number of used wait states in one hour. This explains why the increase of the

number of worsening states decelerates more the running times than the increase of

the number of wait states.

5 Conclusions

In this work we have shown a non-straightforward solution for a dynamic program-

ming problem arising in direct load control application. The properties of the state

space have been analyzed, and quicker optimization algorithms are formed with-

out sacri�cing the accuracy of the results when payback is not used. Moreover, we

have found practical ways to improve the results by increasing the state space when

payback is used.

We have shown a detailed solutions for three and four state variables. Our

solution is sub-optimal. If the result accuracy is not crucial, one can drop wait

states away, arriving to a faster two state variable solution of [4].

There are still open problems concerning the properties of state variableCt. They

seem to behave \softly enough" [1], so that we can reduce the number of states used

(for details, see [1]). Moreover, the control length C l may have some properties, by

which we can further speed up the algorithms.

If there is enough time to calculate results, it is possible to add a new state

variable, called worsening state. With four state variables we achieve better results,

as is shown in our extensive tests. Additional wait states as well as additional

worsening states improve the results in general. Hence, one can choose between fast

inaccurate, and accurate but slow solutions. Similar trade can be made between

two, three and four variable state spaces the two variable system being the fastest

but also the less accurate.

Most important, worsening states seem to improve the results also in the cases

occurring in production systems.
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