A NOTE ON SYNCHRONIZED
EXTENSION SYSTEMS

Ferucio Laurentiu Tiplea and Erkki Makinen

DEPARTMENT OF COMPUTER AND
INFORMATION SCIENCES

UNIVERSITY OF TAMPERE

REPORT A-2000-11

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER AND
INFORMATION SCIENCES

SERIES OF PUBLICATIONS A
A-2000-11, JULY 2000

A NOTE ON SYNCHRONIZED
EXTENSION SYSTEMS

Ferucio Laurentiu Tiplea and Erkki Makinen

University of Tampere

Department of Computer and Information Sciences
P.0.Box 607

FIN-33014 University of Tampere, Finland

ISBN 951-44-4882-0
ISSN 1457-2060

A Note on Synchronized Extension Systems

Ferucio Laurentiu Tiplea !

Faculty of Computer Science, “Al.I. Cuza” University of lasi, 6600 lasi, Romania

Erkki Mé#kinen 2

Department of Computer and Information Sciences, P.O. Bozx 607, FIN-3301/
University of Tampere, Finland

Abstract

The concept of a synchronized extension system (SE-system, for short) has been
introduced in [2] as a 4-tuple G = (V, L1, L2, S), where V is an alphabet and L;, Lo
and S are languages over V. Such systems generate languages extending Lq by Lo
to the left or to the right, and synchronizing on words in S. In [2] it has been shown
that the language of type r~ generated by an SE-system of type (r,r, f) is regular.
As a particular case, the stack language of a pushdown automaton is regular.

In this note we prove the converse. That is, using the fact that the stack lan-
guage of a pushdown automaton is regular, we obtain that the language of type r—
generated by an SE-system of type (r,r, f) is regular.

Keywords: formal languages, pushdown automata, stack languages.

1 Preliminaries

Synchronized extension systems (SE-systems, for short) have been introduced
in [2] as 4-tuples G = (V, Ly, Lo, S), where V' is an alphabet and L;, L, and
S are languages over V. L; is called the initial language, Lo the extending
language, and S the synchronization set of G. For an SE-system G, define the
binary relations =¢,, =g, =g, and =¢ ;- over V* as follows:

(i) u=g, viff (Gw € Ly)(3s € S)(Fz,y € V)(u =25 ANw = sy A v = zsy);
(i) u =g, viff (Gw € Ly)(Is € S)(Fz,y € V*)(u = s ANw = sy Av = zy);
(i) u =gy viff (Jw € Ly)(3s € S)(Fz,y € V*)(u = sz A w = ys A v = ysz);

I B-mail:fitiplea@infoiasi.ro
2E-mail: em@Qcs.uta.fi. Work supported by the Academy of Finland (Project
35025).

(iv) u =gy viff (Jw € Ly)(Is € S)(Fz,y € V*)(u = sz Aw =ys Av = yzx).

In an SE-system G = (V| Ly, Ly, S), the words in S act as synchronization
words; they can be kept or neglected in the final result. r, »—, [and [~ are
called (basic) modes of synchronizations. They can be used to define another
four new modes of synchronization, (I,7), (I",r), (I,r~) and (I",77), by a
disjunctive combination. For example, the relation = ¢ ;- ,) is defined by

u=gue-nv it u=g-v V u=qg, 0.

Whenever an SE-system G is understood from the context we omit the sub-
script G from the notation of the relations above and, as usual, by = we
denote the reflexive and transitive closure of the binary relation =. A deriva-
tion u =, v, where z is a mode of synchronization, is called an z-derivation (of
u into v, or of v from u, or of v, or from). The language of type = generated
by an SE-system G = (V, Ly, Ly, S), where x is a mode of synchronization, is
defined by
L*(G)={veV*FueE L : ug, v}

Let G = (V, Ly, Ly, S) be an SE-system and let py, po and ps be predicates
on P(V*) 3. We say that G is of type (p1,p2,p3) if the formula py(L;) A
po(Ls) A p3(S) holds true. We shall use the abbreviation f (i, r, cf, cs, rec,
re, respectively) for the predicate “f(L) iff L is finite (infinite, regular, context-
free, context-sensitive, recursive, recursively enumerable, respectively)”.

We consider the concept of a pushdown automata (pda, for short) as in [1].
That is, a pda over an alphabet V is a 5-tuple A = (Q, Z,i, K,T), where @
is the set of states, Z is the stack alphabet, i € QQ x Z* is the initial internal
configuration, K C @) x Z* is a set of accepting internal confugurations, and
T is a subset of (VU{A}) x Q x Z x Z* x @ (each element of T being called
a transition rule).

The elements of @ x Z* (V* x @ x Z*) are called internal configurations
(configurations) of A. The set of internal accepting configurations are of the
form K = F' x Z*, where F is a subset of (), called the set of accepting states.
The transition relation over configurations, induced by A, is defined by:

(ax,q,wz) — (z,¢,wa) & (a,q,2,0,q) €T.

It is also convenient to denote (g, w) - (¢/,w') instead of (z, ¢, w) = (A, ¢, w").
The stack language of A is defined as being the language

Stack(A) ={w € Z*|qz,y € V*, g€ Q,Ikc K: i 5 (q,w) > k).

3 A predicate on a non-empty set A is a function from A into the set {0, 1}.

The notation u <, v means that the word u is a suffiz of the word v.

2 The Result

In [1] it is shown that, for each mode of acceptance, the stack language of a pda
is regular. We use this result to show that for any SE-system of type (r,r, f),
the language L™ (G) is regular. This fact can be considered as a converse of a
result established in [2].

Theorem 1 For any SE-system of type (r,r, f), the language L™ (G) is reg-
ular.

Proof. Let G = (V, Ly, Ly, S) be an SE-system of type (r,7, f), and G; =
(Va, Vi, X3, P1) and Gy = (V2,V#, X2, P,) right linear grammars generat-
ing the languages L; and Ls, respectively. We may assume that these two
grammars have distinct sets of nonterminals.

Define the following pda A = (@, Z,i, K, T) over an alphabet with one symbol
T

Q={g0,0}U{¢"Fs € §: &' <su s}
Z ={z} UV UV} UVE, where 2 is a new symbol;
- 1= (qo, 20);
- K={a}x7z%
— T contains the following groups of rules:
- (2, 90, 20, 20X, G0)
(inserts XJ in the stack in order to start simulating a derivation in G);

(x,q0,A,aB,q), if A—aB € P,

(a derivatation step in G)

(Iv qo, A7 a, q1)7 (Z’, qo, A7 a, qA)a ifA—ac Pl

(ends the derivation with acceptance in state g, or prepares a synchro-
nization in state ¢*);

! ! . .
- (z,q%,a,\,q*), whenever s’ and as’ are suffixes of some synchronization
words
(tries to find a synchronization word as a suffix of the stack word);

’ (:Ua q)\a a, ana qO)a ifaesS
(A is a synchronization word and, therefore, any word in Ly could be cate-
nated to the stack word)

- (z,q%,b,bX2,q*), ifas’ € S

(as’ is a synchronization word and, therefore, any word as'v € Ly could
be catenated to the stack word)

- (2,q%',A,aB,q¢*),if A— aB € Py and s’ # \
(checks the synchronization with a word in L)

- (z,q*, A aB,q), if A— aB € Py
(the synchronization is done)

’ (x’qa’Aaaaql)a lfA — a P2
(accepts in the case where the synchronization word is in Ls)

' (537610714:@37(]0), if A — a e P2
(continues the derivation in Gy after synchronization)

’ (qu()v A7 a, q1)7 (.T, qo, A,(Z, q/\)a ifA—ac P2
(ends the derivation with acceptance in state g, or prepares a synchro-
nization in state ¢*).

It is not difficult to see that the stack language of A is {zp}L" (G). Therefore,
according to [1], this language is regular. Since the family of regular languages
is closed under left derivatives, we can conclude that L™ (G) is regular.

The construction in the proof of the theorem above cannot be extended to the

case of infinite sets of synchronization words because the set of states of a pda
should be finite.

References

[1] J.-M. Autebert, J. Berstel, and L. Boasson. Context-Free Languages and
Pushdown Automata, In: G. Rozenberg and A. Salomaa, (eds.), Handbook of
Formal Languages, vol. 1, Springer, 1997, pp. 111-174.

[2] F.L. Tiplea, E. Makinen, and C. Apachite. Synchronized Extension Systems,
Technical Report A-2000-1, Dept. of Computer and Information Scieces,
University of Tampere, Finland, January 2000. (Submitted to Acta Inform.)

