
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

SYNCHRONIZED EXTENSION

SYSTEMS

Ferucio Laurent�iu T� iplea, Erkki M�akinen

and Corina Apachite

DEPARTMENT OF COMPUTER AND

INFORMATION SCIENCES

UNIVERSITY OF TAMPERE

REPORT A-2000-1

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER AND

INFORMATION SCIENCES

SERIES OF PUBLICATIONS A

A-2000-1, JANUARY 2000

REVISED DECEMBER 2000

SYNCHRONIZED EXTENSION

SYSTEMS

Ferucio Laurent�iu T� iplea, Erkki M�akinen

and Corina Apachite

University of Tampere

Department of Computer and Information Sciences

P.O.Box 607

FIN-33014 University of Tampere, Finland

ISBN 951-44-4743-3

ISSN 1457-2060

Synchronized Extension Systems 1

Ferucio Laurent�iu T� IPLEA (a Erkki M�AKINEN (b

Corina APACHITE (a

(a Faculty of Computer Science
\Al. I. Cuza" University of Ia�si

6600 Ia�si, Romania
E-mail: fltiplea@infoiasi.ro

(b Department of Computer and Information Sciences
P.O. Box 607, FIN-33014 University of Tampere, Finland

E-mail: em@cs.uta.fi

Abstract

Synchronized extension systems (SE-systems, for short) are 4-tuples
G = (V; L1; L2; S), where V is an alphabet and L1, L2 and S are languages
over V . They generate languages extending L1 by L2 to the left or to the
right, and synchronizing on words in S. Such systems appear naturally
when considering stacks, queues, grammar-like generative devices, splicing
systems, zigzag-codes etc.

1 Introduction

There are many cases where we need to extend some words to the right (or to
the left), by taking into consideration some of the last letters of the word. For
example, the words in a pushdown stack are generated by such a rule: only the
last letter is used for synchronization (considering the top of the stack word as
its right end).

We generalize this idea by introducing the concept of an SE-system and
provide several examples to show that our SE-systems are poweful enough to
handle various generative devices. Then we study some of their basic properties
and generalize a theorem in [2] regarding the regularity of the stack language
of a pushdown automaton. Encoding by a code and encoding by a zigzag-code
means generation of a word by a (proper) synchronized extension to the right.
This topic is discussed in sections 4 and 5. Finally, we generalize SE-systems in
such a way that also splicing systems can be handled by them.

We recall now a very few basic concepts and notations on formal languages
(for further details the reader is referred to [13]). For a �nite non-empty set

1The work of the �rst author was carried out while visiting Universit�at Augsburg by a
grant from Deutschen Akademien der Wissenschaften (Germany).
The work of the second author was supported by the Academy of Finland (Project 35025).

1

V , called alphabet, V � is the free monoid generated by V under the catenation
operation, and � is its unity (empty word). V + stands for V � � f�g. The
notation u �pref v (u �suff v) means that the word u is a pre�x (suÆx) of the
word v.

(Chomsky) grammars will be considered as 4-tuples G = (VN ; VT ; X0; P),
where VN and VT are the alphabets of nonterminals and terminals, resp., X0 2
VN is the axiom, and P is the set of productions. Nonterminals will be denoted
by capital letters, while lower case letters are used for terminals. The derivation
relation associated to G is denoted by)G, or by), when G is clear from the
context.

2 SE-systems

2.1 De�nitions ans Examples

De�nition 2.1.1 A synchronized extension system (SE-system, for short) is
a 4-tuple G = (V; L1; L2; S), where V is an alphabet and L1, L2 and S are
languages over V . L1 is called the initial language, L2 the extending language,
and S the synchronization set of G.

De�nition 2.1.2 Let G = (V; L1; L2; S) be an SE-system. De�ne the binary
relations)G;r,)G;r�,)G;l and)G;l� over V � as follows:

(i) u)G;r v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = xs ^ w = sy ^ v = xsy);

(ii) u)G;r� v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = xs ^ w = sy ^ v = xy);

(iii) u)G;l v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = sx ^ w = ys ^ v = ysx);

(iv) u)G;l� v i� (9w 2 L2)(9s 2 S)(9x; y 2 V �)(u = sx ^ w = ys ^ v = yx).

In an SE-system G = (V; L1; L2; S), the words in S act as synchronization
words; they can be kept or neglected in the �nal result. r, r�, l and l� are called
(basic) modes of synchronizations. They can be used to de�ne another four new
modes of synchronization, (l; r), (l�; r), (l; r�) and (l�; r�), by relational union.
For example, the relation)G;(l�;r) is de�ned by:

u)G;(l�;r) v i� u)G;l� v _ u)G;r v:

A derivation u
�
)x v, where x is a mode of synchronization, is called an

x-derivation (of u into v, or of v from u, or of v, or from u). Two x-derivations

u1)x u2)x � � �)x un

and
u01)x u

0
2)x � � �)x u

0
m

are called distinct if n 6= m or there is an i such that ui 6= u0i.

2

De�nition 2.1.3 The language of type x generated by an SE-system G =
(V; L1; L2; S), where x is a mode of synchronization, is de�ned by:

Lx(G) = fv 2 V �j9u 2 L1 : u
�
)G;x vg:

De�nition 2.1.4 Let G = (V; L1; L2; S) be an SE-system and let p1, p2 and p3
be predicates on P(V �) 2. We say that G is of type (p1; p2; p3) if the formula
p1(L1) ^ p2(L2) ^ p3(S) holds true.

We shall use the abbreviation f (reg) for the predicate \L is �nite (regular)".

Example 2.1.1 Let G = (VN ; VT ; X0; P) be a context-free grammar. We con-
sider the SE-system G0 = (V; L1; L2; S), where:

{ V = VN [VT ,

{ L1 = fX0g,

{ L2 = fu�uAju 2 V �
T ; A! � 2 Pg,

{ S = fuAju 2 V �
T ; A 2 VNg.

Then, u1Au2)G u1�u2 i� u1Au2)G0;l� u1�u2, for every u1 2 V �
T , u2; � 2 V �

and A 2 VN (the derivations in G are considered leftmost). Therefore we have
L(G) = Ll�(G0) \ V �

T .

Example 2.1.2 Let G = (VN ; VT ; X0; P) be a regular (right-linear) grammar.
We consider the SE-system G0 = (V; L1; L2; S), where:

{ V = VN [VT ,

{ L1 = fX0g,

{ L2 = fAaBjA! aB 2 Pg [fAajA! a 2 Pg [fAjA! � 2 Pg,

{ S = VN .

Then, G0 is of type (f; f; f) and L(G) = Lr�(G0) \ V �
T .

2.2 SE-systems and Pure Grammars

It is argued [3, 11] that the custom of dividing the alphabet of a grammatical
system originates from the linguistic background of formal language theory and
in the fact, it would be more natural to study rewriting systems that do not
make a di�erence between terminals and nonterminals. So called pure grammars
do not have nonterminal symbols, and their generative capacity di�ers from that
of the corresponding Chomsky-type grammars.

2A predicate on a non-empty set A is a function from A into the set f0; 1g.

3

A pure grammar is a system H = (�; P; �) where � is an alphabet, the set
of axioms � is a �nite subset of �+, and P is a �nite set of productions of the
form x ! y, where x and y are words over �. Relation)H (\yields directly")
and its re
exive transitive closure)�

H are de�ned in �� as usual. The language
generated by a pure grammar H = (�; P; �) is de�ned as ([6, 11])

L(H) = f�j9� 2 � : �)�
H �g:

SE-systems are \pure" in the sense they do not have separate alphabets of
terminal and nonterminal symbols. In this section we discuss the relationship
between SE-systems and pure grammars. Since we suppose that a pure grammar
has a �nite set � of initial words, we consider here only SE-systems of the type
(f; x; x), i.e., SE-systems with a �nite set L1.

Pure grammars are normally divided into subclasses depending on the form
of their productions (e.g. pure context-free grammars and pure length increasing
grammars [11]). However, the notation of SE-systems is so powerful that we can
handle all pure grammars together.

Let H = (�; P; �) be a pure grammar. We de�ne an SE-system G =
(V; L1; L2; S) such that L(H) = Lr�(G) \ ��. We set

{ V = � [f#g, where # is a new symbol,

{ L1 = �f#g [�,

{ L2 = fxu#yu#; xu#yu j u 2 �� ^ x! y 2 Pg,

{ S = fxu#ju 2 �� ^ (9y)(x ! y 2 P)g.

Therefore, we have

�
�
)H � i� �#

�
)G;r� �;

for all �; � 2 ��. Hence, we have L(H) = Lr�(G) \ ��.
We have proved the following result.

Theorem 2.2.1 All pure languages can be written as an intersection between
a language of type r� generated by an SE-system and a regular language.

A pure regular system ([4]) is a pure grammar H = (�; P; �) in which rewrit-
ing is restricted to the left hand side end of words, i.e., x)H y if and only if
x = uw, y = vw and u! v 2 P , for some u; v; w 2 ��.

Example 2.2.1 Let H = (�; P; �) be a pure regular system. We can de�ne an
SE-system G = (V; L1; L2; S) of type (f; f; f) such that L(H) = Ll�(G) \ ��.
Namely, we can set

{ V = � [f#g, where # is a new symbol,

4

{ L1 = f#g� [�,

{ L2 = f#v#u; v#u j u! v 2 Pg,

{ S = f#uj9v : u! v 2 Pg.

Now, �
�
)H � i� #�

�
)G;l� �, for all �; � 2 ��. Hence, L(H) = Ll�(G) \��.

2.3 SE-systems and Conditional Grammars

SE-systems of type (reg; f; f) in the mode r of synchronization have the power
of regular grammars. We will show this by establishing a connection with con-
ditional grammars ([5]).

Let L be a family of languages. An L-conditional grammar of type i (i =
0; 1; 2; 3) is a couple
 = (G;'), where G = (VN ; VT ; X0; P) is a grammar of
type i and ' is a function from P into P((VN [VT)

�) \ L. The derivation
relation induced by
 is de�ned by

x)
 y , x = x1�x2 ^ y = y1�y2 ^ �! � 2 P ^ x 2 '(�! �)

for every x; y 2 (VN [VT)�, and the language generated by
, denoted by L(
),
is de�ned as usual.

Theorem 2.3.1 For each SE-system G of type (reg; f; f), it is possible to e�ec-
tively construct an L3-conditional grammar
 of type 3 such that L(
) = Lr(G).

Proof Let G = (V; L1; L2; S) be an SE-system of type (reg; f; f). We de�ne
an L3-conditional grammar
 = (G0; ') of type 3, as follows:

{ G0 = (VN ; VT ; X0; P),

{ VN = fX0; Y; Ys; Ys0g,

{ VT = V ,

{ P contains the rules (for each rule we specify also the language associated
with '):

1. for any a 2 V consider the rule X0 ! aX0 with the associated
language V �fX0g;

2. for any a 2 V consider the rule X0 ! a with the associated language
@ra(L1)fX0g, where @ra(L) stands for the set fw j aw 2 Lg;

3. if � 2 L1 then consider the rule X0 ! � with the associated language
fX0g;

4. for any a 2 V and any s 2 S consider the rule X0 ! aYs with the
associated language @ra(L1)fX0g;

5

5. for any s; s0 2 S and any w such that sw 2 L2 consider the rule
Ys ! wYs0 with the associated language V �fsgfYs0g;

6. for any s 2 S and any w such that sw 2 L2 consider the rule Ys ! w
with the associated language V �fsgfYsg.

It is easy to see that
 is an L3-conditional grammar of type 3 and L(
) = Lr(G).
2

As languages generated by L3-conditional grammars of type 3 are regular
([12]), we obtain that languages generated by SE-systems of type (reg; f; f) in
the mode r of synchronization, are regular, too. A more general result will be
developed in the next section.

3 Some Basic Properties

For a word u, by eu we denote the mirror image of u. We extend this unary
operation to languages, as usual.

If G = (V; L1; L2; S) is an SE-system, then eG = (V; eL1; eL2; eS) is called the

mirror image of G. It is clear that if G is of type (p1; p2; p3), then eG is of the
same type i�

(p1(L1) , p1(eL1)) ^ (p2(L2) , p2(eL2)) ^ (p3(S) , p3(eS)):
Remark 3.1 Let G = (V; L1; L2; S) be an SE-system. Then, Ll(G) =

g
Lr(eG)

and Ll
�

(G) =
g

Lr�(eG).
Remark 3.2 Let G = (V; L1; L2; S) be an SE-system.

(1) We may assume that � 62 L2 without changing any of the languages gen-
erated by G.

(2) If L2 is �nite, then S can be considered �nite without changing any of the
languages generated by G. Indeed, the set

S0 = fs 2 Sj9v 2 L2 : s �pref v _ s �suff vg

is �nite and the only synchronization words that can be used in derivations
are those from S0. Therefore, we can replace S by S0 without changing any
of the languages generated by G.

However, if S is �nite then we cannot generally replace L2 by a �nite
language.

(3) If S = f�g, then Lr(G) = Lr
�

(G) = L1L
�
2.

6

(4) If S is a pre�x code 3, then Lr(G) = Lr
�

(G0), where G0 = (V; L1; L
0
2; S)

and L02 = fssvjs 2 S; sv 2 L2g.

(5) If S = L2 and L2 is a pre�x code, then Lr(G) = L1 and Lr
�

(G) =
L1 [(L1=L2)

4.

(6) Let G0 = (V [f#g; L1f#g; L02f#g; Sf#g), where L02 = fs#sv#js 2
S; sv 2 L2g. Then,

u)G;r v , u#)G0;r� v#;

for all u; v 2 V �, which shows that Lr(G) = @r#(L
r�(G0)).

Let G = (V; L1; L2; S) be an SE-system. We want to de�ne a new SE-system
G0 such that the r�-synchronization in G0 is always possible by using at most
two symbols and, each time, either one symbol is deleted or the last one is
changed or one new symbol is appended. De�ne the following sets:

� V� = f�s0 j9s 2 S : s0 �suff sg, and

V� = f�v0 j9s 2 S; 9v 2 V � : sv 2 L2 ^ v0 �suff vg;

� S0 = fa�s0 ja 2 V; 9s 2 S : as0 �suff sg [f�sjs 2 Sg [V�;

� L01 = fu�� ju 2 L1g;

� L02 = fa�s0 �as0 ja�s0 2 S0g[

f�s �v js 2 S; v 2 V � : sv 2 L2g[

f�av0a�v0 ja 2 V; �av0 2 S0g[

f����g.

Let G0 = (V [V� [V�; L
0
1; L

0
2; S

0). Any r�-derivation in G,

u = u0s)G;r� u0v;

where s 2 S and sv 2 L2, can be simulated in G0 by the following r�-derivation:

1. if s = �, then
u��)G0;r� u�v

(a) if v = �, the above derivation can be continued by

u��)G0;r� u�v = uv��

3A pre�x code over an alphabet V is a subset of words over V such that no word in this
subset is a proper pre�x of any other word in this subset.

4A=B denotes the right quotient of A by B.

7

(b) if v = v1 � � � vl 2 V l, l � 1, the above derivation can be continued by

u�v1���vl)G0;r� uv1�v2���vl

�
)G0;r� uv1 � � � vl��)G0;r� uv��

2. if s = s1 � � � sk 2 V k, k � 1, then

u0s1 � � � sk��)G0;r� u0s1 � � � sk�1�sk

�
)G0;r� u0�s1���sk)G0;r� u0 �v :

From this point the derivation is continued as in the cases above.

Then it is easy to see that we have

Lr
�

(G) = @r
��

(Lr
�

(G0)):

If we replace the set L02 by L
0
2 [f�aaja 2 V; �a 2 S0g, then we have

Lr
�

(G) = Lr
�

(G0) \ V �:

We say that in the �rst case G and G0 are @-equivalent, and in the second case,
\-equivalent.

The SE-system G0 has the following features:

(i) the alphabet is divided into three sets: V , V�, and V�;

(ii) L01 � V �V� [V �V�;

(iii) L02 � V V�V� [V�V V� [V�V� [V�V�;

(iv) S0 � V� [V� [V V�;

(v) there is a special symbol �� 2 V� which \closes" any well-formed r�-
derivation, and which is used to establish the @-equivalence.

The above facts lead to the following conclusions:

(c1) each intermediate word in any r�-derivation is of the form u� or u�, for
some u 2 V �, � 2 V� and � 2 V�;

(c2) each intermediate word u� can be modi�ed in one derivation step with
one of the next three variants:

{ if � is a �-symbol, then delete the last symbol of u (and move the
�-symbol one position to the left { the �-symbol may be changed
into a new �-symbol);

{ change the �-symbol into a �-symbol, and vice versa;

{ if � is a�-symbol, then append one symbol from V to u (and move the
�-symbol one position to the right { the �-symbol may be changed
into a new �-symbol).

8

We say that an SE-system like G0 de�ned above is in the canonical form.
Therefore, any SE-system is equivalent to an SE-system in the canonical form.

If an SE-system in the canonical form has the additional property that L1

is �nite, then we say that it is in the strong canonical form. It is easily seen
that such systems can be transformed into equivalent systems where jL1j = 1
(by adding a �nite number of words to the sets L2 and S). From now on we
will assume that any SE-system in the strong canonical form has this property.
Moreover, we may assume that

L1 =

�
fu�g; if u 6= �
f�g; otherwise.

Example 3.1 The SE-system in Example 2.1.2 is in the strong canonical form;
it is \-equivalent to a right-linear grammar. We can add a new symbol, �, and
transform each word Aa 2 L2, where A! a 2 P , into the word Aa�, and each
word A 2 L2, where A! � 2 P , into the word A�. Then, the system obtained
is @-equivalent to a right-linear grammar.

Lemma 3.1 Any SE-system of type (reg; reg; f) is @-equivalent to an SE-system
in the strong canonical form of type (f; f; f).

Proof Let G = (V; L1; L2; S) be an SE-system of type (reg; reg; f), and
G1 = (V 1

N ; V
1
T ; X

1
0 ; P1) and G2 = (V 2

N ; V
2
T ; X

2
0 ; P2) be right-linear grammars

generating the languages L1 and L2, respectively. We may assume that V 1
T [

V 2
T � V and V \ (V 1

N [V 2
N) = ; = V 1

N \ V 2
N .

De�ne the SE-system G0 = (V [V� [V�; L
0
1; L

0
2; S

0) as follows:

� V� = f�s0 j9s 2 S : s0 �suff sg, and

V� = V 1
N [V 2

N [fAs0 jA 2 V 2
N ; 9s 2 S : s0 �suff sg;

� S0 = fa�s0 ja 2 V; 9s 2 S : as0 �suff sg[

f�sjs 2 Sg[

fAas0 ja 2 V; A 2 V 2
N ; 9s 2 S : as0 �suff sg[

fA�jA 2 V 2
Ng[

V 1
N [V 2

N ;

� L01 = fX1
0g;

� L02 = fAaBjA! aB 2 P1g[

fAa�� jA! a 2 P1g[

fa�s0 �as0 ja�s0 2 S0g[

f�sX
2
0sjs 2 Sg[

fAas0Bs0 jA! aB 2 P2g[

9

fB�BjB 2 V 2
Ng[

fAaBjA! aB 2 P2g[

fAa�� jA! a 2 P2g.

G0 is in the strong canonical form and it is of type (f; f; f). Moreover, Lr
�

(G) =

@r
��

(Lr
�

(G0)). 2

We will establish a connection between SE-systems and pushdown automata
(pda, for short). For the de�nition of a pda, we follow [2]. That is, a pda over an
alphabet V is a 5-tuple A = (Q;Z; i;K; T), where Q is the set of states, Z is the
stack alphabet, i 2 Q�Z� is the initial internal con�guration,K � Q�Z� is a set
of accepting internal con�gurations, and T is a subset of (V [f�g)�Q�Z�Z��Q
(each element in T being called a transition rule).

The elements of Q � Z� (V � � Q � Z�) are called internal con�gurations
(con�gurations) of A. The set of internal accepting con�gurations are of the
form K = F � Z�, where F is a subset of Q, called the set of accepting states.
The transition relation over con�gurations, induced by A, is de�ned by:

(ax; q; wz)! (x; q0; w�) , (a; q; z; �; q0) 2 T:

It is also convenient to denote

(q; w)
x
! (q0; w0)

instead of
(x; q; w)

�
! (�; q0; w0):

The stack language of A is de�ned to be the language

Stack(A) = fw 2 Z�j9x; y 2 V �; 9q 2 Q; 9k 2 K : i
x
! (q; w)

y
! kg:

Lemma 3.2 For any SE-system G in the strong canonical form and of type
(f; f; f), a pda AG can be e�ectively constructed such that

@r
�
(Lr

�

(G)) = @lz0(Stack(AG));

for some symbols � and z0.

Proof Let G = (V [V� [V�; fX0g; L2; S) be an SE-system in the strong
canonical form and of type (f; f; f), where

{ L2 � V V�V� [V�V V� [V�V� [V�V�;

{ S � V� [V� [V V�;

{ X0 2 V�.

10

Assume that� 2 V� is the \closing" symbol ofG. De�ne a pdaA = (Q;Z; i;K; T)
over an alphabet with one symbol x as follows:

{ Q = V� [V�;

{ Z = V [fz0g, where z0 is a new symbol;

{ i = (X0; z0);

{ K = f�g � Z�;

{ T contains the following groups of rules:

{ (x;�1; a; �;�2), for any a�1 �2 2 L2;

{ (x;�1; z; za;�2), for any z 2 Z and any �1a�2 2 L2;

{ (x;�; z; z;�), for any z 2 Z and �� 2 L2;

{ (x;�; z; z;�), for any z 2 Z and �� 2 L2.

It is not diÆcult to see that this pda ful�ls the lemma. 2

The rewriting problem for SE-systems is the following:

Instance: An SE-system G in the strong canonical form and �1; �2 2 V� [V�;
Question: �1

�
)G;r� �2 ?

Theorem 3.1 The rewriting problem for SE-systems in a strong canonical form
and of type (f; f; f) is decidable.

Proof Modify the pda in the proof of Lemma 3.2 as follows:

{ i = (�1; z0);

{ K = f�2g � f�g.

Then, it is easy to see that

�1
�

)G;r� �2 , L(AG) 6= ;:

As the emptiness problem for context-free languages is decidable, we conclude
that the rewriting problem for SE-systems in the strong canonical form and of
type (f; f; f) is decidable, too. 2

Theorem 3.2 For every SE-system G in the strong canonical form and of type
(f; f; f), the language @r

�
(Lr

�

(G)) is regular, where � is the closing symbol of
G.

11

Proof Let G be as in the proof of Lemma 3.2. For any word w = a1 � � � an 2
@r
�
(Lr

�

(G)) there is an r�-derivation

X0
�

)r� w � :

Decompose this r�-derivation into steps such that, at the last of each of these
steps, one letter or w is de�nitely set on its position (that is, no further derivation
steps are applied):

X0
�

)r� �1)r� a1�1
�

)r� a1�2)r� a1a2�2
�

)r�

� � �
�

)r� a1 � � � an�1�n)r� a1 � � �an�n)r� a1 � � �an � :

Now, each transitive sequence of steps (marked by \�") will be condensed just
into a single derivation step. More precisely, we de�ne the right-linear grammar
G0 = (VN ; VT ; X0; P) as follows:

� VT = V , VN = V� [V�;

� P contains the following rules:

{ �1 ! �2, for all �1;�2 2 VN such that �1
�

)r� �2; these rules can
be e�ectively constructed because the rewriting problem is decidable
for such SE-systems;

{ �1 ! a�2, for all �1a�2 2 L2;

{ �! �, for all �� 2 L2.

It is clear that L(G0) = @r
�
(Lr

�

(G)), which proves the theorem. 2

Corollary 3.1 For any SE-system G of type (reg; reg; f), the language Lr
�

(G)
is regular.

Proof From Lemma 3.1, Theorem 3.2 and the fact that the family of regular
languages is closed under @a-operation. 2

Corollary 3.2 For any SE-system G of type (reg; reg; f), the language Lr(G)
is regular.

Proof From Remark 3.2(6) and Corollary 3.1. 2

Corollary 3.3 For any pda A, Stack(A) is regular.

Proof For any pda A we can e�ectively construct a @-equivalent SE-system
of type (f; f; f) to generate its stack language. Then, the result follows from
Corollary 3.2. 2

12

4 Ambiguous and Non-returning SE-systems

De�nition 4.1 An SE-system G is called x-ambiguous, where x is a mode of
synchronization, if there is a word v having at least two distinct x-derivations
in G.

If an SE-system is not x-ambiguous then we will say that it is x-nonambiguous.

Remark 4.1 The l�-ambiguity problem is undecidable because context-free gram-
mars can be simulated step by step by SE-systems under the l� mode of syn-
chronization (Example 2.1.1), and the ambiguity problem for such grammars is
undecidable ([9]).

In follows from Remark 3.1 that the problem of r�-ambiguity is undecidable
too (and, clearly, any problem of x-ambiguity, where x includes l� or r�).

Remark 3.2(6) shows us how to express Lr by means of Lr
�

. We will consider
now the converse of this.

De�nition 4.2 An SE-system G = (V; L1; L2; S) is said to be non-returning if
the following property holds:

(8s1 2 S)(8v 2 L2)(v = s1v
0) (8s2 2 S)(v0 6<suf s2)):

An SE-system which is not non-returning is called returning.
For an alphabet V let V = faja 2 V g be a copy of V (V \ V = ;). Then,

for u = a1 : : : an 2 V � denote by u the word a1 : : : an.
If an SE-system G is non-returning, then any derivation u

�
)r� v is of the

form
u = u01s1) u01v

0
1 = u01v

00
1 s2) u01v

00
1 v

0
2 = u01v

00
1v

00
2 s3) � � �

u01v
00
1 : : : v

00
k�2v

0
k�1 = u01v

00
1 : : : v

00
k�2v

00
k�1sk) u01v

00
1 : : : v

00
k�2v

00
k�1v

0
k = v;

where siv
0
i 2 L2 and v0j = v00j sj+1 for any 1 � i � k and 1 � j � k � 1. This

shows us that the word v is obtaining from u01 by the catenation of the words
v001 ; : : : ; v

00
k�1; v

0
k. Let v

0 = u01s1v
00
1 s2v

00
2 � � � v

00
k�1skv

0
k, u

0 = u01s1, and

{ L01 = fu0sju0s 2 L1; s 2 Sg,

{ L02 = fs1v00s2js1v00s2 2 L2; s1; s2 2 Sg [fs1v0js1v0 2 L2; s1 2 Sg,

{ S = fsjs 2 Sg.

Then, it is easy to see that u0)G0;r v
0, where G0 = (V [V ; L01; L

0
2; S), and if

we consider the homomorphism h : (V [V)� ! V � de�ned by h(x) = x and
h(x) = �, for any x 2 V , we get h(u0) = u and h(v0) = v. Therefore, we have:

Theorem 4.1 For any non-returning SE-system G = (V; L1; L2; S) we have
Lr� = h(Lr(G0)), where:

13

{ G0 = (V 0; L01; L
0
2; S

0),

{ V 0 = V [V ,

{ L01 = L1 [(
S
s2S(@

r
s (L1))fsg),

{ L02 = (
S
s1;s22S

fs1g@ls1(@
r
s2
(L2))fs2g) [(

S
s2Sfsg(@

l
s(L2))),

{ S0 = S,

{ h(x) = x and h(x) = � for all x 2 V .

Theorem 4.2 It is decidable whether or not a given non-returning SE-system
of type (f; f; f) is r�-ambiguous.

Proof Let G = (V; L1; L2; S) be a non-returning SE-system. We de�ne
a sequence of sets, C1; C2; : : :, each of which consists of triples (�1; �2; �3) 2
V � � (S [f�g)� (S [f�g), as follows (the symbol \�" is a new one):

1. C1 contains all the triples of the form:

(a) (x; s1; s2), where x 2 V �, s1; s2 2 S, and there are u1; u2 2 L1 and
� 2 V � such that u1 = �xs1 and u2 = �s2;

(b) (x;�; s2), where x 2 V �, s2 2 S, and there are u1; u2 2 L1 and
� 2 V � such that u1 = �x, u1 62 V �S and u2 = �s2;

(c) (x; �; �), where x 2 V � and there are u1; u2 2 L1 such that u1 = u2x;

2. Suppose that the set Ci, i � 1, has been already de�ned and it contains
triples only of the form (x; s1; s2) or (x;�; s2) or (x;�;�), where x 2 V �

and s1; s2 2 S. Then, Ci+1 is the set of all triples of the form:

(a) (y; s3; s1), if there are (x; s1; s2) 2 Ci and a sequence

s2v1si1 ; : : : ; sik�1
vks3 2 L2;

with si1 ; : : : ; sik�1
2 S, such that xy = v1 � � � vk and x 6�pref v1 � � � vk�1;

(b) (y;�; s1), if there are (x; s1; s2) 2 Ci and a sequence

s2v1si1 ; : : : ; sik�1
vk 2 L2;

with si1 ; : : : ; sik�1
2 S and vk 62 V �S, such that xy = v1 � � � vk and

x 6�pref v1 � � � vk�1;

(c) (y; s3;�), if there are (x;�; s2) 2 Ci and a sequence as in (a);

(d) (y;�;�), if there are (x;�; s2) 2 Ci and a sequence as in (b);

14

The sets de�ned above are �nite and each of them can be e�ectively con-
structed. Moreover, there are i < j (i; j � 1) such that Cj = Ci. Therefore,S
i�1 Ci is �nite.
We construct a graph G which has a node for each element in the set

S
k�1 Ci

and whose arcs are of the form ((x; s1; s2); (y; s3; s1)), where (x; s1; s2) 2 Ci for
some i and (y; s3; s1) is obtained from (x; s1; s2) as described above. The nodes
of the form (�; �2; �3) with �2 = �3 or �2; �3 2 f�;�g are called terminal nodes.
Otherwise, a node is a nonterminal node.

Then, it is easy to see that G is r�-ambiguous i� there is a path in G from
a node in C1 to a terminal node, containing at least one nonterminal node. 2

Remark 4.2 One can easily prove, using a similar construction as that in
the proof of Theorem 4.1, that the l�-ambiguity problem is decidable for non-
returning SE-systems of type (f; f; f).

5 SE-systems and Codes

An x-derivation u1)x u2)x � � �)x un is called reduced if it does not contain
cycles, that is, there are no i and j such that i 6= j and ui = uj . Clearly, any
x-derivation can be reduced in di�erent ways. For example, the x-derivation

u1)x u2)x u3)x u1)x u4)x u5)x u3;

where u1; : : : ; u5 are assumed pairwise distinct, can be reduced either to

u1)x u4)x u5)x u3

or to
u1)x u2)x u3:

If an SE-system has the property that for any word v there is at most a
reduced x-derivation of v, then it is called weak x-nonambiguous. It is clear
that in a weak x-nonambiguous SE-system G there can exist words v with more
than two x-derivations. But, in this case, all these x-derivations can be reduced,
by removing cycles, to a unique reduced x-derivation.

If a system G is x-nonambiguous, then it is also weak x-nonambiguous, but a
weak x-nonambiguous system is not necessarily x-nonambiguous. It is possible
to decide whether or not a non-returning SE-system of type (f; f; f) is weak
r�-ambiguous by using the graph given in the proof of Theorem 4.1.

In what follows we will make a connection between codes and weak nonam-
biguous SE-systems. Recall �rst the concept of a code ([14]). A code (over an
alphabet V) is a couple (V;C) between an alphabet V and a subset C � V +,
such that:

(8u1; : : : ; um; v1; : : : ; vn 2 C)(u1 � � �um = v1 � � � vn) u1 = v1):

15

We can easily characterize codes by weak nonambiguous SE-systems, as
follows.

Proposition 5.1 A set C � V + is a code over V i� the SE-system (V;C;C; f�g)
is weak r-nonambiguous (or r�-nonambiguous).

Recall now the concept of a z-code ([1], [10]). Let V be an alphabet, X � V +,
and let TX be the set

TX = f((ux; v); (u; xv))ju; v 2 V �; x 2 Xg � (V � � V �)2:

We say that the pair of words (u; v) produces in one step the pair (u0; v0), denoted
by (u; v)!X (u0; v0), if ((u; v); (u0; v0)) 2 TX or ((u0; v0); (u; v)) 2 TX .

A z-factorization over X of a word w 2 V + is a sequence of derivation steps

(u1; v1)!X � � � !X (um; vm)

such that :

(i) u1 = vm = �,

(ii) v1 = um = w,

(iii) (uj ; vj) 6= (uk; vk), 8j 6= k.

A couple (V;X) between an alphabet V and a subset X � V + is called a z-code
(over V) if any word w 2 V + has at most one z-factorization over X .

Proposition 5.2 Let V be an alphabet, X � V +, and let # be a new symbol.
Then, (V;X) is a z-code i� the SE-system

G = (V [f#g; Xf#g; f#gXf#g[Xf##g; f#g [Xf#g)

is weak r�-nonambiguous.

Proof Let G be the SE-system from proposition. It is easy to see that, for
any u; v 2 V � and x 2 X , the following hold:

(a) (u; xv)!X (ux; v) i� u#)G;r� ux#;

(b) (ux; v)!X (u; xv) i� ux#)G;r� u#.

From these two facts we get the proposition. 2

The characterization of (z-)codes by weak nonambiguous SE-systems leads
us to adopt the terminology of an x-code, where x is a mode of synchronization,
for any weak x-nonambiguous SE-system. Under this assumption, (z-)codes are
particular cases of r�-codes.

16

6 A Generalization and Splicing Systems

The concept of an SE-system can be generalized in a natural way as follows.

De�nition 6.1 A generalized synchronized extension system (GSE-system, for
short) is a 4-tuple G = (V; L1; L2; S), where V is an alphabet, L1 and L2 are
languages over V , and S a ternary relation on V �.

For the components of a GSE-system we use the same terminology as for
SE-systems.

Let G be a GSE-system. G induces two derivation relations,)G;r and)G;l,
which are de�ned very similarly to the case of SE-systems. For example,

u)G;r v , (9w 2 L2)(9(s1; s2; s3) 2 S)(u = xs1 ^ w = s2y ^ v = xs3y):

Notice the roles of s1, s2, and s3 in triples (s1; s2; s3) 2 S: s1 and s2 are
used in order that u and v synchronize each other, whereas s3 is the result of
the synchronization.

We can easily see that SE-systems (and their derivation relations) are par-
ticular cases of GSE-systems: S has triples of the form (s; s; s) or (s; s; �).

We will discuss now the \power" of GSE-system by comparing them with
splicing schemes.

A splicing rule over an alphabet V is a 4-tuple (u1; u2; u3; u4) of words over
V ([7], [8]). A splicing scheme is a pair � = (V;R) consisting of an alphabet V
and a set R of splicing rules over V . The splicing scheme � induces a (partially)
binary operation on V �, denoted also by �, as follows:

�(x; y) = fx1u1u4y2 j 9(u1; u2; u3; u4) 2 R : x = x1u1u2x2;
y = y1u3u4y2; z = x1u1u4y2g;

for any x; y 2 V �. This operation can be extended to languages over V � as
usual, and then can be iterated as follows:

� �0(L1; L2) = L1,

� �i+1(L1; L2) = �(�i(L1; L2); L2), 8i � 0,

for all languages L1 and L2. De�ne then ��(L1; L2) =
S
i�0 �

i(L1; L2).
Let � = (V;R) be a splicing scheme and L1, L2 be two languages over V .

De�ne the set

S = f(u1u2�; �u3u4; u1u4)j(u1; u2; u3; u4) 2 R; �; � 2 V �g

and consider the system G� = (V; L1; L2; S). It is clear that we have

��(L1; L2) = Lr(G�):

17

References

[1] Anselmo,M.: Sur les codes zigzag et leur d�ecidabilit�e. Theoret. Comput.
Sci. 74, 341{354 (1990)

[2] Autebert,J.-M., Berstel,J., Boasson,L.: Context-Free Languages and Push-
down Automata. In: Rozenberg, G., Salomaa, A. (eds.), Handbook of For-
mal Languages, vol. 1. Berlin Heidelberg New York: Springer, 1997, pp.
111{174

[3] Bucher,W., Hagauer,J.: It is decidable whether a regular language is pure
context-free. Theoret. Comput. Sci. 26, 233{241 (1983)

[4] B�uchi,J.R.: Regular canonical systems. Arch. Math. Logik Grundlagen-
forsch. 6, 91{111 (1964)

[5] Dassow,J., P�aun,Gh.: Regulated Rewriting in Formal Language Theory.
Berlin Heidelberg New York: Springer, 1989

[6] Gabrielian,A.: Pure grammars and pure languages. Intern. J. Computer
Math. 9, 3{16 (1981)

[7] Head,T.: Formal Language Theory and DNA: an Analysis of the Generative
Capacity of Speci�c Recombinant Behaviors. Bull. Math. Biology 49, 737{
759 (1987)

[8] Head,T., P�aun,Gh., Pixton,D.: Language Theory and Molecular Genetics.
In: Rozenberg, G., Salomaa, A. (eds.), Handbook of Formal Languages,
vol. 2. Berlin Heidelberg New York: Springer, 1997, pp. 295{360

[9] Hopcroft,J.E, Ullman,J.D.: Introduction to Automata Theory, Languages,
and Computation. Reading, MA: Addison-Wesley, 1979

[10] Madonia,M., Salemi,S., Sportelli,T.: A Generalization of Sardinas and Pat-
terson's Algorithm to z-codes. Theoret. Comput. Sci. 108, 251{270 (1993)

[11] Maurer,H.A., Salomaa,A., Wood,D.: Pure grammars. Inform. Contr. 44,
47{72 (1980)

[12] P�aun, Gh.: On the Generative Capacity of Conditional Grammars. Inform.
Contr. 43, 178{186 (1979)

[13] Rozenberg,G., Salomaa,A., (eds.): Handbook of Formal Languages, vol. 1.
Berlin Heidelberg New York: Springer, 1997

[14] Salomaa,A.: Jewels of Formal Language Theory. Rockville, MD: Computer
Science Press, 1981

18

