
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

USING OO METRICS AND RIGI

TO EVALUATE JAVA SOFTWARE

TARJA SYST�A AND PING YU

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF TAMPERE

REPORT A-1999-9

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1999-9, JULY 1999

USING OO METRICS AND RIGI

TO EVALUATE JAVA SOFTWARE

TARJA SYST�A AND PING YU

University of Tampere

Department of Computer Science

P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4626-7

ISSN 0783-6910

Using OO Metrics and Rigi to Evaluate Java

Software

Tarja Syst�a

Department of Computer Science

University of Tampere

P.O. Box 607, FIN-33101 Tampere, Finland

cstasy@cs.uta.�

Ping Yu

Department of Computer Science

University of Victoria

P.O. Box 3055, Victoria, BC, V8W 3P6, Canada

pingyu@csr.uvic.ca

July 28, 1999

Abstract

A prototype reverse engineering environment has been built to sup-
port understanding an existing Java software. The static software ar-
tifacts and their dependencies are extracted from Java byte code and
viewed with Rigi reverse engineering environment as a nested graph.
Several software metric values can be calculated from the byte code and
analyzed with Rigi. The metric values can be used to study and struc-
ture the static dependency graph and hence support program compre-
hension. Rigi can be used to examine the metric values and to �nd
software artifacts that have exceptional or extreme values.

1 Introduction

Software maintenance, re-engineering, and reuse are complex and expensive
because of program comprehension di�culties. Thus, the need for software
engineering methods and tools that facilitate program understanding is com-
pelling. Reverse engineering tools provide support for analyzing software
systems so that the software is more understandable. Software metrics play
a signi�cant role in a reverse engineering process. They are used to make

1

numerical measurements of particular aspects of a target software. Metrics
can be applied to support the identi�cation of complex parts of the software
that need restructuring. They can also reveal tightly coupled parts of the
software. Such parts are inexible for modi�cations and reuse. They also
may represent potential subsystems. Identi�cation of subsystems, in turn,
supports program comprehension.

The usage of software metrics is not limited to reverse engineering. In fact,
they have traditionally been used in forward engineering to improve the
quality of the software. For example, software metrics can be used to mea-
sure the complexity of the software design and to predict properties of the
�nal product. They can also be used to predict the amount of testing nec-
essary or the total development costs [9].

In this paper software metrics are used to support reverse engineering of
Java software. A set of selected metrics is used to estimate inheritance re-
lationships, complexity, and communication of a target Java software. A
metrics program is integrated with a prototype reverse engineering environ-
ment used to analyze Java software. The environment supports both static

and dynamic reverse engineering. Static reverse engineering aims modeling
the structure of a target software while dynamic reverse engineering intends
modeling its run-time behavior. The dynamic event trace information is
generated automatically as a result of running the target system under a
debugger. SCED[KMST98] is used to view the event trace as scenario dia-
grams. The static information is extracted from the byte code and analyzed
with Rigi reverse engineering environment[MWT94]. Rigi uses a nested
graph to view the static dependencies. The metrics program calculates val-
ues for selected metrics from the information extracted by the byte code
parser. The metric values calculated can be dumped into a �le or added to
a Rigi graph and used for analyzing the software. In Rigi Tcl/Tk [12] scripts
can be run on the static dependency graph [16]. The scripts can be used to
make queries about the graph or to modify it. The scripts provide a exible
way to analyze the metric values added to the Rigi graph. For example,
by running a script the user can easily focus on parts of the software that
have metric values in a desired value range. Because Tcl is an interpretable
scripting language, the script library of Rigi can be easily extended; new
scripts can be written and added to it dynamically. This allows the user to
write and use scripts that have speci�c tasks, e.g., scripts that support the
analysis of the metric values.

2

A target system has been analyzed using the metrics program and Rigi.
The selected target system, FUJABA [14], is freely available software, de-
veloped in the University of Paderborn, Germany. The primary topic of the
FUJABA project and environment is Round Trip Engineering with UML,
SDM (Story Driven Modeling), Java and Design Patterns. FUJABA pro-
vides editors for de�ning both structural (class diagrams) and behavioral
(activity diagrams, UML activity/story diagrams) aspects of a software.
Furthermore, the Java source code can be generated from the design, which
then can be compiled. FUJABA environment also supports animation of
the designed system through the constructed models. FUBAJA is written
in Java, containing almost 700 classes. The FUJABA version under exami-
nation was 0.6.3-0. The focus during the reverse engineering process was on
studying the structure and complexity of de.uni paderborn.fujaba.uml pack-
age of FUJABA. This package provides classes that implement UML [13, 15]
modeling concepts for a class diagram and activity diagram editors of FU-
JABA. The package contains altogether 56 classes or interfaces.

2 Software metrics

Software metrics are often categorized into product metrics and process met-

rics. Product metrics relate essentially to product size, which can be mea-
sured either in terms of its structure or its modularity. Process metrics
measure e�ort as a function of time [4]. Product metrics are used to con-
trol the quality of the software product, while process metrics are applied
to measure the status and progress of the system design process. Process
metrics can also be used to predict future e�ects or problems. In this paper
the focus is on product metrics.

Product metrics can be categorized further in various ways. They can, for
example, be divided into static metrics and dynamic metrics. Dynamic met-
rics have a time dimension and the values tend to change over time. Thus
dynamic metrics can only be calculated on the software as it is executing.
Static metrics remain invariant and are usually calculated from the source
code, design, or speci�cation.

Some of the product metrics can be used to measure software written in any
language, while some of them can measure a speci�c kind of software only.
OO metrics [8, 4] are used to evaluate object-oriented software. Some of the

3

OO metrics are variations of traditional product metrics used to measure
software written in procedural languages. There are also OO metrics that
cannot be applied for procedural languages, e.g., metrics that measure the
inheritance hierarchy.

When applying software metrics it should be remembered that metric values
calculated should be used as guidelines, not rules. They help the engineer
to recognize parts of the software that might need modi�cations and reim-
plementation. The decision of changes to be made should not rely only on
the metric values.

3 The metrics suite selected

The metrics suite selected contains seven OO metrics. The metrics are cat-
egorized into inheritance metrics, complexity metrics, and communication

metrics. The inheritance metrics measure the inheritance and implementa-
tion hierarchy of the software. Complexity metrics estimate the complexity
of it and communication metrics measure coupling and cohesion between
classes. Compared to the categorization of object-oriented metrics used
in [4], inheritance and complexity metrics falls into a category of module

metrics used to measure procedural complexity of the software, and com-
munication metrics responds to intermodule metrics that measure system
design complexity.

3.1 Inheritance metrics

Inheritance metrics measure the inheritance hierarchy of object-oriented
software. When calculating the values for inheritance metrics both classes
and interfaces are taken into account. Even though interfaces cannot have
actual method bodies, they can have variables. Thus, including interfaces to
the calculations can be argued. For example, information about the number
of classes that implement an interface, i.e., classes that have access to its
variables, might be an important piece of imformation.

4

Figure 1: An example Java inheritance hierarchy.

In Java all the classes eventually inherit the root class java.lang.Object. The
part of the inheritance hierarchy that does not belong to the target system
can and in many cases is longer than the part belonging to the target sys-
tem. For example, assume that the designer wants to implement her own
�le dialog class for selecting �les using jdk's java.awt.FileDialog class. The
inheritance hierarchy in that case is shown in Figure 1. In this research the
system classes are ignored when calculating inheritance metrics. The sys-
tem classes represent a stable part of Java software and hence does not vary
from application to application. Hence, including them to the metrics anal-
ysis does not give any additional information from the software, but it does
make the calculations more complicated and fades the application border.
The primary purpose of software metrics is to de�ne some quality attributes
for the software that can then be used to point out the need of changes and
reimplementation. Including the system classes to the calculations is then
unnecessary since the user has usually no access to the implementation of
system classes.

Two metrics are used to evaluate the inheritance/implementation hierarchy:
Dept of Inheritance Tree (DIT) and Number of Children (NOC). Both of
the metrics are introduced in [1].

5

3.1.1 Depth of Inheritance Tree (DIT)

DIT is a length from the class node to the root of the inheritance tree and
is measured by the number of ancestor classes. The deeper a class is within
the class hierarchy, the greater number of methods and variables it is likely
to inherit. Such classes are typically more complex and their behavior is
di�cult to predict. Deeper inheritance trees constitute greater design com-
plexity since more methods and classes are involved. On the other hand,
they provide more possibilities for potential reuse. DIT primarily evaluates
reuse but also relates to understandability and testability.

DIT is generally calculated either as a maximum or as an average of lengths
of di�erent paths to the root of the inheritance tree. When applied to lan-
guages that support multiple inheritance, e.g., C++, these two approaches
can give very di�erent results and also reveal di�erent aspects of the inheri-
tance hierarchy. In this research the latter approach is used. Java language
does not support multiple inheritance, however, a class can implement sev-
eral interfaces in addition to extending one super class. Interfaces are ba-
sically pure abstract classes that can have variables usable by implement-
ing classes. Since classes/interfaces belonging to jdk are ignored, the root
class/interface is considered to be the one that does not extend/implement
any other class/interface belonging to the target system.

3.1.2 Number of Children (NOC)

NOC is the number of immediate subclasses subordinated to a class in the
class hierarchy. NOC measures reusability of a class and gives an idea of
the potential inuence that a class has on the design.

For a class, NOC is a number of classes that extend the class. For an
interface, NOC is a number of interfaces that extend the interface, added
with a number of classes that implement it.

3.2 Communication metrics

Communication metrics are used to estimate and measure the internal and
external communication of modules. It is commonly accepted that low cou-
pling and high cohesion in a software design lead to better products, e.g., in
terms of reliability and maintainability. This principle is also used in static
reverse engineering tools, for instance, in Rigi, for subsystem composition:

6

a part of the software that has a lot of interactions between its elements but
only few interactions with elements outside the part is a potential subsystem
candidate.

In object-oriented systems the importance of coupling seems to be empha-
sized. First, the tighter the coupling of client objects to a server object,
the harder the e�ects on the clients whenever a crucial aspect of the server
is changed. Second, high coupling between two objects makes it harder to
understand one of them in isolation. Third, high coupling increases the
probability of remote e�ects, where error in one object cause erroneous be-
haviour of other objects. [5]

In this research three metrics are used to measure coupling and cohesion
between classes or objects. These metrics are: Response For a Class (RFC),
Coupling Between Objects (CBO), and Lack of Cohesion in Methods (LCOM).
Chidamber and Kemerer have introduced all of them in [1]. For LCOM we
have adopted a de�nition introduced in [4].

3.2.1 Response For a Class (RFC)

RFC metric looks at the combination of the complexity of a class through the
number of methods and the amount of communication with other classes.
The larger number of methods that can be invoked from a class in respond
to messages, the greater the complexity of the class and the more compli-
cated testing and debugging becomes.

When calculating RFC calls between methods, constructors, and static
blocks are taken into account. The formula used is de�ned next. For a
class C, let Mi be a set of all methods, constructors and static blocks in C.
Let Mo be a set of methods, constructors, and static blocks belonging to
any other classes that are called by the members ofMi. Then RFC for class
C is calculated as the size of a set Mi [Mo.

By the de�nition of RFC all couples with external methods are of equal
strength. However, calling a method of a super class cannot be seen as
harmful as calling methods of other classes. For example, the default con-
structor of the super class is called automatically from the constructors of
subclasses in Java. Furthermore, overloading a method in a subclass typi-
cally contains a call to the overloaded method of the super class. Next we
discuss CBO metric that distinguishes these cases.

7

3.2.2 Coupling Between Objects (CBO)

CBO measures coupling between classes that are not related through in-
heritance. Class A is coupled to class B if methods of A use methods or
variables of B. A class that is very coupled contradicts encapsulation and
prevents reuse. The more independent a class is, the easier it is to be reused.
In order to promote encapsulation, inter-class couples should be kept to a
minimum. A software with a large number of couples becomes sensitive to
changes and therefore di�cult to be maintained.

For calculating CBO, both constructors and methods are taken into account.
Following relationships between two classes that are not in a super class |
subclass relationship are considered to cause coupling: method calls, con-
structor calls, instance variable assignments, or other kind of instance vari-
able accesses (usage). Thus, static blocks need not to be examined.

CBO also has its weaknesses as a measure of object coupling [5]. Direct
access to foreign instance variable has generally been identi�ed as the worst
type of coupling. However, CBO assumes that all the couples are of equal
strength and hence does not distinguish that from, e.g., a method call. More-
over, calling methods of an object is generally considered less harmful than
calling methods of one of its components, and so on.

3.2.3 Lack of Cohesion in Methods (LCOM)

The methods of a class should be logically related. If a class exhibits low
method cohesion it indicates that the design of the class has probably been
partitioned incorrectly. In that case the design could be improved if the
class was split into more classes with individually higher cohesion. LCOM
helps to identify such aws in the design.

The formula for calculating LCOM is presented next. Consider a class C
with methods M1; : : : ;Mn. Let Ii be a set of instance variables used by
method Mi; i = 0 : : :n. For n methods, there are n such sets: I1; : : : ; In.
LCOM metric is given by Chidamber and Kemerer in [1] as \the number of
disjoint sets formed by the intersection of the n sets". This formula would
lead to very small or empty single set if all the intersections are taken into
account. Because of the obvious weakness of the formula, several interpre-
tations of it has been discussed in the literature [7, 3]. A revised version

8

of the formula is presented in [2]. Altogether new formulas for calculating
LCOM have also been introduced, e.g., in [4]:

LCOM� =

�
1

a

Pa
j=1 �(Aj)

�
�m

1�m
;

where Mi; i = 1; : : : ; m is a set of methods, Aj ; j = 1; : : : ; a is a set of at-
tributes, and �(Aj) is the number of methods which access attribute Aj .

In this research the formula presented above and introduced in [4] is used.

3.3 Complexity metrics

Metrics introduced next are used to measure complexity of software. A lot
of metrics fall into this category, e.g., metrics that measure size or logical
structure of the software. One of the most commonly used complexity met-
ric is Lines Of Code (LOC), which simply measures the number of lines
in a method, module, or class. Even though LOC is widely used, partly
because it is easy to calculate, it has been criticized for being too simple
and vague measure. For example, consider a constructor of a dialog class
that is responsible for initializing several GUI components belonging to that
dialog. Such a constructor has typically high LOC value but a very sim-
ple structure; it contains several constructor invocations but has only a few
(if any) repetition or conditional constructs. Should such a constructor be
considered to be complex ? LOC has not been included in the available set
of metrics in this research since the information needed for it can not be
concluded from Java class �les.

3.3.1 Cyclomatic Complexity (CC)

CC measures the logical structure of the software. It is used by several other
metrics. CC is calculated using the following formula:

V (G) = e� n+ 2 � p; (1)

where G is a complexity graph, e is the number of edges in G, n is the
number of nodes in G, and p is the number of disconnected components in
G. The complexity graph G for a single method is a control ow graph.

9

The used formula for calculating CC (1) is adopted from [4] The original
McCabe's cyclomatic complexity metric [10] was based on the control ow
graph as well. The above formula (1) is a variation of that formula, intro-
duced as:

V (G) = e� n+ 2: (2)

3.3.2 Weighted Methods per Class (WMC)

WMC is a sum of complexities of methods of a class. Hence it measures the
size as well as the logical structure of the software. The number of meth-
ods and the complexity of the involved methods are predictors of how much
time and e�ort is required to develop and maintain the class. The larger the
number of methods in a class, the greater the potential impact on inheriting
classes. Furthermore, classes with large number of complex methods are
likely to be more application speci�c, limiting the possibility of reuse. Thus
WMC can also be used to estimate the usability and reusability of the class.

In this research WMC is calculated as a sum of the methods, weighted by
their static complexity. The static complexity is calculated using CC metric.

4 Normalization of metric values

In Section 3 some complexity, communication, and inheritance metrics were
introduced. The complexity of the software can be measured in various
ways. There are several other metrics that can be used in addition to those
discussed in Section 3. A metrics suite typically includes several metrics.
It might, for example, include various complexity metrics. If the values of
those complexity metrics correlate when applied to a certain part of the
software, then the user can be more convinced about the overall complexity
of that part. However, most of the metrics have di�erent ranges of values,
which makes it di�cult to compare the metrics.

For the convenience of comparisons and analysis the generated values for
complexity and communication metrics can be normalized in Rigi by run-
ning a script. Each value is normalized by subtracting the mean form it and
dividing the result by the standard deviation. The changed values will then
have zero mean and unit deviation. The scripts used are relatively presented
next. All the commands beginning with rcl and used in Algorithm 2 belong

10

to the script library of Rigi.

Algorithm 1. Normalizing all communication and complexity metric
values of all the nodes of type Class in a Rigi graph.
Method:

proc java norm metrics f g f

java norm metric WMC
java norm metric CC
java norm metric LCOM
java norm metric RFC
java norm metric CBO

g

Algorithm 2. Normalizing the values of a given metric of all the nodes
of type Class in a Rigi graph.
Input: The metric, values for which will be normalized.
Method:

proc java norm metric f metric g f
rcl select none
rcl select type Class
set winnodes [rcl select get list]
rcl select none
set sum1 0
calculate the mean value
foreach nodeid $ winnodes f

set val [rcl get node attr $ nodeid $ metric]
if f $ val > 0 g f

set sum1 [expr $ sum1 + $ val]
g else f

rcl set node attr $ nodeid $ metric 0
g

g
set mean [expr [expr $ sum1 * 1.0] / [llength $ winnodes]]
calculate the deviation
set sum2 0
foreach nodeid $ winnodes f

11

set val [expr [rcl get node attr $ nodeid $ metric] - $ mean]
set val [expr $ val * $ val]
set sum2 [expr $ sum2 + $ val]

g
set sum2 [expr $ sum2 / [llength $ winnodes]]
set med [expr sqrt($ sum2)]
foreach nodeid $ winnodes f

set val [expr [rcl get node attr $ nodeid $ metric] - $ mean]
rcl set node attr $ nodeid $ metric [expr [expr $ val * 1.0] / $
med]

g
g

5 Calculating and using the metric values

The prototype reverse engineering environment can be used for calculating
values for the metrics discussed in Section 3. The user can select any subset
of the seven metrics provided to be included in the metrics suite and gener-
ate values using a menu command. The values will be calculated for classes
and interfaces that are known at that point, i.e., for classes and interfaces
for which the static information has been generated by the byte code parser.
Values of some of the metrics will also be calculated for methods, construc-
tors, and static blocks of the classes.

Rigi uses a nested graph to view the static dependencies. Each node in the
graph represents a software artifact. For Java such artifacts are classes, in-
terfaces, methods, constructors, static blocks, and variables. The calculated
metric values are added as attribute values for Rigi nodes. The attribute
values of nodes are not visible in Rigi but they can be used for analyzing the
graph. They can, however, be examined using the graph editor by selecting a
node and opening a pop-up dialog for it. This is shown in a snapshot of a Rigi
session in Figure 4: the user has selected node de.uni paderborn.dis.DisRow
and opened a dialog that enumerates all the attribute values of the node.

Using metric values as node attributes in Rigi provides a exible and power-
ful way to analyze the values and the static dependencies. The metric values
help understanding the static dependencies. For example, they can be used
for �nding highly cohesive and weekly coupled parts of the software. On the

12

other hand, the scripts of Rigi help studying the metric values by providing
a way to make queries. Like discussed in Section 4, the metric values can
be normalized by running a single script.

6 Threshold values

Product metrics are language and programming style dependent. Language
dependent threshold values for the metrics are presented in literature to
give heuristic ranges of better and worse values. They are usually based
on experiences over several software projects and hence should be treated
as heuristics and recommendations. In [8] threshold values for several OO
metrics are given for C++ and Smalltalk, based on experience in various
C++ and Smalltalk software projects. There is much less experience on Java
software projects and thus there is much less reserch on threshold values for
Java software. When compared to C++ and Smalltalk it can be assumed
that usable threshold values for Java are closer to those for Smalltalk than
those for C++. This assumption can be reasoned several ways:

1. C++ is a hybrid language, while Smalltalk and Java are pure OO
languages. Nearly all C++ programs are, in fact, mixtures of C and
C++. Usually, all the functionality and code is not captured inside
classes like in Smalltalk and Java.

2. Smalltalk and Java are simpler languages than C++, mostly because
C++ is a hybrid language. In Smalltalk and Java, there is usually
one way to implement a certain primary task, while in C++ there are
usually several ways.

3. In both Smalltalk and Java all the classes are �nally subclasses of a
certain, single root class (class java.lang.Object in Java). This makes
the inheritance hierarchies potentially similar.

4. The usage of interfaces in Java resembles usage of pure abstract classes
in Smalltalk, again making the inheritance hierarchies potentially sim-
ilar. In C++ multiple inheritance is supported.

In this research threshold values are not given or used for estimating ac-
ceptable metrics value ranges for Java software. However, the user has a
possibility to try some threshold values using Rigi. This can be done by

13

running java select attributes thresh script. The script takes three argu-
ments type, metric, and threshold. Argument type de�nes a type of nodes
in the Rigi graph. Accepted types are a class, an interface, a method, a
constructor, and a static block. Argument metric de�nes the OO metric to
be examined. A threshold value representing a limit value is given by the
last argument threshold. The script selects all nodes of type type in Rigi
graph that have higher value than threshold of metric metric. By running
this script the user can quickly �nd software artifacts that have critical or
extreme metric values, e.g., classes that are most complex. The implemen-
tation of java select attributes thresh is presented by Algorithm 3. Like in
Algorihtm 2 the commands beginning with rcl belong to the script library
of Rigi.

Algorithm 1. Selects all nodes of a given type in Rigi graph for which
the value of a given metric is higher than a given threshold value.
Input: The �rst argument type de�nes a type of nodes in the Rigi
graph to be taken into account. The second argument metric de�nes
the OO metric to be examined. The third argument threshold gives a
limit value for the metric values.
Method:

proc java select attributes thresh f type metric threshold g f
rcl select none
rcl select type $ type
set winnodes [rcl select get list]
rcl select none
foreach n $ winnodes f

set val [rcl get node attr $ n $ metric]
if f$ val > $ thresholdg f

rcl select id $ n 1
g

g
g

7 An example: calculating metric values for FU-

JABA software

Metric values calculated for FUJABA software are studied next. Figure 2
shows a Rigi graph representing the whole FUJABA software. The informa-

14

tion has been generated using a Java byte code extractor of the prototype
reverse engineering environment. From the left down corner it can be no-
ticed that the whole software consists of 25854 software artifacts (classes,
interfaces, class/interface members etc.).

Figure 2: The initial Rigi graph representing the whole FUJABA software.

Values of all seven metrics have been calculated and added to static depen-
dency graph of Rigi. Some scripts has been run on the Rigi graph to study
the extreme values of some of the metrics. Figure 3 shows methods nodes
that have highest CC values. The nodes can be easily found by running the
java select attributes thresh script (see Section 6). The rest of the graph has
been �ltered out.

15

Figure 3: Method nodes that have the highest CC values and represent
methods in FUJABA software.

First we examine values of inheritance metrics DIT and NOC. Again by
running the java select attributes thresh script the classes with extreme DIT
values can be easily found. Figure 4 shows class nodes with highest DIT
values. It results when a command java select attributes thresh Class DIT

4 is executed on the initial graph 2 and the rest of the graph is �ltered
out. The user has selected a node de.uni paderborn.fujaba.dis.DisRow and
opened a pop-up dialog showing all the attribute values of that node. It can
be seen that DIT value for that class is 5 and NOC value is 0. There are
only 6 classes, for which the average length of the inheritance hierarchy is
more than 4. This implies that the inheritance hierarchy of FUJABA soft-
ware is not very deep. The same way it can be found out that there are 8
classes for which the NOC value is greater than 5. This in turn implies that
the inheritance hierarchy is not very at either. Hence, it can be concluded
that inheritance is not heavily used in FUJABA. This, in turn, could be a

16

motivation for the designer to take a closer look at the inheritance hierarchy
to examine if restructuring would improve the design. From the low DIT
and NOC values it can also be guessed that the software is not built as an
extensible object-oriented framework.

Figure 4: A Rigi graph showing all the class nodes in FUJABA that have a
DIT value greater than four.

Next we analyze communication metrics RFC, CBO, and LCOM. By run-
ning the java select attributes thresh script it can be noticed that most cou-
pled classes in respect of RFC metric belong to de.uni paderborn.fujaba.uml

package: from the top 25 classes with the highest RFC values as many as 20
belongs to that package. Similar ratios for CBO and LCOM are 13/39 and
11/119, respectively. Package de.uni paderborn.fujaba.uml might hence con-
tain classes that interact a lot with other classes. Another explanation could

17

be the fact that de.uni paderborn.fujaba.uml is one of the largest packages
in FUJABA. The high coupling values encouraged us to take a closer look
at the metrics values generated for that package. The classes with highest
RFC, CBO, and LCOM values are listed in Table 1 in a decreasing order of
their original metric values. Some of the classes listed in the table are inner
classes. The full name of an inner class consists of the name of the owner
class separated with a character \$ " from the name of the inner class itself.

RFC CBO LCOM

UMLClass TestProject UMLFile$ UMLPackageComparator
UMLProject UMLClass UMLStoryPattern$ collabStatLessThan
TestProject UMLActivity UMLLink
UMLFile UMLActivityDiagram UMLTransitionGuard
UMLClassDiagram UMLMethod UMLIncrement
UMLTypeList UMLObject UMLLinkSet
UMLStroyPattern UMLStoryActivity UMLClass

Table 1: This table shows those FUJABA classes that belong to
de.uni paderborn.fujaba.uml package and have highest communication met-
ric values. Classes are listed in a decreasing order of their metric values.

18

Figure 5: The original values of RFC, CBO, and LCOM metrics for classes
in de.uni paderborn.fujaba.uml package.

19

Figure 6: The normalized values of RFC, CBO, and LCOM metrics for
classes in de.uni paderborn.fujaba.uml package.

Figure 5 shows a line diagram of the original communication metric values
for package de.uni paderborn.fujaba.uml. From the diagram it is di�cult to
conclude whether the values of di�erent metrics correlate. Figure 6, in turn,
shows the normalized values. From the diagram it is easy to see that there
is a strong correlation between the metrics. Especially, the curve describ-
ing CBO values is more descriptive and the correlation with the RFC and
LCOM curves is easier to recognize than in Figure 5.

Next we study the complexity of de.uni paderborn.fujaba.uml package. LCOM
metrics can be regarded to measure both communication and complexity.
For comparisons we thus examine LCOM together with CC and WMC. Fig-
ure 7 shows a line diagram of the complexity metric values for all classes in
de.uni paderborn.fujaba.uml package.

20

Figure 7: The normalized values of CC, WMC, and LCOM metrics for
classes in de.uni paderborn.fujaba.uml package.

By comparing Figures 6 and 7 it can be seen that the shapes of the lines
in both �gures are somewhat similar, i.e., most of the classes that have
have high communication metric values also have high complexity metric
values. The most obvious exception is class TestProject, for which RFC and
CBO values are very high but CC, WMC, and LCOM values are low. Such
classes typically consists of methods that mostly call and/or are called by
other classes and do not implement complicated algorithms or code struc-
tures. This is the case also with TestProject class. From Figures 6 and
7 also show that class UMLClass has high values of both communication
and complexity metrics. When examining the size of UMLClass.class and
UMLClass.java �les it can be noticed that UMLClass class is clearly the
largest class in package de.uni paderborn.fujaba.uml. The size of the UML-

Class.java �le, for example, is more that twice the size of the second biggest
class UMLIncrement. Hence, there is no reason to suspect a aw in the

21

design.

8 Discussion

An approach to calculate and examine metric values has been discussed.
Combining the information about software metrics with a graphical reverse
engineering tool helps both the reverse engineering process and the anal-
ysis of the metric values. For example, in reverse engineering one of the
most challenging tasks is building abstract views from the parsed static
dependencies. This can be done by building high level components that
represent software artifacts being highly cohesive and loosely coupled with
other parts of the software. Metrics that measure communication between
classes/objects can be used to support this task. Going the other way round,
a reverse engineering tool can be used to �nd software artifacts that have
extreme or exceptional metric values. Such values need to be recognized in
order the make suggestions for possible restructuring of the software.

In this research Rigi reverse engineering tool is used to visualize the static
dependencies in the target software as a nested graph. The information is
extracted from the Java byte code. The calculated metric values are added
to the graph. Rigi provides an extensible script library that can be used for
making queries on the graph to modify it. In this paper examples of using
scripts for �nding extreme metric values are presented. Furthermore, the
metric values can be normalized by running a script. The normalization is
needed in order to be able to conclude whether di�erent metrics correlate
or not.

The metric values are calculated by running a metrics program integrated
with the prototype reverse engineering environment. Some of the metrics
could also be calculated using Rigi. If the information needed is included
in the static dependency graph, a new script that calculates the values and
adds that information to graph could be written and added to the script
library of Rigi (dynamically, if desired). However, this is not possible for all
the metrics. For example, CC is calculated using the control ow informa-
tion that is not included in Rigi graph but is generated by the byte code
extractor.

When studying the metric values calculated for FUJABA software no big

22

aws in the design could be suspected. By examining the communication
metrics RFC, CBO, and LCOM, design aws in structuring classes and in
information hiding issues might be recognized. If LCOM value for a class is
high but RFC and CBO values are low, then it can be suspected that the
class might have unused variables or the variables are not properly selected
for the class. By examining the complexity metrics CC and WMC complex
data structures could be recognized. The inheritance metrics NOC and DIT
can be used to study the inheritance hierarchy and hence help estimating
the reusability and extensibility of the software.

It should be remembered that metrics should not be used as design rules.
They are hints that might reveal parts of the software that needs to be
examined more detailed in order to �nd design aws. Also, the metric val-
ues depend on the type and functionality of the software. For example,
GUI classes di�er from classes that implement algorithms in terms of in-
heritance, communication, and complexity. Hence di�erent metric values
should be \allowed" for them.

References

[1] S. R. Chidamber and C. F. Kemerer, \Towards a Metrics Suite for obect-
oriented design", In Proc. of the Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA'91), ACM, 1991, pp. 197{
211.

[2] S. R. Chidamber and C. F. Kemerer, \A Metrics Suite for Object- Oriented
Design", IEEE Trans. Softw. Eng., 20, 6, 1994, pp. 476-493.

[3] I. M. Graham, \Migrating to Object Technology", Addison- Wesley, 1995.
[4] B. Henderson-Sellers, Object-Oriented Metrics, Measures of Complexity, Pren-

tice Hall, 1995.
[5] M. Hinz and B. Montazeri, \Measuring coupling and cohesion in object-

oriented systems", In Proc. of International Symposium on Applied Corporate
Computing (ISAA'95), Oct. 1995.

[6] K. Koskimies, T. M�annist�o, T. Syst�a, and J. Tuomi, \Automated Support for
Modeling OO Software", IEEE Software, 15, 1, January/February 1998, pp.
87{94.

[7] W. Li and S. Henry, \Object-oriented metrics that predict maintainability",
J. Sys. Softw., 23, 1993, pp. 111{122.

[8] M. Lorenz and J. Kidd, Object-Oriented Software Metrics, A Practical Guide,
Prentice Hall, 1994.

[9] T. DeMarco, Controlling Software Projects, Yourdon Press, 1982.

23

[10] T.J. McCabe, \A complexity measure", IEEE Trans. Software Eng., 2, 4, pp.
308-320, 1976.

[11] H. M�uller, K. Wong, and S. Tilley, \Understanding software systems us-
ing reverse engineering technology", In The 62nd Congress of L'Association
Canadienne Francaise pour l'Avancement des Sciences Proceedings (ACFAS),
1994.

[12] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.
[13] Rational Software Corporation, The Uni�ed Modeling Language Notation

Guide v1.3, [http://www.rational.com], 1999.
[14] I. Rockel and F. Heimes, FUJABA - Homepage

[http://www.uni-paderborn.de/fachbereich/AG/schaefer/
ag dt/PG/Fujaba/fujaba.html], February, 1998.

[15] J. Rumbaugh, I. Jacobson, and G. Booch, The Uni�ed Modeling Language
Reference Manual, Addison-Wesley, 1999.

[16] K. Wong, Rigi User's Manual Version 5.4.1
[http://www.rigi.csc.uvic.ca/rigi/manual/user.html], September, 1997.

24

