
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

ON THE LONGEST UPSEQUENCE

PROBLEM FOR PERMUTATIONS

ERKKI M�AKINEN

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF TAMPERE

REPORT A-1999-7



UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1999-7, APRIL 1999

ON THE LONGEST UPSEQUENCE

PROBLEM FOR PERMUTATIONS

ERKKI M�AKINEN

University of Tampere

Department of Computer Science

P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4587-2

ISSN 0783-6910



On the longest upsequence problem for permutations

Erkki M�akinen
1

Department of Computer Science, University of Tampere, P.O. Box 607,

FIN-33101 Tampere, Finland

Abstract

Given a permutation of n numbers, its longest upsequence can be found in time
O(n log logn). Finding the longest upsequence (resp. longest downsequence) of a
permutation solves the maximum independent set problem (resp. the clique prob-
lem) for the corresponding permutation graph. Moreover, we discuss the problem
of e�eciently constructing the Young tableau for a given permutation.

Keywords: Algorithms; Permutation; Upsequence; Strati�ed tree; Young tableau.

1 Introduction

Consider a sequence of values (v1; : : : ; vn). If one deletes i (not necessarily
adjacent) values from the sequence, one has a subsequence of length n � i.
This subsequence is called an upsequence (resp. downsequence) if its values are
in nondecreasing (resp. nonincreasing) order. Gries [6, p. 262] gives a simple
algorithm for �nding the length of the longest upsequence in a given sequence
with n values in time O(n log n). This algorithm scans the sequence from
left to right and maintains the minimum values m1; : : : ;mk which end the
upsequences on length 1; : : : ; k, respectively, so far found. For a value vi in
the sequence the algorithm operates as follows: It �rst compares vi with the
smallest value m1 and the greatest value mk. If vi < m1, then vi is set to be
the new value of m1. On the other hand, if vi � mk, then an upsequence of
length k+1 is found, and vi is stored as mk+1. Otherwise (m1 � vi < mk), the
algorithm �nds an index j such that mj�1 � vi < mj, and sets vi to new value
of mj. Finding the correct index j takes time O(log k) resulting the overall
time bound O(n log n).

In its original form [6], the Gries algorithm �nds only the minimal values which
end the upsequences of lengths from 1 to k. The longest upsequence is easily

1E-mail: em@cs.uta.�. Work supported by the Academy of Finland (Project
35025).



found by recording the positions to which the elements are inserted. After
scanning the input sequence, one simply selects the greatest element from the
set of values inserted to the position mk, a smaller element from the set of
values inserted to the position mk�1, and so on, until the whole upsequence
is found. The result is not necessarily unique, i.e., a permutation may have
several equally long upsequences. Finding the upsequence by recording the
insertion positions is always possible in linear time. In what follows, we do not
further consider this step of the algorithm.

Finding the correct index j can be performed by using binary search. Scanning
the sequence consists of \easy cases" (vi < m1 or vi � mk) and \di�cult cases"
(m1 � vi < mk). The former cases take only a constant time, while the latter
ones need time O(log k). In what follows, the above algorithm solving the
longest upsequence problem and using normal binary search for �nding the
index j is referred to as the Gries algorithm.

The subject of the present paper is the problem of �nding the longest up-
sequence (or the longest downsequence) of a given permutation. Obviously,
when an arbitrary sequence is replaced by a permutation, the time bound
O(n log n) should be improved. It turns out that data structures for restricted
universes can be successfully used since the \domain" of the permutation is
supposed to be known. The problem of �nding the correct index j in the al-
gorithm can be considered as the problem of �nding the successor in a given
�nite set. Knowing the universe (i.e., values 1; : : : ; n) makes it possible to �nd
the successor in time O(n log log n) [13].

Monotonic subsequences of permutations are of interested in various contexts.
It is well-known that the upsequences (resp. downsequences) of a permutation
are in one-to-one correspondence with the independent sets (resp. the cliques)
of the corresponding permutation graph [5]. Hence, �nding the longest upse-
quence (resp. the longest downsequence) solves the maximum independent set
problem (resp. the clique problem) of the corresponding permutation graph.
Chang and Wang [3] have reported an O(n log log n) time algorithm for this
problem. We are not able to improve they time bound, but our discussion
will make the problem setting clearer and the algorithm itself conceptually
simpler.

The longest downsequence of a permutation gives the number of queues needed
in sorting the permutation [5, Cor. 7.4.]. Finding the upsequence of a permu-
tation is of interest also in a more general setting of pattern matching for
permutations, see [2,7]. Upsequences (and downsequences) are instances of
patterns that can be searched in permutations. Finding upsequences is also
closely related to Young tableaux [9,12], as will be discussed in Chapter 3.

In the sequel, we usually speak about upsequences only. Analogously results

2



naturally hold for downsequences. Notice that an upsequence of (p1; : : : ; pn) is
a downsequence of (pn; : : : ; p1). Similarly, a problem in a permutation graph
G has usually a meaningful countrpart in the complement graph G, e.g. an
independent set of G is a clique in G.

2 Finding the longest upsequence

Consider a permutation P = (p1; : : : ; pn) of numbers from 1 to n. The following
algorithm �nds the longest upsequence of P . For the time being, we have left
open the way of determining index j.

Algorithm 1 (Longest Upsequence)
Input: a permutation P = (p1; : : : ; pn), p > 1, of f1; : : : ; ng
f m[1::n] is an array of integers; m[i] contains the smallest

number ending an upsequence of length i so far found;

k is the length of the longest upsequence so far found g
begin

m[1] := p1;
k := 1;
for i = 2; : : : ; n
do

if pi > m[k]
then begin

k := k + 1;
m[k] := pi end

else

if pi < m[1] then m[1] := pi
else m[j] := pi, where m[j] < pi < m[j + 1];

Find the upsequence by using the lists of elements inserted

to the di�erent positions;

end fAlgorithmg

The line m[j] := pi, where m[j] < pi < m[j + 1]; of Algorithm 1 can be
performed by strati�ed trees (also called van Emde Boas priority queues) in
O(log log n) time and in O(n) space [10,13]. This follows essentially because
the universe of keys to be stores in the structure is f1; : : : ; ng.

Suppose that we can use the following standard strati�ed tree operations:

3



{ Max(T ): return the largest key in T

{ Succ(x; T ): return the successor of x in T

{ Insert(x; T ): insert x to T

{ Delete(x; T ): delete x from T .

Our algorithm can now be written as follows.

Algorithm 2 (Longest Upsequence using Strati�ed Tree)
Input: a permutation P = (p1; : : : ; pn), p > 1, of f1; : : : ; ng
f T is a strati�ed tree g

begin

Insert(p1; T );
for i = 2; : : : ; n
do

if pi > Max(T )
then Insert(pi; T )
else begin

Delete(Succ(pi; T ); T );
Insert(pi; T )

end

Find the upsequence by using the lists of elements

inserted to the di�erent positions;

end fAlgorithmg

Strati�ed trees are later streamlined so that their space complexity depends on
the number of elements in the structure and not on the size of the universe [11].
In these bounded ordered dictionaries insertions and deletions haveO(log log n)
time bound in amortized and randomized sense. However, in our application
this improvement in space complexity does not make any di�erence in the
worst case since the structure may well contain (almost) all elements of the
universe.

Contrary to the Gries algorithm, Algorithm 2 does not have any \easy cases".
Indeed, each item scanned takes time O(log log n), since even when vi > m[k],
the new item must be inserted to the strati�ed tree by using an operation
taking O(log log n) time.

The average length of the longest upsequence of a random permutation of
f1; : : : ; ng is 2

p
n [9, p. 68]. Hence, the Gries algorithm �nds the longest

upsequence of a given permutation in O(n log
p
n) time on average. (Since

log
p
n = 1

2
log n, the notation O(n log

p
n) only emphasizes the small constant

factor involved.)

A typical example of unfavorable permutations for the Gries algorithm is
(1; n

2
+ 1; n

2
+ 2; : : : ; n; 2; 3; : : : ; n

2
). As an input of the Gries algorithm, this

4



permutation causes �rst n

2
easy cases and then n

2
di�cult cases. The time

needed is �(n log n).

The results of this chapter can be summarized as follows.

Proposition 1 The longest upsequence of a given permutation can be found

in O(n log log n) time and in O(n) space.

Proposition 2 The Gries algorithm �nds the longest upsequence of a given

permutation in time O(n log
p
n) on average.

An interesting result concerning Proposition 2 is the following: If P is a permu-
tation containing more than n2 elements, then there is either an upsequence
or a downsequence of length greater than n [4]. Hence, for each permutation,
the average case time bound of Proposition 2 is reached for at least one of
the problems of �nding the longest upsequence or �nding the longest downse-
quence.

Algorithms 1 and 2 do not use all information avaliable. For example, we
know that each element is inserted to the structure exactly once. Moreover,
all updates are either replacements (an element x in the structure is replaced
by a smaller element y which is greater than the predecessor (if exists) of x)
or insertions in which the new element is greater than all elemets so far in
the structure. We pose it open whether it is possible to take advantage of this
information and to improve the time bounds given.

The time complexity of the Gries algorithm depends on the length of the
longest upsequence. If it is at most O(log n), then the Gries algorithm has
the same time complexity than Algorithm 2 with considerably much smaller
constant factor both in time and space complexity. This fact rises the question
of �nding classes of permutations with known short longest upsequences or
downsequences. For example, many of the permutation types studied in [1]
are in this category.

3 Young tableaux

A Young tableau of shape (n1; n2; : : : ; nm), where n1 � n2 � : : : � nm > 0,
is an arrangement of n1 + n2 + : : :+ nm distinct intergers in an array with m

rows such that in row i there are ni elements, each row is in increasing order
from left to right, and each column is in increasing order from top to bottom.
The link between permutations and Young tableaux is that the number of
involutions (i.e., permutations that are their own inverses) of f1; : : : ; ng is
the same as the number of tableaux that can be formed from the elements

5



f1; : : : ; ng. (For more information concerning Young tableaux, see [9, Section
5.1.4].) In this chapter we consider the complexity of constructing the Young
tableau of a given permutation.

Given a permutation P = (p1; : : : ; pn) its Young tableau is constructed by
inserting the elements p1; : : : ; pn one by one to the originally empty tableau.
Inserting pi is performed as follows. First, �nd the correct place for pi in row
1 by Algorithm 2. If pi is greater than all elements in row 1, insert it to be the
last element of row 1, and halt. Otherwise, continue by inserting the element,
say r, replaced by pi in row 2. Again, halt if r is the greatest in the row.
Otherwise, continue with the next replaced element and the next row, until
a row is found where all elements are smaller than the new element to be
inserted or a new row is started.

Consider, for example, constructing the Young tableau for (3; 5; 4; 9; 8; 2; 7; 6; 1).
After inserting 3, 5, 4, 9, 8, 2, and 7, the tableau has the form shown in Fig-
ure 1.

2 4 7

3 8

5 9

Figure 1. The tableau after inserting 3, 5, 4, 9, 8, 2, and 7 (in that order).

Inserting 6 causes �rst the replacement of 7 by 6 in row 1. Then, 8 is replaced
by 7 in row 2, and 9 is replaced by 8 in row 3. Finally, a new row is started
with 9 as the only element. The resulting tableau is shown in Figure 2.

2 4 6

3 7

5 8

9

Figure 2. The tableau of Figure 1 after inserting 6.

Inserting 1 to the tableau obtained would cause changes only in the �rst
column: 2 replaced by 1, 3 replaced by 2, 5 relaced by 3, 9 relaced by 5, and
a new row with 9 as the only element is started.

Given a permutation, the �rst row of its Young tableau can be produced

6



by Algorithm 2. The number of columns equals the length of the longest
upsequence. Similarly, the number of rows equals the length of the longest
downsequence [12].

The rows of the Young tableau for (p1; : : : ; pn) are the columns of the tableau
for (pn; : : : ; p1). That is, reversing the permutation tranposes the tableau [9].
Hence, the Young tableau of (1,6,7,2,8,9,4,5,3), i.e. the reverse of the permu-
tation considered in Figures 1 and 2, is the tableau shown in Figure 3.

1 2 3 5 9

4 7 8

6

Figure 3. The Young tableau of the permutation (1,6,7,2,8,9,4,5,3).

In what follows we consider the problem of e�ciently constructing the Young
tableau for a given permutation. The �rst row of the tableau is obtained by
Algorithm 2, as well the �rst column is obtained when applying the algorithm
to the reversed permutation. In the worst case, it is su�cient to constructp
n times the next row and column. We count the number of elements in-

serted to the tableau in order to be able to halt as soon as all elements are
inserted. Namely, the number of both rows and columns can be greater thanp
n although more than

p
n rows and columns are never needed to �ll the

tableau.

In order to be able to continue the construction of the tableau after the �rst
row (or column), we have to augment Algorithm 3 such that it also outputs
the new permutation to be used when determining the second row. Namely,
the process of constructing the �rst row changes the order of the elements.
All the elements of the input permutation are �rst inserted to row 1. The
new order of the elements essentially depends on how long each element stays
there.

As an example, consider again the permutation (3,5,4,9,8,2,7,6,1) discussed
earlier in the connection with Figures 1 and 2. The �rst row contains ele-
ments 1, 4, and 6. Deleting these from the permutation would give the input
(3,5,9,8,2,7). However, the correct input is (5,9,3,8,7,2). It can be produced
simply by recording the order in which the elements are replaced by other
elements while Algorithm 3 is executed.

7



Algorithm 3 (Young tableau)
Input: a permutation P = (p1; : : : ; pn), p > 1, of f1; : : : ; ng
begin

rowpermutation:= P;

columnpermutation:= (pn; : : : ; p1);
i:= 1;

counter:= 0;

while rows left and columns left and counter < n do

begin

construct the ith row by Algorithm 3 from rowpermutation;

rowpermutation:= the elements not in the ith row in the order

they are replaced while constructing the ith row;

construct the ith column by Algorithm 3 from columnpermutation;

columnpermutation:= the elements not in the ith column in the order

they are replaced while constructing the ith row;

counter:= counter + the number of elements inserted in the ith round

i:= i + 1;

end

end fAlgorithmg

For notational simplicity, suppose that n = k2, for some k. By Proposition
1, the �rst round of the while-loop takes time O(n log log n). Since our algo-
rithm constructs both rows and columns, the worst case is the one, where the
resulting Young tableau is a k � k square. In this case, the second round
takes time O((n � k) log log(n � k)), and the (i + 1)st round takes time
O((n � ik) log log(n� ik)).

Hence, the total time needed is

kX

i=1

ik log log ik:

Since log log ik < log log n, we have

kX

k=1

ik log log ik < k log log
kX

i=1

i = k
k(k + 1)

2
log log n:

By replacing k =
p
n, we have obtained the time bound (n1:5 log log n).

Theorem 3 There exists an O(n1:5 log log n) time algorithm for constructing

the Young tableau for a given permutation.

A marginally better algorithm would result, if we could avoid considering all
but the diagonal elements twice (or more times). This would give the time
bound

Pk
i=1 i

2 log log i2. However, we do not further elaborate this idea, since

8



it would imply no improvement in the order of time complexity.

Notice that a trivial algorithm runs in O(n2) time by simply traversing the
tableau row by row as long as all operations caused by inserting an element
to the �rst row are done.

Knuth [9, p. 55] mentions that the minimum running time of \tableau sort-
ing" is propotional to n1:5. Tableau sorting consists of constructing the Young
tableau and then deleting the elements in increasing order.

9



References

[1] M.D. Atkinson, Restricted permutations. Discrete Math. 195 (1999), 27{38.

[2] Brosejint Bose, Jonathan F. Buss, and Anna Lubiw, Pattern matching for
permutations. Inform. Process. Lett. 65 (1998), 227{283.

[3] Maw-Shang Chang and Fu-Hsing Wang, E�cient algorithms for the maximum
weight clique and maximum weight independent set problems on permutation
graphs. Inform. Process. Lett. 43 (1992), 293{295.

[4] P. Erd�os and G. Szekeres, A combinatorial problem in geometry. Compositio
Math. 2 (1935), 463{470.

[5] Martin Charles Golumbic, Algorithmic Graph Theory and Perfect Graphs.
Academic Press, 1980.

[6] David Gries, The Science of Programming. Springer, 1981.

[7] Louis Ibarra, Finding pattern matchings for permutations. Inform. Process. Lett.
61 (1997), 293{295.

[8] Rolf G. Karlsson, Algorithms in a restricted universe. Dept. of Computer Science.
Univesity of Waterloo, Research Report CS-84-50, November 1984.

[9] Donald E. Knuth, The Art of Computer Programming. Vol. 3, Sorting and

Searching. Second Edition. Addison-Wesley, 1998.

[10] Kurt Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching.
Springer, 1984.

[11] Kurt Mehlhorn and Stefan N�aher, Bounded ordered dictionaries in O(log log n)
time and O(n) space. Inform. Process. Lett. 35 (1990), 183{189.

[12] K. Schensted, Longest increasing and decreasing subsequences. Canad. J. Math.

13 (1961), 179{191.

[13] P. van Emde Boas, Preserving order in a forest in less than logarithmic time
and linear space. Inform. Process. Lett. 6 (1977), 80{82.

10


