
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

UNDERSTANDINGTHE SEMANTICS

OF CONCEPTUAL GRAPHS

MARKO NIINIM�AKI

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF TAMPERE

REPORT A-1999-4

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1999-4, MARCH 1999

UNDERSTANDING THE SEMANTICS

OF CONCEPTUAL GRAPHS

MARKO NIINIM�AKI

University of Tampere

Department of Computer Science

P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4539-2

ISSN 0783-6910

Understanding the semantics of conceptual
graphs

Marko Niinimäki
man@sjoki.uta.fi

University of Tampere
Department of Computer Science

March 3, 1999

Contents

1 Introduction 1

2 First Order Predicate Logic 2

2.1 The languageLFOPL . 2

2.2 Semantics ofLFOPL (model theory) 4

2.3 Quantifiers and inverse relations 8

2.4 The translation form . 8

3 Conceptual graphs 9

3.1 The language of conceptual graphs (limited syntax),LCG 10

3.1.1 Introduction .. 10

3.1.2 Simple examples . .. 12

3.1.3 The grammar of conceptual graphs. 14

3.1.4 Quantifiers – The scopes 15

3.1.5 Quantifiers – The universal quantifier 16

3.1.6 Quantifiers – Quantifier sequences. 17

3.1.7 Quantifiers – Summary and algorithm 17

3.2 Semantics ofLCG . 19

4 Translations, discussion and summary 20

ii

Abstract

In this paper, we propose a simple and well established semantics for
conceptual graphs. This model theoretic semantics is an alternative to previ-
ous approaches, where a game theoretical semantics has been suggested. In
addition to that, we thoroughly compare conceptual graphs with First Order
Predicate Logic (FOPL). The comparison is based on semantics. Based on
this comparison, we present some clarifying remarks on the semantics of
conceptual graphs.

The comparison of the expressive power of FOPL and conceptual graphs
is carried out by a consideration of translation algorithms. John Sowa’s al-
gorithm translates an arbitrary conceptual graph into a FOPL formula. The
algorithm that we shall outline in this paper translates an arbitrary closed
FOPL formula into a conceptual graph. On the basis of the algorithms, it
can be claimed that the expressive power of conceptual graphs (with limited
syntax) equals to that of a slightly limited FOPL. Without the syntactic lim-
itations, the expressive power of conceptual graphs would probably exceed
the expressive power of FOPL.

We also provide a set of knowledge representation examples using both
FOPL and conceptual graphs. The examples indicate that in some cases
conceptual graph formalism is harder to read than FOPL.

1 Introduction

Conceptual graphs have been proposed as an alternative to First Order Predi-
cate Logic (FOPL) in knowledge representation ([6], see also [1]). FOPL and its
derivatives (subsets), like Horn -clauses and Prolog, are perhaps the best known
and established formalisms for knowledge representation. To gain acceptance, the
alternative formalisms should offer advantages over FOPL. The advantages can be

� simplicity: formulas expressed by an alternate formalism may be easier to
read and to write (or closer to natural language) than formulas of FOPL and
its derivatives,

� deductive power: FOPL is known to be semi-decidable. More limited for-
malisms can have a proof theory that is decidable, and even tractable,

� expressional power: with traditional FOPL, uncertainty or default reason-
ing, for example, cannot be handled.

1

In order to see if conceptual graphs are more simple, have more deductive power
or have more expressional power than FOPL, we shall carry out an extensive com-
parison between FOPL and conceptual graphs in sections 3 and 4.

To make the comparison more easy, we use simplified forms of both FOPL and
conceptual graphs. This is explained in detail in section 2.1 and 3.1. Section
2.1 contains a standard presentation of a slightly limited FOPL and section 2.2 its
semantics. We shall use the term “FOPL” to refer to this limited version. The same
kind of presentation of conceptual graphs (limited syntax) and their semantics will
follow sections 3.1 and 3.2.

The basis for the comparison is the following simple notion: If any expression
of a languageL1 can be translated into an expression of a languageL2 and any
expression of a languageL2 can be translated into an expression of a languageL1,
then the languages have equal expressive power. The translation is justified by the
semantics of the languagesL1 andL2.

Sowa ([6]) has presented an algorithm that translates a conceptual graph into a
FOPL formula. Sowa states, however, that the expressional power of concep-
tual graphs may exceed the expressional power of FOPL: “When the referents of
concepts are limited to single individuals, conceptual graphs cannot go beyond
first-order logic.” ([6], p. 116). Later Sowa extends the notation so that a referent
of a concept can be a set of individuals. Sowa’s algorithm obviously applies only
to conceptual graphs where the referents of concepts are single individuals. This
is the limited syntax of conceptual graphs defined in section 3.1.

Assuming that Sowa’s algorithm translates an arbitrary conceptual graph into a
formula of FOPL, it follows that FOPL is at least as expressive than conceptual
graphs. In section 4 we outline an algorithm for translating closed formulas of
FOPL into conceptual graphs. On the basis of these two algorithms it can be
claimed that conceptual graphs (with limited syntax) and a slightly limited FOPL
equal in expressive power.

2 First Order Predicate Logic

2.1 The languageLFOPL

A language is a set of valid expressions (in the case of logic, well-formed for-
mulas) composed from a set of terminal symbols by rules of a grammar. The set

2

TFOPL contains the terminal symbols of the languageLFOPL. Elements ofTFOPL

are constants (c0;c1;c2; ::), variables (x0;x1;x2; ::), connectives (:;^;_;!;$),
quantifiers (9;8), parenthesis, comma and unary and binary predicate symbols
(P0;P1;P2; ::; R0;R1;R2; ::).1

In a more formal approach, predicates can have any arity and the information of
a predicate’s arity must be given. In this paper we use only unary and binary
predicates.P-predicates are unary andR-predicates binary.

In metalanguage, i.e. describing expressions ofLFOPL, we use symbolsx;y;z to
denote variables,a;b;c to denote constants,A;B;C to denote formulas, andH
when a predicate (no matter if its arity is 1 or 2) is discussed. In an informal
approach (like in section 3.1.2), we also use lowercase natural language words
instead of predicate symbols.

In this paper,TFOPL does not include the identity symbol= and there are no
functions in the language.

Variables and constants are jointly calledTERMS. Terms are written after the
predicate symbol, between the parenthesis. The number of these terms is deter-
mined by the arity of the predicate. These terms are called theARGUMENTS. A
predicate symbol, followed by its arguments (in parenthesis) is called anATOMIC

FORMULA. An atomic formula is called aGROUND FORMULA, if all the argu-
ments are constants.

A quantifier BINDS the variablex in formulas9x(A) and8x(A). A variable in
formulaA is bound if it is bound by a quantifier. Otherwise it is free. If there are
no free variables in a formula, then the formula is called aCLOSED FORMULA. A
ground formula is an example of a closed formula.

A REPLACEMENT of a variablex with a variabley or a constantc is denoted with
A(x/y)andA(x/c), respectively.

If replacements are performed in a formula and the result of these replacements is
a formula where there are no two quantifiers that both bind a variablex, then the
replacements are calledUNAMBIGUOUS NAMING of variables.

GrFOPL is a grammar that generates all formulas ofLFOPL. The terminal symbols
of the grammar are elements ofTFOPL and the symbol “j” in the production rules
means “or”. The production rules of the grammar are:

1The inverse binary predicate symbols (see section 2.3) can be considered as a special case of
binary predicate symbols.

3

1. X 7! x0jx1jx2j::

2. C 7! c0jc1jc2j::

3. U 7! XjC (constants and variables are terms)

4. P 7! P0jP1jP2j:: (unary predicates)

5. R 7! R0jR1jR2j:: (binary predicates)

6. F 7! P(U)jR(U;U) (atomic formulas are formulas)

7. F 7! :(F) (a negation of a formula)

8. F 7! (F ^F) (two formulas connected witĥ)

9. F 7! (F _F) (two formulas connected with_)

10. F 7! (F ! F) (two formulas connected with!)

11. F 7! (F $ F) (two formulas connected with$)

12. F 7! 9X(F)

13. F 7! 8X(F) (a quantifier and a variable and a formula together form a for-
mula.)

It is worth noticing that the grammarGrFOPL allows formulas with bound vari-
ables (like9x0(P0(x0)) and9x0(9x1(R0(x0;x1)))), and formulas with free vari-
ables:9x2(9x1(9x0(P0(x3)))).

It can be easily observed thatLFOPL is context free, since all the rules of the
grammar are context free.2

2.2 Semantics ofLFOPL (model theory)

In this section we shall give a short account on semantics of FOPL. We shall
discuss about model theory, satisfiability (truth in some L-model) and validity
(truth in all L-models). The formal definition of L-model is presented after these
notions.

2For details on formal languages and grammars see e.g. [4].

4

A formula is said to beSATISFIABLE, if it can be true in some situation, i.e.
in some L-model. For instance, the formula9x0(P0(x0)) is satisfiable. If the
predicateP0 is interpreted “to be an even natural number”, the formula is satisfied
whenx is 2,4,6.. In this case, the setf2,4,6g is called the extension of the predicate
P0, too.

Similarly, a set of formulas is satisfiable (or consistent), if there is a L-model,
where all the formulas of the set are (simultaneously) true.

It is evident that the formula9x0((P0(x0)^:(P0(x0)))) cannot be true in any L-
model. This kind of formula isUNSATISFIABLE. A set of formulas is unsatisfiable
(or inconsistent), if there is no L-model, where all the formulas of the set can be
(simultaneously) true.

A formula isVALID if it is true in all L-models.:(9x0((P0(x0)^:(P0(x0))))) is
an example of a valid formula.

The formal definitions of an L-model and truth in L-model are as follows:

An L-model is a pair< UoD;v >, whereUoD is a non-empty set andv is an
interpretation function. An interpretation function is a function that interprets
(“maps”) terminal symbols of the language into elements ofUoD.

In this paper we employ the idea of an extended language (see [2]). This means
that all individuals of theUoD are named with some constant. In other words,
instead ofLFOPL the languageLFOPL0 is used.LFOPL0 is extended fromLFOPL by
adding a constantcu for every individualu2UoD.

Let v be an interpretation function of the languageLFOPL andv0 an interpretation
function of the languageLFOPL0. v0 is equal tov except thatv0(cu) = cu for all u2
UoD.

Let M be a L-model. The following set of conditions,TCFOPL defines the truth
value of a formula in L-modelM:

1. Let t be a term. If the formula is of formP(t), it is true inM iff t is inter-
preted to be an element ofUoD andt is a member of the extension of the
unary predicateP.

2. Let t andu be terms. If the formula is of formR(t;u), it is true inM iff t
andu are interpreted to be elements ofUoD and(t;u) is a member of the
extension of the binary predicateR.

5

3. If the formula is of form:(B), it is true inM iff B is not true inM.

4. If the formula is of form(B^C), it is true inM iff B andC are true inM.

5. If the formula is of form(B^C), it is true inM iff both B andC are true in
M.

6. If the formula is of form(B_C), it is true inM iff either B or C or both are
true inM.

7. If the formula is of form(B!C), it is true inM iff it is NOT the case thatB
is true inM, andC is false inM.

8. If the formula is of form(B$C), it is true inM iff either

� both it B andC are true inM.

or

� both it B andC are false inM.

9. If the formula is of form9x(B), it is true inM iff there is an interpretation,
in whichB(x/a) is true for somea2UoD.

10. If the formula is of form8x(B), it is true inM iff there is an interpretation,
in whichB(x/a) is true for alla2UoD.

If a formulaA is (inevitably) true in an L-model when formulas of a setSare true
in that L-model too, thenA is a LOGICAL CONSEQUENCEof the formulas ofS.
This is denoted bySj= A:

In the above case, ifS in an empty set, thenA is a valid formula. This is denoted
by j= A:

If formulas A andB are true in the same L-models, then they areLOGICALLY

EQUIVALENT. This is denoted byA, B:

The following “shortcut rules” S1 - S16 are examples of logical equivalences.

S1. (A_B),:((:(A)^:(B)));

S2. :(:(A)), A;

S3. ((A^B)_C), ((A_C)^ (B_C));

6

S4. :((A^B)), (:(A)_:(B));

S5. :((A_B)), (:(A)^:(B));

S6. (A! B),:((A^:(B)));

S7. (A! B), (:(A)_B);

S8. (A$ B), (:((A^:(B)))^:((B^:(A))));

S9. (A$ B), ((A! B)^ (A! B));

S10. 8x(H(x::)),:(9x(:(H(x::))));

whereH is a predicate symbol andx:: stands for its arguments.

S11. :(8x(H(x::))),9x(:(H(x::)));

S12. :(9x(H(x::))),8x(:(H(x::)));

S13. ((A^B)^C), ((A^ (B^C)));

S14. ((A_B)_C), ((A_ (B_C)));

S15. (A^B), (B^A);

S16. (A_B), (B_A):

These shortcut rules will be utilised when FOPL formulas are transformed into a
form that is easy to process and understand. This form will be used when FOPL
formulas are compared with conceptual graphs.

In this paper, we do not present proof theory for FOPL. Instead, we state the
following short remarks on semantics and proof theory.

A proof theory for any language consists of a set of axioms and a set of deduction
rules. LetA be a formula andSa set of formulas. If aA can be deduced from the
formulasS, thenA is called a theorem. This is denoted byS` A. Suppose there
is a proof theoryPTFOPL. LanguageLFOPL with semanticsTCFOPL and the proof
theoryPTFOPL are jointly called an interpreted system of logic. In this system,
if every theorem is a valid formula, then the system isSOUND. If the system is
sound and every valid formula is also a theorem then the system isCOMPLETE.
It is possible to construct a proof theory so that the system is complete (see e.g.
[5]). Thus, all the semantic shortcut rules are syntactic, too. For instance, since it
is known that the shortcut(A_B) is logically equivalent to(B_A), we can also
deduce(B_A) from the setf(A_B)g.

7

2.3 Quantifiers and inverse relations

To support the discussion in sections 2.4 and 3.1.6, we present a short notion on
the relationship of quantifiers and relations.

The inverse relationR�1 of R consists of the pairs(y;x) for each pair(x;y) 2 R.
Let R be a binary predicate. In this paper, the name “inverse predicate” will be
used forR�1.

The following notion relates the inverse relations with quantifier sequences:

Qy(Qx(R(x;y))) = Qy(Qx(R�1(y;x)));

where Q’s are (possibly different) quantifiers.

To compare FOPL formulas with conceptual graphs, it is profitable to arrange the
variables so that they appear in the same order in the relations as in the quantifier
sequence. For binary predicates, this is easy, based on the previous notion; for
example,9y(8x(R(x;y))) = 9y(8x(R�1(y;x))):

2.4 The translation form

Any FOPL formula can be transformed into aTRANSLATION FORM by using the
shortcut rules S1 - S16. The translation form makes FOPL formulas more uniform
and thus easier to process. A closed formula in a translation form can, in principle,
be translated into a conceptual graph (see section 4 and the appendix).

An algorithm that transforms an FOPL formulaA into a translation form formula
C(A) is as follows:

REPEAT

1. Use shortcut rule S9 to replace equivalences with implications. Use shortcut
rule S7 to replace implications(B!C) with (:(B)_C).

2. If there are binary predicates in the formula, use commutativity- and asso-
ciativity shortcuts (S13 - S16) so that the binary predicates appear as early
(left hand side) as possible in the formula.

8

3. Limit the scope of the: -connective by applying the following shortcuts
until none of them can be applied.

� shortcut S2: replace:(:(B)) with B,

� shortcut S5: replace:((B_C)) with (:(B)^:(C)),

� shortcut S4: replace:((B^C)) with (:(B)_:(C)).

4. Perform an unambiguous naming of the variables.

5. Move all the quantifier - variable pairs to the left hand side of the formula.

6. Using the notion of section 2.3, transform the binary predicates into their
inverse predicates if necessary. That is, maintain the same order of variables
in binary predicates as in the quantifier sequence.

UNTIL none of the rules above can be applied.

3 Conceptual graphs

Conceptual graphs are a general, large formalism for knowledge representation,
developed by John F. Sowa ([6]). The term “general” means that the formalism is
not designed to e.g. physical modeling, but can serve as a same kind of paradigm
as FOPL. Sowa mentions that so-called existential graphs by Peirce (see [3]) have
served as an archetype for conceptual graphs.

Sowa’s system of conceptual graphs includes mechanisms to implement deduc-
tions using a concept hierarchy. In this paper, we omit features of the hierarchy.

In addition to this, our discussion of conceptual graphs differs form Sowa’s pre-
sentation as follows:

1. In Sowa’s account, concept nodes can refer to a set of referents (constants or
variables, see [6], p. 116). Definitions of concept node and referent appear
on page 11 in this paper.

2. Sowa employs relations, whose arity is greater then 2. In this paper, the
arity is limited to 2.

9

3. Sowa presents various “shortcuts” in the language for proper names, mea-
sures and quantities.

4. Sowa uses concept nodes that have no referent. However, this is a shortcut
for the representation of general concept (see below).

5. Equally, Sowa uses the universal quantifier without an explicit variable. In
this paper, the variables are explicit.

6. Sowa uses a formalism “#” for a specified referent. This is replaced with a
constant in this paper.

7. The connectivê does not appear in Sowa’s (or Peirce’s, [3]) accounts, but
graphs are written next to each other to represent conjunction. In this paper,
the^ -connective is explicit.

8. Sowa represents most of the connectives and the universal quantifier as
shortcuts. Here they are included in the terminal symbols of the language.

9. Sowa suggests that the set of relation nodes consists solely of symbols cor-
responding to “cases” of case grammars. In this paper the set of relation
symbols is a matter of choice.

10. Sowa (and Peirce) use a line of identity to denote the same referent in two
or more concepts. In this paper, referents with the same variable or constant
“automatically” refer to same individuals. The same convention is used in
logic programming.

It is evident that the differences 3 - 10 are only notational and have no effect
to the expressional power of the language. The two first ones, however, limit
the expressional power to a great extend. Therefore, in this paper the version of
the conceptual graphs that we use will be called conceptual graphs with limited
syntax. This version is a subset of Sowa’s original conceptual graph language.

3.1 The language of conceptual graphs (limited syntax),LCG

3.1.1 Introduction

Like in FOPL, normal connectives are employed into the set of terminal symbols
of conceptual graphs (limited syntax):f:;^;_;!;$g.

10

The existential quantifier is not needed in the language, since all quantifiers all as-
sumed to be existentially quantified, unless they are universally quantified. Thus,
only the universal quantifier (8) is in the set of terminal symbols.

Infinite sets of variablesx0;x1;x2; :: and constantsc0;c1;c2; :: will be included,
too. In metalanguage, variables are refered byx, yandzand constants bya, band
c.

Instead of unary and binary predicates, in conceptual graphs (limited syntax) there
areCONCEPT NODESandRELATION NODES. A concept node is constructed of
a left bracket ([), a concept type symbol (P0;P1;P2; ::), a colon (:) a referent (a
constant or a variable) and a right bracket (]). In metalanguage,P andQ stand
for concept type symbols and informally uppercase natural language words are
used instead of predicate symbols. A concept node[P : x] is interpreted the same
way as the expression9x(P(x)) in FOPL. A concept node may include a universal
quantifier, too. A special predicate symbol>c is included in terminal symbols.
This is discussed in section 3.1.2.

Relation nodes connect concept nodes to each other in a conceptual graph. A re-
lation node consists of an arrow (� or�) that is connected with a concept node,
a relation symbol (R0;R1;R2::) in parenthesis and another arrow (� or�) that
is connected with another concept node.3 Informally, uppercase natural language
words stand for relation symbols, too.

A concept node alone is a conceptual graph, but a relation node must be connected
to two4 concept nodes. A simple example of a conceptual graph with a relation
node is:

[P : x]� (R)� [Q : y]:

Intuitively, a conceptual graph (or a graph for short) is

� a single concept node or

� two concept nodes, connected with a relation node or

� a construction, where two or more conceptual graphs are joined by connec-
tives.

The scopes of quantifiers in conceptual graphs are discussed in section 3.1.4.
3The question whether to use left or right directed arrows is related with the semantics of the

relation. This will be discussed in section 3.1.6.
4This is since in this paper no other arities than 2 are allowed for relations.

11

3.1.2 Simple examples

A concept node, whose referent is a variable is called a generic concept. A concept
node, whose referent is a constant is called an instantiated concept.

[PAINTING: x] [PAINTING: a](1)

A generic concept and an instantiated concept

or more formally

[P0 : x0] [P0 : c0](2)

The relationship “owns” (i.e. “x owns y”) is presented by:

� (OWN)�;

where the left� connects the relation node to a concept node, whose referent is
x and the right� connects the relation node to a concept node, whose referent is
y.

The inverse relation “is owned by” can be presented simply by reversing the di-
rection of the arrows, that is:

� (OWN)� :

In FOPL,9x(9y(R(x;y))) is a well-formed closed formula. In conceptual graphs,
it seems that the types ofx andy should be represented by a concept node. For
this purpose, the symbol>c was introduced in the set of terminal symbols.>c

is needed to represent an unknown type. The conceptual graph that conveys the
information “there is somex that owns somey” is

[>c : x]� (OWN)� [>c : y]:(3)

Using connectives, one can construct conceptual graphs that haveCONTEXTS like
in graphs 4 and 5.

12

[[ARTIST: a]� (PAINT)� [PAINTING: b]

^

[COLLECTOR: c]� (BUY)� [PAINTING: b]]:

(4)

Graph 4, that conveys the information “A certain artist paints a certain painting
that is bought by a certain collector”.

[[ARTIST: a]� (PAINT)� [PAINTING: b]

^

:[[COLLECTOR: c]� (BUY)� [PAINTING: b]]]:

(5)

Graph 5 that conveys the information “A certain artist paints a certain painting
and a certain collector does not buy it”.

In graph 5 the brackets following the connective: enclose aSUB GRAPH [COL-
LECTOR: c]� (BUY)� [PAINTING: b].

The following conventions are employed for negations:

� : in front of a context simply means that the graph in the context is negated,
like in graph 5.

� : in the concept node, like[:P : x] means that there exists a variablex
whose type is notP.

� The� -symbol is reserved to represent negation in relations. For example,
the graph

[P : x]� (� R)� [Q : y]

means that there exists a variablex of typeP and a variabley of typeQ and
they are not related byR.

13

In the appendix of this paper, we present some more complicated examples of
knowledge representation with conceptual graphs. The same information will be
represented in FOPL, too, to enable comparison of “readability” of FOPL formu-
las and conceptual graphs. Moreover, in the appendix, the translation from FOPL
formula into a conceptual graph is represented using the algorithm of section 4.

3.1.3 The grammar of conceptual graphs

The set of terminal symbols,Tcg, for the language of conceptual graphs (limited
syntax) is

Tcg= f^;:;_;!;$;8;(;); [;];x0;x1; ::;c0;c1; ::;P0;P1; ::;R0;R1; ::;>c;�;�;�g:

The production rules of the grammar are.

1. U 7! x0jx1jx2j:: (Variables are referents.)

2. U 7! c0jc1jc2j:: (Constants are referents.)

3. P 7! >cjP0jP1jP2j:: (Concept type symbols.)

4. R 7! R0jR1jR2j:: (Relation type symbols.)

5. A 7! [P : U]j[8P : U]j[:P : U] (Concept nodes.)

6. F 7! A (Concept nodes are conceptual graphs.)

7. F 7!A� (R)�AjA� (R)�A (Concept nodes, joined by a relation, are
conceptual graphs.)

8. F 7! A� (� R)� AjA� (� R)� A (Negated relation.)

9. F 7! :[F] (A negated conceptual graph is a conceptual graph.)

10. F 7! [F ^ F]

11. F 7! [F _ F]

12. F 7! [F ! F]

13. F 7! [F $ F] (Connectives.)

A graph is calledSIMPLE if it has no connectives.

14

3.1.4 Quantifiers – The scopes

Previously, we stated that a there are no free variables in a conceptual graph. In
this section, the scope of quantifiers in graphs is discussed.

For example, the graph 6

[[ARTIST: x]^ [RICH : x]]

(6)

could be interpreted in two ways

a) in the same way as the FOPL formula(9x(artist(x))^ 9x(rich(x))), i.e.
“there exists someone who is an artist and someone who is rich” or

b) in the same way as the FOPL formula9x((artist(x)^ rich(x)), i.e. “there
exists someone who is an artist and rich”.

For consistency it is reasonable to maintain theLATTER interpretation. In practice
this means that different variable symbols are used to represent different individ-
uals of UoD.

Equally, the variablex in the graph 7 refers to the same individual.

[[RICH : x]^:[[ARTIST: x]� (PAINT)� [PAINTING: z]]]

(7)

A similar convention will be used with the universal quantifier, too. Let us con-
sider graphs 8 (“all the collectors buy all the paintings”) and 9

[COLLECTOR: 8x]� (BUY)� [PAINTING: 8y]

(8)

15

[COLLECTOR: 8x]� (BUY)� [PAINTING: 8x]:

(9)

According to the previous agreement of the scopes of the quantifiers, the graph 9
is evidently not meaningful though syntactically correct.

Equally, in the graph 10 it is evident that the same implicit existential quantifier
binds thex variables of both theARTISTnodes.

:[[[ARTIST: x]^:[[ARTIST: x]� (PAINT)� [PAINTING: y]]]]

(10)

3.1.5 Quantifiers – The universal quantifier

The following graphs, 11 and 12, reveal a semantic problem that is related with
the universal quantifier:

[PAINTING: 8x]:

(11)

[PAINTING: 8x]� (PAINT)� [ARTIST: y]:

(12)

The graph 11 expresses that “every object in the UoD is a painting”. However,
the graph 12 does not claim that, but it expresses that all those objects in the UoD
that are paintings have an artist. Thus, the graph 12 could be presented in the form
12’:

[[PAINTING: 8x]! [PAINTING: x]� (PAINT)� [ARTIST: y]]:

16

3.1.6 Quantifiers – Quantifier sequences

As explained in section 2.3, for the sake of clarity it is sometimes profitable to use
inverse relations. In conceptual graphs the inverse relations can be presented in an
easy and intuitive way: by reversing the direction of� or� symbols connecting
the relation symbol with the concept nodes.

Concerning FOPL and conceptual graphs, the following analogies seem obvious
(for translation details, see section 4):

The the FOPL formula8x(9y(R(x;y))), the CG counterpart is[>c : 8x]� (R)�
[>c : y]:

For the formula8y(9x(R(x;y))) that equals to8y(9x(R�1(y;x))) the counterpart
is [>c : 8y]� (R)� [>c : x]:

Using the inverse relation, the order of variables in quantifier sequences can be
preserved, which is an advantage in the translation process.

3.1.7 Quantifiers – Summary and algorithm

The scopes of the quantifiers are essential in terms of semantics. Since the scopes
of quantifier in graphs are more implicit than in FOPL, we present a simple algo-
rithm makequantifiersexplicit.

The algorithm transforms it input (a graph) into a form where quantifiers and
variables are presented in front of the context where they first appear. This form,
the explicit quantifier form, is utilised when discussing the semantics of graphs.

The algorithm is recursive and it uses a list of variables,V.

Let G be a graph. Those subgraphs ofG that have universal quantifiers, are as-
sumed to be in the same form as in the graph 12’.

makequantifiersexplicit(G)=

If there is a relation node inG:

Traverse in the direction of the arrows of the relation. For both the concept
nodes:

17

if the concept node is of form[P : x] and if the variable,x, does not
appear in the listV, insert9x in the front of the current context and
addx into the listV.

if the concept node is of form[P : 8x] and if the variable,x, does not
appear in the listV, insert9x in the front of the current context and
addx into the listV.

If there is a concept node inG

if the concept node is of form[P : x] and if the variable,x, does not
appear in the listV, insert9x in the front of the current context and
addx into the listV.

if the concept node is of form[P : 8x] and if the variable,x, does not
appear in the listV, insert9x in the front of the current context and
addx into the listV.

For each subgraph ofG, Gi , makequantifiersexplicit(Gi)

When themakequantifiersexplicit -function is applied to graphs 6 - 10 the ex-
plicit quantifier forms of the graphs are:

6
9x[[ARTIST: x]^ [RICH : x]]

7

9x[[RICH : x]^:[9z[ARTIST: x]� (PAINT)� [PAINTING: z]]]

8

8x8y[[[COLLECTOR: 8x]^ [PAINTING: 8y]]!

[COLLECTOR: 8x]� (BUY)� [PAINTING: 8y]]

9

8x[[[COLLECTOR: 8x]^ [PAINTING: 8x]]!

[COLLECTOR: 8x]� (BUY)� [PAINTING: 8x]]

10

:[9x[[ARTIST: x]^:[9y[ARTIST: x]� (PAINT)� [PAINTING: y]]]]

18

3.2 Semantics ofLCG

The semantics for the languageLcg is based on the same principles as the seman-
tics for the languageLFOPL. Let Lcg0 be an extended language,M a model and
EA the explicit quantifier form of a graphA.

The following rules define the truth conditionsTCcg for a graphA in the model
M.

1. Interpretation of concept nodes:

Let t be a term. If the graph is of form[P : t], then it is true inM if and only
if the counterpart oft in UoD is a member of the extension ofP.

If the graph is of form[:P : t], then it is true inM if and only if the counter-
part oft in UoD is not a member of the extension ofP.

2. LetB andC be concept nodes andtB andtC terms such thattB is the referent
of B andtC is the referent ofC.

If the graph is of formB� (R)�C, the it is true inM if and only if

� B is true inM and

� C is true inM and

� the counterparts oftB and tC in UoD form a pair< tB; tC > that is a
member of the extension ofR.

3. If the graph is of formB� (� R)�C, then it is true inM, if and only if

� B is true inM and

� C is true inM and

� the counterparts oftB andtC in UoD form a pair< tB; tC > that is not
a member of the extension ofR.

4. If the graph is of form:[B], then it is true inM, if and only if B is not true
in M.

5. If the graph is of form[B^C], then it is true inM, if and only if B andC are
true inM.

6. If the graph is of form[B_C], then it is true inM, if and only if eitherB or
C or both are true inM.

19

7. If the graph is of form(B!C), the it is true inM, if and only if it is NOT

the case thatB is true inM, andC is not true inM.

8. If the graph is of form(B$C), then it is true inM, if and only if

� bothB andC are true inM

or

� bothB andC are not true inM.

9. If EA includes the expression9x, and there is a node[B : x] in the graph,
then the graph is true inM if and only if the counterpart ofx in UoD is a
member of the extension ofB.

10. If EA includes the expression8x, and there is a node[B : x] in the graph,
then the graph is true inM if and only if B(x/a) is true for all the elementsa
in UoD.

On the basis of these conditions, one can easily observe that the truth conditions
for connectives in conceptual graphs are equal to the truth conditions for connec-
tives in FOPL. Therefore, the shortcut rules (S1 - S9, S13 - S16)) that are related
with connectives, can be applied to conceptual graphs, too.

4 Translations, discussion and summary

On the basis of the truth conditionsTCf ol andTCcg it is easy to justify the follow-
ing analogies between conceptual graphs and FOPL:

� The FOPL formulaP(t) is semantically identical with the conceptual graph
[P : t], sinceP(t) and[P : t] are true inM under the same conditions.

� Analogously, the FOPL formulaR(t;u) is semantically identical with the
conceptual graph[>c : t]� (R)� [>c : u]:

Based on these analogies, it is possible to design an algorithm that translates a
given FOPL closed formula into a conceptual graph that (according to the truth
conditions) has the meaning as the formula. The algorithm as a whole will be
presented in an extended version of this paper, but in principle, it works as follows:

20

Let Abe a closed FOPL formula where all the predicates are either unary or binary.
Using the notion in 2.3, it is possible to generate a form ofA where the variables
in predicates are in the same order as in the quantifier sequence. Moreover,A can
be processed in to the translation form represented in section 2.4. This form ofA
can be translated into explicit quantifier form of a conceptual graph. The resulting
conceptual graph can be constructed simply by erasing the quantifier sequences.

Now, since FOPL formulas with only unary and binary predicates on one hand and
conceptual graphs (with limiyed syntax) on the other hand can be translated into
each other, it can be claimed that these languages have equal expressive power.
This fact has many interesting consequences. It is possible to design a proof the-
ory for conceptual graphs and study the language, its semantics and its proof the-
ory. Together, they form an interpreted system of conceptual graphs, in the same
manner as there are interpreted systems of FOPL. This kind of system of concep-
tual graphs was suggested by Sowa (see [6]) and he maintains that the system is
sound and complete.

Moreover, the expressive power of conceptual graph with limited syntax is greater
than that of logic programming, a subset of FOPL.

Since conceptual graphs and FOPL have equal expressive power, the use of con-
ceptual graph could be justified by their “elegancy” or ease of use. Yet, as some
of the examples in the appendix demonstrate, the representation using conceptual
graphs is sometimes more complex than the one using FOPL.

In an “unlimited” language of conceptual graphs, the referent of a concept node
can be a set instead of a single term. This kind of language has an expressive
power that exceeds FOPL, since a first order predicate language with arbitrarily
changing arities sounds computationally very demanding. Therefore it is difficult
to estimate the properties of an interpreted system that is based on it.

Acknowledgements

The author wishes to thank the following persons for comments and advice: Matti
Heikkurinen, Marko Junkkari, Hannu Kangassalo, Erkki M¨akinen, Timo Niemi,
Tommi Vehkavaara and especially Ari Virtanen.

21

References

[1] M. Jackman & C. Pavelin. Conceptual graphs. In G.A. Ringland & D.A.
Duce, editors,Approaches to Knowledge Representation. Wiley and Sons,
1989.

[2] V. Rantala & A. Virtanen. Logiikan peruskurssi. Matemaattisten tieteiden
laitos, Tampereen yliopisto, 1990.

[3] D. D. Roberts.The Existential Graphs of Charles S. Peirce. Mouton, 1973.

[4] G. Rozenberg & A. Salomaa.Cornerstones of Undecidability. Prentice-Hall,
1994.

[5] H. Salminen & J. Väänänen.Johdatus logiikkaan. Gaudeamus, 1993.

[6] J. F. Sowa.Conceptual Structures: Information Processing in Mind and Ma-
chine. Addison Wesley, 1984.

22

Appendix

G1. a is a painting:

painting(a):

The formula is in the translation form. The counterpart for this formula is
the conceptual graph

[PAINTING: a]:

G2. There exists (at least one) painting:

9x(painting(x)):

The formula is in the translation form. The counterpart for this formula is
the conceptual graph

[PAINTING: x]:

G3. There exists something that is not a painting:

9x(:(painting(x))):

The formula is in the translation form. The counterpart for this formula is
the conceptual graph

[:PAINTING: x]:

G4. There is no (such thing as) kitsch.

:(9x(kitsch(x))):

The formula is in the translation form. The counterpart for this formula is
the conceptual graph

:[[KITSCH: x]]:

G5. There are artists and collectors:

(9x(artist(x))^9y(collector(y))):

In the translation form the formula is(9x(9y((artist(x))^ (collector(y)))):
The graph counterpart for this formula is

[[ARTIST: x]^ [COLLECTOR: y]]:

23

G6. Some one is both an artist and a collector.

9x((artist(x)^collector(x))):

The formula is in the translation form. The graph counterpart for this for-
mula is

[[ARTIST: x]^ [COLLECTOR: x]]:

G7. There is at least some one that is an artist and not a collector.

9x((artist(x)^:(collector(x)))):

The formula is in the translation form. The counterpart for this formula is
the conceptual graph

[[ARTIST: x]^ [:COLLECTOR: x]]:

G8. Everything is art:

8x(art(x)):

The formula is in the translation form. The counterpart for this formula is
the conceptual graph

[ART : 8x]:

G9. For everything, there is something that is more beautiful than it:

8x(9y(morebeauti f ul(y;x))):

Using the inverse relation we get:

8x((9y)(morebeauti f ul�1(x;y)));

that is the translation form of this formula. The graph counterpart is thus:

[>c : 8x]� (MOREBEAUTIFUL)� [>c : y]:

24

G10. There is something that is more beautiful than anything else:

9x(8y(morebeauti f ul(x;y))):

The formula is in the translation form. Its graph counterpart is

[>c : x]� (MOREBEAUTIFUL)� [>c : 8y]:

G11. The collectorb buys the paintinga:

((collector(b)^ painting(a))^buy(b;a)):

The translation form of the formula is

((collector(b)^ (painting(a))^buy(b;a)):

The counterpart of this formula is the conceptual graph

[[[COLLECTOR: b]� (BUY)� [PAINTING: a]

^

[[PAINTING: a]^ [COLLECTOR: b]]]:

According to the truth conditionsTCcg, this means the same as

[COLLECTOR: b]� (BUY)� [PAINTING: a]:

G12. Some collector buys the paintinga:

[COLLECTOR: x]� (BUY)� [PAINTING: a]:

9x(((collector(x)^ painting(a))^buy(x;a)))):

The translation process is similar to that in G11.

G13. There exists a collector who does not buy the paintinga:

9x((collector(x)^ (:(buy(x;a))^ painting(a)))):

25

The translation form of the formula is

9x((:(buy(x;a))^ (collector(x)^ painting(a)))):

The counterpart for this formula is the conceptual graph

[[[COLLECTOR: b]� (� BUY)� [PAINTING: a]

^

[[PAINTING: a]^ [COLLECTOR: b]]]:

According to the truth conditionsTCcg, this means the same as

[COLLECTOR: b]� (� BUY)� [PAINTING: a]:

G14. No collector buys the paintinga:

:(9x((collector(x)^ painting(a)^buy(x;a))):

The translation form of the formula is

:(9x(buy(x;a)^ (collector(x)^ painting(a)))):

The counterpart for this formula is the conceptual graph

:[[COLLECTOR: x]� (BUY)� [PAINTING: a]

^

[COLLECTOR: x]^ [PAINTING: a]]:

G15. No collector buys any painting:

:(9(x)(9(y)((collector(x)^ (painting(y)^buy(x;y))))):

The translation process, similar to the one in the previous example leads to:

:[[[COLLECTOR: x]� (BUY)� [PAINTING: y]

^

[[COLLECTOR: x]^ [PAINTING: y]]]]:

26

G16. Each painting has been painted by some artist:

8x(painting(x)!9y((artist(y)^ paint(x;y)))):

The process of transforming the formula into the translation form is as fol-
lows:

Eliminate!:

8x(:(painting(x)^:(9y((artist(y)^ paint(x;y)))))):

Move quantifiers:

8x(existsy((:(painting(x)^:((artist(y)^ paint(x;y)))):

The graph counterpart of this formula is:

:[[[PAINTING: 8x]^:[[ARTIST: y]� (PAINT)� [PAINTING: y]]]]:

According to the semantics of the quantifier8 and the shortcut rule S6 this
graph is equal to

[PAINTING: 8x]� (PAINT)� [ARTIST: y]:

G17. There exists a painting that all the collectors want:

9x((painting(x)^8y((collector(y)! want(x;y))))):

The translation prosess is similar to that in the previous example. Its result
is the graph:

[[PAINTING: x]^

[COLLECTOR: 8y]� (WANT)� [PAINTING: x]]:

27

