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Abstract

We consider the inference problem for �nite transducers using di�erent kinds
of samples (positive and negative samples, positive samples only, and structural
samples). Given pairs of input and output words, our task is to infer the �nite
transducer consistent with the given pairs. We show that this problem can be solved
in certain special cases by using known results on the inference problem for linear
languages.

Keywords: formal languages, inductive inference, �nite transducers, linear
languages.

1 Introduction

A �nite transducer is a �nite automaton which emits an output string during
each move made. It de�nes a translation, i.e. a set of pairs of strings. In each
pair (�; �), � is a word over the input alphabet and � is a word over the output
alphabet. A classical work considering the use of translations on compilers is
[1].

This note deals with the inductive inference properties of �nite transducers
and the translations realized by them. Given a set of pairs of input and output
strings, we consider the problem of inferring a transducer consistent with the
pairs. Transducers are earlier studied in the context of inductive inference by
Oncina et al. in [9].

We assume a familiarity with the basics of formal language theory and gram-
matical inference as given e.g. in [5] and [2], respectively. As inference criterion
we use \identi�cation in the limit" [4,2]. If not otherwise stated, we follow the
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notations and de�nitions of [5]. The empty word is denoted by �, the mirror
image of a word w by wR, and the length of a word � by lg(�).

2 Preliminaries

A �nite transducer is a 6-tuple M = (Q;�;�; �; q0; F ), where Q is a �nite
set of states, � is a �nite input alphabet, � is a �nite output alphabet, � is a
mapping from Q� (�[f�g) to �nite subsets of Q���, q0 is the initial state,
and F � Q is the set of �nal states. The translation realized by M is T =
f(x; y) j (q0; x; �) `� (q; �; y); x 2 ��; y 2 ��; q 2 Fg, where the relation `� is
de�ned as usual. The mapping � can be given also as a set of moves (q; u; p; v),
where (p; v) 2 �(q; u), p, q 2 Q, u 2 ��, v 2 ��. Translations realized by �nite
transducers are called regular translations. Regular translations are also known
as rational translations [3].

A �nite transducer M = (Q;�;�; �; q0; F ) is deterministic if the following
conditions hold for each state q in Q:

{ either �(q; a) contains at most one element for each a 2 �, and �(q; �) is
empty, or

{ �(q; �) contains one element, and for all a 2 �, �(q; a) is empty.

Otherwise, a �nite transducer is non-deterministic.

Recall that in linear grammars all productions have either the form A! uBv,
where A and B are nonterminals and u and v are (possibly empty) terminal
strings, or the form A! u, where u is a (possibly empty) terminal string. The
former productions are called continuing and the latter ones are terminating.
A language L is linear if there exists a linear grammar generating L. We
suppose that all grammars are reduced, i.e. each nonterminal and terminal
symbol appears in some derivation from the start symbol to a terminal string.

The following well-known fact establishes a relationship between regular trans-
lations and linear languages.

Theorem 1 [10] T is a regular translation if and only if there exists a linear
language L such that T = f(x; y) j x#yR 2 Lg, where # is a new symbol.

In what follows, it is essential that from a given linear grammar, it is possible to
uniquely construct the corresponding �nite transducer. The left hand sides of
the productions correspond to the states of the transducer, and the transition
leaving from the states are obtained from the corresponding right hand sides.
If A ! uBv is a production, then the corresponding move is (qA; u; qB; v).
Terminating productions are of the form A ! #, where # is the separator
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between the two parts of the words. The corresponding move is (qA; �; qf ; �),
where qf is a �nal state of the �nite transducer.

Any linear language can be generated by a linear grammar with productions
of the form A ! �, A ! aB, and A ! Ba [11]. If we suppose that a
linear grammar is in this normal form, we obtain a �nite transducer where
� � Q � (� [ f�g) � (� [ f�g) � Q. These transducer are called 1-bounded.
In a 1-bounded regular transducer each input and output string related to a
transtion is a single terminal (from � or �, respectively) or the empty string
�.

The companion grammar of 1-bounded �nite transducerM = (Q;�;�; �; q0; F )
has continuing productions of the form A ! �B�, where � 2 � [ f�g and
� 2 �[f�g, and terminating productions of the form A! #, where # is the
new symbol.

The purpose of this note is to apply the results obtained for inferring linear
languages when inferring �nite transducers from pairs of input and output
strings.

3 Inferring linear languages

Takada [14] has introduced an inference algorithm for linear grammars with
all continuing productions of the form A ! aBb, where a and b are single
terminals, and all terminating productions of the form A ! ab, A ! a, or
S ! �, where S is the start symbol. We call these grammars even linear. A
language L is an even linear language if there exists an even linear grammar
generating L.

Let G = (N;�; P; S) be an even linear grammar whose productions are
uniquely labeled by the symbols of an alphabet �. If a sequence � of la-
beled productions is applied in a derivation � )� 
, we write � )� 
. If
C is subset of ��, then the language generated by G with control set C is
LC(G) = fw 2 �� j S )� w;� 2 Cg:

Takada [14] showed that a grammar scheme with productions of the form
S ! �, S ! a, S ! ab, and S ! aSb is su�cient for all even linear grammars
if regular control sets are used. The use of the grammar scheme with control
sets reduces the inference problem for even linear languages to the inference
problem for regular languages. As a consequnce, we have the following

Theorem 2 [14] Even linear languages are inferable in the limit from positive
and negative samples.
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For many practical purposes it is more natural to consider inference algo-
rithms using positive samples only. For subclasses of even linear languages
such inference algorithms are given in [6,8].

We say that an even linear grammar is terminal-�xed if A ! aBb and C !
aDb implies A = C and B = D. If A ! aBb and C ! aDb implies B = D,
we say that the grammar in question is almost terminal-�xed. An even linear
language is terminal-�xed (resp. almost terminal-�xed) if there is a terminal-
�xed (resp. almost terminal-�xed) even linear grammar generating it.

Theorem 3 [8] Terminal-�xed even linear languages can be inferred from pos-
itive samples in linear time.

Theorem 4 [8] Almost terminal-�xed even linear languages can be inferred
from positive samples.

Additional conditions for the inferability of certain subclasses of even linear
languages from positive samples are given in [6]. However, these conditions
are not directly characterized by the form of single productions and we omit
them here.

Sempere and Nagaraja [13] have considered the inferability of a subclass of
linear languages from positive structural samples. In addition to an input
string, the corresponding parsing tree without labels of internal nodes is given.
As in the case of [6], these results characterize language and grammar classes
by conditions which are not \local" to the productions. Hence, instead of the
Sempere-Nagaraja results on structural inference for linear grammars, we use
more general results by Sakakibara [12].

A context-free grammarG = (N;�; P; S) is reversible if (1) A! � and B ! �

in P implies A = B and (2) A ! �B� and A ! �C�, where � and � are
arbitrary strings over N [ ��, in P implies B = C. Hence, a context-free
grammar is reversible if and only if it is (1) invertible and (2) reset-free. All
context-free languages can be generated by reversible context-free grammars.

Theorem 5 [12] The structural grammatical inference problem for reversible
context-free grammars can be solved in polynomial time.

Instead of general context-free grammars, we need here only linear ones. Hence,
in the de�nition of reset-freeness, we have � and � in ��.
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4 The results

A 1-bounded �nite transducer M = (Q;�;�; �; q0; F ) is length-preserving if
(p; �) 2 �(q; a) implies lg(�) = 1, for all q 2 Q and a 2 �, and �(q; �) is
empty for all q. Length-preserving �nite transducers correspond to even linear
languages.

Given a pair of input and output strings from a translation realized by a length-
preserving �nite transducer, we can always combine the input and output ter-
minals related to the same transition of the transducer. If (a1a2 : : : an; b1b2 : : : bn)
is a pair of input and output strings, then the corresponding word produced
by the companion even linear grammar is a1a2 : : : an#bn : : : b2b1, where # is
the sepator. We have moves (q0; a1; q1; b1); (q1; a2; q2; b2); : : : ; (qn�1; an; qn; bn),
for some states qi, i = 1; 2; : : : ; n� 1, in M , with qn 2 F .

By using Takada's algorithm [14] we can infer the �nite transducer in the
limit. We state the result in terms of translations as follows.

Theorem 6 Regular translations realized by length-preserving �nite transduc-
ers are inferable from positive and negative samples.

If inference from positive samples only is prefered, then further restrictions to
the form of transition functions of �nite transducers must be set. When com-
paring the concepts of deterministic �nite transducers and almost terminal-
�xed even linear grammars, we notice that although the underlying ideas are
quite the same, the concepts do not match. Hence, in order to apply Theorems
3 and 4, we must modify the concept of deterministic �nite transducers.

We say that a length-preserving �nite transducer M = (Q;�;�; �; q0; F ) is
state-deterministic, if (p1; b) 2 �(q1; a) and (p2; b) 2 �(q2; a) implies p1 = p2
and q1 = q2. Similarly,M is almost state-deterministic if (p1; b) 2 �(q1; a) and
(p2; b) 2 �(q2; a) implies p1 = p2. Now we clearly have a one-to-one correspon-
dence between (almost) state-deterministic �nite transducers and (almost)
terminal-�xed even linear languages. Hence, we can write

Theorem 7 Regular translations realized by state-deterministic �nite trans-
ducers are inferable in linear time from positive samples only.

Almost state-deterministic �nite transducers are also inferable from positive
samples only, but no linear time algorithm is known.

In the rest of this section we give up the assumption that �nite transduc-
ers are length-preserving. We can relax the assumptions concerning trans-
ducers if we simultaneously strengthen the form of inference used. For now
on, we suppose that structural samples are available. In the case of transla-
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tions this means that we know how input and output strings are combined
from the substrings related to the transitions of the transducer. A sample pair
(�1�2 : : : �n; �1�2 : : : �n), is now given in the form ((�1; �1); (�2; �2) : : : (�n; �n)),
where each �i in �� and each �i in ��, corresponding a sequence of moves
(q0; �1; q1; �1); (q1; �2; q2; �2); : : : ; (qn�1; �n; qn; �n). Since we deal with linear
grammars, this is the same information as used in the structural grammatical
inference problem [12,13].

In order to apply Theorem 5, we need a restriction on the form of transi-
tion functions of �nite transducers. We say that a �nite transducer M =
(Q;�;�; �; q0; F ) is reversible if (1) moves (q1; u; p; v) and (q2; u; p; v) implies
q1 = q2, for all p 2 Q, u 2 ��, and v 2 ��, and (2) moves (q; u; p1; v) and
(q; u; p2; v) implies p1 = p2, for all q 2 Q, u 2 ��, and v 2 ��.

By theorem 5 we now have

Theorem 8 Regular translations realized by reversible �nite transducers are
inferable from positive structural samples.

5 Conclusions

We have been able to characterize �nite transducers realizing inferable regular
translations. Depending on the form of samples available (positive and neg-
ative sample, positive samples only, or structural samples), we have di�erent
restrictions on the form of the transducers considered.
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