
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

ON INFERRING ZERO-REVERSIBLE

LANGUAGES

ERKKI M�AKINEN

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF TAMPERE

REPORT A-1998-7

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1998-7, AUGUST, REVISED OCTOBER 1998

ON INFERRING ZERO-REVERSIBLE

LANGUAGES

ERKKI M�AKINEN

University of Tampere

Department of Computer Science

P.O.Box 607

FIN-33101 Tampere, Finland

On inferring zero-reversible languages

Erkki M�akinen
1

Department of Computer Science, University of Tampere, P.O. Box 607,

FIN-33101 Tampere, Finland

Abstract

We use a language-theoretic result for zero-reversible languages to show that there
exists a linear time inference method for this class of languages using positive data
only.

Keywords: regular language, grammatical inference, identi�cation in the limit.

1 Introduction

Regular languages cannot be inferred from positive data only [3]. This neg-
ative result has initiated a search for subclasses of regular languages having
the desirable inference property. Several subclasses of regular languages al-
low inference algorithms based on merging nonterminals (or states in �nite
automata); such algorithms are surveyed in [5]. In this paper we consider
zero-reversible languages, a well-known subclass of regular languages inferable
from positive data only by using a merging algorithm.

We assume a familiarity with the basics of formal language theory and gram-
matical inference as given e.g. in [4] and [2], respectively. As inference criterion
we use \identi�cation in the limit" [3,2].

If not otherwise stated we follow the notations and de�nitions of [4]. The
empty word is denoted by �, the reverse of a string w = w1w2 : : :wn by wR (=
wnwn�1 : : : w1), and the left-quotient of L and w by TL(w) = fv j wv 2 Lg.

We consider here regular languages and grammars only. We also suppose that
grammars are reduced [4], i.e. each terminal and nonterminal appears at least
in one derivation from the start symbol to a terminal word. A production of

1E-mail: em@cs.uta.�. Work supported by the Academy of Finland (Project
35025).

the form A! b, where b is a terminal, is said to be terminating. A continuing
production has the formA! bB, where b is a terminal and B is a nonterminal.
Other forms of productions are not allowed (except S ! �, where S is the
start symbol). A production with a nonteminal A on the left hand side is said
to be an A-production.

2 Zero-reversible languages

Recall that a �nite automaton A is zero-reversible if the following conditions
hold [1]:

(i) A is deterministic.
(ii) A is reset-free, i.e. for no two distinct states q1 and q2 do there exist an

input symbol b and a state q3 such that �(q1; b) = q3 = �(q2; b), where �
is the transition function of A.

(iii) A has at most one �nal state.

A regular language L is zero-reversible if there exists a zero-reversible �nite
automaton accepting L. We denote the class of zero-reversible languages as
R(0).

Angluin's inference algorithm [1] for R(0) starts with a pre�x tree automaton
and proceeds by merging states as long as the conditions (i) - (iii) are not
satis�ed. It follows that the time complexity for outputting the next conjecture
is not linear, but it has a small nonlinear factor.

The following purely language-theoretic characterization is also useful.

Proposition 1 [1] A regular language L is zero-reversible if and only if when-
ever u1v and u2v are in L, then TL(u1) = TL(u2).

A regular grammar G = (V;�; P; S) is said to be deterministic if, for each
nonterminal A, the right hand sides of A-productions start with unique ter-
minals. Given a nonterminal A and a sequence w of terminal symbols in a
deterministic grammar, A)+ wB is possible for at most one symbol B in
(V n�)[f�g. The concept of backward determinism is related to a somewhat
opposite situation.

G is said to be backward deterministic, if A)+ w and B)+ w, where
w 2 �+, always implies A = B. Hence, in a backward deterministic grammar
each terminal string is possible to generate from at most one nonterminal.
Notice that a backward deterministic grammar is not necessarily deterministic.

A language L is backward deterministic if there exists a backward determin-
istic grammar generating L. The class of backward deterministic languages is

2

denoted by B.

Notice that in backward deterministic grammars terminating productions have
unique right hand sides. Namely, if we have A) a and B) a, where a 2 �,
then we have A = B. Similarly, if we have

A = A0) a1A1) : : :) a1 : : : an�1An�1) a1 : : : an�1an

and
B = B0) a1B1) : : :) a1 : : : an�1Bn�1) a1 : : : an�1an;

then we have Ai = Bi, for i = 0; : : : ; n� 1.

Theorem 2 R(0) � B.

Proof. Let L be zero-reversible. Suppose that A)+ w and B)+ w are
possible in a regular grammar G generating L. Let S)+ u1A and S)+ u2B

be derivations in G. We have u1w and u2w in L, and since L is zero-reversible,
TL(u1) = TL(u2). In other words, everything derivable from A is also derivable
from B, and vice versa. Thus, we can replace all appearances of B in G by
A without changing the language generated. This can be repeated with all
pairs of nonterminals generating a common terminal string. Hence, there is a
backward deterministic grammar for L.

The inclusion in Theorem 2 is proper since there are nondeterministic lan-
guages in B. However, all deterministic languages in B are zero-reversible.
Namely, if we have u1v and u2v in a deterministic language L in B, in the
corresponding backward deterministic grammar we have

S)+ u1A)+ u1v

and
S)+ u2B)+ u2v;

for some nonterminals A and B. Now A)+ v and B)+ v must imply
A = B. And further, since L is deterministic, TL(u1) = TL(u2). Hence, L is
zero-reversible by Proposition 1. We have proved the following theorem.

Theorem 3 If a deterministic language L is in B, then L is zero-reversible.

3 The new algorithm

Our new algorithm is based on Theorem 2. Contrary to Angluin's algorithm
[1], we start with a su�x automaton (a trie containing the su�xes), since we
consider terminal strings derivable from nonterminals. In a reduced regular
grammar such strings are always su�xes.

3

0

1

1

0

1

1

S

A2
A5, A1, S

 A4, S

 A3

S

Fig. 1. The trie for the sample f 0, 00, 11, 1100 g.

As an example, consider a sample f 0, 00, 11, 1100 g (cf. [1, Example 29]).
We have the following derivations:

S) 0

S) 0A1) 00

S) 1A2) 11

S) 1A3) 11A4) 110A5) 1100:

The corresponding trie is shown in Figure 1. Nodes with at least one ending
word are drawn as squares. Each node (except the root) has a set of nonter-
minals associated with it.

The nonterminals associated with the same node are merged. The nonterminal
with the smallest subscript is chosen to be the canonical element, i.e. the
one used as the representative of the merged nonterminals. We assume that
S = A0.

The productions of the resulting grammar can be read by traversing the edges
from the leaves to the root. We obtain the productions

S ! 1A3; A3 ! 1S; S ! 0S; S ! 0; S ! 1A2; A2 ! 1:

Notice that we do not merge nonterminals A2 and A3, although we have pro-
ductions S ! 1A2 and S ! 1A3. The corresponding states in the resulting
�nite automaton are merged in Angluin's algorithm [1].

Figure 2 shows the trie after reading the next sample 101. The corresponding
derivation is

S) 1A6) 10A7) 101:

We merge A2 and A7. Notice that merging A2, A3, and A7 would imply a
further merge (S and A2), a �nally, a grammar equivalent with the �nite
automaton shown in Figure 5(d) of [1].

4

0

1

1

0

1

1

S

A2, A7 S

 S

 A3

S

S

A6

0

1

Fig. 2. The trie after reading the next input word 101.

We can formulate our algorithm as follows.

Algorithm 1 (BZR) Input: A non-empty sample T = fw1; w2; : : : ; wng.
Output: A backward deterministic grammar G.

(i) Insert the strings wR
1 ; w

R
2 ; : : : ; w

R
n to an initially empty string.

(ii) Associate the nonterminals from the derivations corresponding to the
sample words to the nodes of the trie.

(iii) Merge the nonterminals appearing in each node. Choose the nonterminal
with the smallest subscript as the the canoninal nonterminal (where S =
A0).

(iv) Read the resulting productions from the trie by traversing the edges from
the leaves to the root. If a node is associated with Ai, its parent is as-
sociated with Aj, and the edge between the two nodes is labelled with a,
the production obtained is Ai ! aAj. If a child of the root is associated
with A and the edge between the nodes is labelled with a, we obtain a
terminating production A! a.

(v) If � is in T , then insert the production S ! � to G.

If the input sample contains words u1v and u2v, the algorithm guarantees that
in the output grammarG, v is derivable from a single nonterminal only. Hence,
G is backward deterministic. Moreover, by Proposition 1 and by the fact that
sample words are from a zero-reversible language, L(G) is zero-reversible. It is
clear that L(G) is the smallest zero-reversible language containing the sample.
Hence, L(G) coincides with the language produced by Angluin's inference
algorithm [1] for zero-reversible languages.

Notice that the grammar outputted by BZR is not necessarily deterministic.
However, a corresponding deterministic grammarmust exist since the language
generated is in R(0). We have simply left some of the merges of Angluin's
algorithm undone.

BZR runs in time O(n), where n is the sum of the lengths of the input words.

5

Hence, we have the following theorem.

Theorem 4 R(0) is inferable in linear time from positive data only.

The space complexity of BZR is also linear. The trie contains less than n

nodes, and it is su�cient to maintain one nonterminal (the canonical one)
associated with a node.

Grammars obtained by BZR are bigger (have more productions) than those
corresponding the �nite automata produced by Angluin's algorithm. The big-
ger size of the resulting grammar seems to be the cost of dropping the nonlinear
factor from the time complexity.

4 k-reversible languages

Proposition 1 has the following generalization in the case k � 0:

Proposition 5 [1] A regular language L is k-reversible if and only if whenever
u1vw and u2vw are in L and lg(v) = k, then TL(u1v) = TL(u2v).

It is possible to apply the approach of the previous section also to the case
k > 0. However, the simplicity of the algorithm is lost in this case. Namely,
we should maintain links between the derivations corresponding to the sample
words and the nonterminals associated with the nodes in the trie, since merging
is possible only when the condition of Proposition 5 is ful�lled.

References

[1] D. Angluin, Inference of reversible languages, J. ACM 29 (1982) 741{765.

[2] D. Angluin and C.H. Smith, Inductive inference: theory and methods, ACM
Comput. Surv. 15 (1983) 237{269.

[3] E.M. Gold, Language identi�cation in the limit, Inform. Contr. 10 (1967) 447{
474.

[4] M.A. Harrison, Introduction to Formal Language Theory (Addison-Wesley,
1978).

[5] E. M�akinen, Inferring regular languages by merging nonterminals, To appear in
Intern. J. Computer Math.

6

