A SURVEY OF OBJECT IDENTIFICATION
IN SOFTWARE RE-ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF TAMPERE

REPORT A-1998-6




UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A

A-1998-6, APRIL 1998

A SURVEY OF OBJECT IDENTIFICATION
IN SOFTWARE RE-ENGINEERING

MAARIT HARSU

University of Tampere
Department of Computer Science
P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4352-7
ISSN 0783-6910



A survey of object identification in software
re-engineering

Maarit Harsu

Department of Computer Science
University of Tampere
P.O. Box 607, FIN-33101 Tampere, Finland

e-mail: csnima@cs.uta.fi

Abstract

In order to translate a non-object-oriented (procedural) program
into an object-oriented one, objects must be identified from the proce-
dural program. Object-oriented programs (compared with procedural
ones) are considered to be easier to reuse and maintain. Thus, ob-
ject identification followed by translation from a non-object-oriented
language into an object-oriented language is one way to re-engineer
legacy programs. This paper gives an overview of re-engineering in
general and of object identification especially. Associated with object-
orientation, identification of (design) patterns is discussed, too.

Keywords: Re-engineering, object identification, re-engineering
patterns, software maintenance.

1 Introduction

When re-engineering legacy programs, old programs are modified into a new
form to make them more compact and structural, and easier to understand,
maintain, and reuse. This is a way to improve software quality. An im-
portant point in re-engineering is to find those software parts which can be
reused. In translation into an object-oriented language, it is important to
find reusable components and objects from the procedural programs. The
easiest way to start to use an object-oriented language is to wrap the old
code into a black-box module with an object-oriented interface, as has been
done in [18]. The functionality of the program is preserved as such. However,
the old part of the program must be reused as whole, the components of the
program are impossible to be reused separately. In this paper, we are trying



to provide better ways to reuse legacy programs.

An important subarea in software re-engineering is modifying old pro-
grams into object-oriented platform. Advantages of object-oriented programs
are considered to be encapsulation, data abstraction, information hiding, etc.
In addition, object-oriented programs are easy to maintain and reuse. The
purpose of this paper is to introduce known means to translate procedural
programs into object-oriented ones.

When translating non-object-oriented programs into object-oriented pro-
grams, direct source-to-source conversion is not possible [25]. Instead, the
translation requires more abstract view about the source program which can
be achieved by the means of re-engineering. During the reverse engineering
phase, the objects are identified from the procedural code. Then the actual
translation can be performed according to the source code and to the iden-
tified and accepted objects.

This paper proceeds as follows. The second section introduces basic con-
cepts about re-engineering. Section 3 considers re-engineering in general.
Section 4 discusses a subarea of re-engineering, namely identifying objects
from code in order to convert programs into an object-oriented language.
That section introduces some possible ways to object recovery. Section 5 con-
siders re-engineering especially from the point of view of (design) patterns.
In section 6, the problems concerning re-engineering and object identification
are discussed. Finally, in section 7, we draw conclusions.

2 Terminology of re-engineering

In this section, we introduce and define some basic concepts concerning re-
engineering. This section, excluding the last term, is based on [11]. For
simplicity, the definitions assume that the software life-cycle consists of three
phases: requirements analysis, design, and implementation.

Software maintenance
The ANSI definition of software maintenance is the “modification of a soft-
ware product after delivery to correct faults, to improve performance or other



attributes, or to adapt the product to a changed environment”. The first step
in software maintenance is to examine the program to understand it. Re-
verse engineering facilities can be used to support the maintenance process.
Thus, reverse engineering is the part of the maintenance process helping to
understand the program in order to make the desired changes. Maintenance
can also considered as reuse-oriented software development [3].

Forward engineering
Forward engineering is the traditional process of moving from the require-
ments of the system to its design, and from design to the concrete implemen-
tation of the system. Actually, forward engineering means exactly the same
as engineering. The adjective forward is used to distinguish the term from
reverse engineering.

Reverse engineering

Reverse engineering is a reverse process for forward engineering. In reverse
engineering, the extracted information about a system is more abstract than
the system itself under examination. For example, abstractions or design de-
cisions are generated from the implementation level. Reverse engineering can
start from any level of abstraction or at any stage of the life-cycle. Reverse
engineering does not involve changing the subject system. It is a process of
examination, not of change or of replication.

Reverse engineering has many subareas, the most important ones of which
are redocumentation and design recovery. Redocumentation is the creation
or revision of a semantically equivalent representation within the same rel-
ative abstraction level. The resulting forms of representation are usually
considered alternative views (e.g. data flow, data structure, control flow),
which help human understanding the system better. The aim of redocu-
mentation is to recover documentation that existed or should have existed.
Examples of redocumentation tools are pretty printers, diagram generators,
and cross-reference listing generators. The aim of these tools is to provide
easier ways to visualize relationships between program components.

Another important subarea of reverse engineering is design recovery. In
design recovery, the needed information is collected besides by examining
the system itself, also from domain knowledge and by using other existing
(design) documents. Design recovery must reproduce all of the information



required for a person to fully understand what a program does, how it does it,
why 1t does it, and so forth. Thus, it deals with a far wider range of informa-
tion than found in conventional software engineering representations or code.

Restructuring

Restructuring is the transformation from one representation form to another
at the same abstraction level. The transformation preserves the external be-
havior of the system. Restructuring is typically used in implementation stage
to transform code from an unstructured form to a structured form (trans-
forming, for example, goto-statements to control structures). In addition,
restructuring can be used in other stages, too: for example to reshape design
plans or requirement structures.

Re-engineering

Re-engineering can also be called both renovation and reclamation. Re-
engineering is the examination and alteration of a system to reconstitute it
in a new form and the subsequent implementation of the new form. Thus,
re-engineering generally includes reverse engineering (to achieve a more ab-
stract description) followed by forward engineering or restructuring. This
may include modifications with respect to new requirements not met by the
original system.

Reuse re-engineering
Reuse re-engineering can be considered as a subarea of re-engineering, al-
though it is not defined in [11]. The term reuse re-engineering is used in
[6, 7,8, 9], and quite a similar term re-engineering for reuse in [30]. In reuse
re-engineering reusable features are identified from the code, especially in the
reverse engineering phase. Thus, because objects can be considered reusable
features, object identification is a kind of reuse re-engineering.

3 General issues about re-engineering

This section considers some general issues about re-engineering. The rela-
tionship between re-engineering and maintenance is discussed first, and after
that some re-engineering methods and tools are introduced.



3.1 Re-engineering and maintenance

With re-engineering the software quality can be improved, and the subse-
quent software maintenance tasks can be performed more easily. Particu-
larly, if reusable components are identified, and the software is re-engineered
into a form that better supports reusability and maintainability, the qual-
ity of re-engineered software is considerably better than that of the original
software.

Software re-engineering is closely related with software maintenance. Swan-
son has presented three reasons for software maintenance [48]. First, the
errors in specification, design and implementation must be corrected (cor-
rective maintenance). Second, the data and processing environments may
change (adaptive maintenance). Third, the performance of the software must
be maintained (perfective maintenance). As mentioned in chapter 2, also the
ANSI definition for software maintenance covers these three aspects. Be-
sides the three reasons, the fourth reason has been recognized later: the
requirements of the software product may evolve (preventive or evolution
maintenance) [2, 4, 43]. Preventive maintenance is closely connected with
re-engineering and reverse engineering. In addition, each of the other types
of maintenance can be aided with re-engineering means.

Software under maintenance is usually lacking of important documents or
these documents are not updated. Requirements, design documents, main-
tenance information, etc. can be in the heads of the programmers, but these
programmers are not necessarily available. Re-engineering can be used in
this kind of information recovery to produce structure charts, data flow dia-
grams, entity-relationship diagrams, etc.

However, re-engineering is not always the best choice. Figure 1 shows in
which situations it is reasonable to re-engineer software. (Figure 1 is from

[29].)



Maintain Enhance

Changeability

Discard Re-engineer

Business value

Figure 1. Decision matrix.

If the legacy system is easy to change, it is reasonable to just maintain
it. If the system is difficult to change, but it has a high business value, more
radical changes are needed and the system is worthwhile to be re-engineered.
A system with a high changeability or a low business value either does not
need re-engineering or is not worth of it.

3.2 Basic methods used in re-engineering

There are many ways and methods to re-engineer a software system. Depen-
dency analysis shows the dependencies between language structures (mod-
ules, data objects, functions). The simplest method of this kind is the cross-
reference listing available in many compilers. This listing typically shows
where different identifiers are referred, and thus, reduces the effort in search-
ing through program listings. Another simple way to get dependency in-
formation is to construct a calling dependency graph, where a procedure is
connected to another procedure if one of the procedures calls the other.

Common methods in re-engineering are those providing flow graphs. Flow
graphs are typically distinguished into control flow and data flow graphs. To
construct a control flow graph, the statements of a program are organized
into basic blocks. A basic block is a sequence of consecutive statements in
which flow of control enters at the beginning and leaves at the end without



halt or possibility of branching except at the end. The basic blocks are nodes
of the control flow graph. The edges represent transfers of control between
the basic blocks. For example, an if-statement is presented as branching from
the condition node to two nodes, one being the basic block of the true branch
and the other being the basic block of the false branch. For another example,
a while-statement forms a cycle in the graph. The end of the while-statement
is directly connected to the condition of the while-statement. The opposite
connection flows via the basic blocks of the body of the while-statement.
Data flow dependencies occur between data objects when the value held by
one object may be used to calculate or set by another object. Flow graphs
are considered for example in [1, 50]. Originally, flow graphs are constructed
for compilers and particularly for optimizing code. However, they can be
useful in re-engineering, too.

Program slicing, first introduced by Weiser [49], can be used to aid re-
engineering. Program slicing is a decomposition based on data flow and
control flow analysis. Starting from a subset of a program’s behavior, slicing
reduces the program to a minimal form which still produces that behavior.
For example, if we slice a program according to a certain variable, the pro-
gram slice contains those program lines that refer to the variable (definitions
and usages) and some other necessary lines. For example, if the variable is
referenced inside an if-statement, the head and the end of the if-statement
must be included in the slice.

3.3 Tools used in re-engineering

Many tools supporting re-engineering have been introduced in literature.
Some of the tools are based on lexical structure of the program, and some
others require parsing the program. The tools based on lexical structure are
usually simple and easy to implement. However, finding some structures may
need parsing the program. Parsing-based tools have their deficiencies, too
[5]. Although they suit very well to the recognition of programming-oriented
concepts, they cannot be used in searching for semantic information.

Some tools search for certain concepts or patterns from a program. UNIX
provides grep command for searching for certain strings and regular expres-
sions. However, in re-engineering this is not always sufficient. The tool



described in [41] is based on pattern matching, which is implemented using
syntax-directed approach. The following searches are possible:

e Find all while-statements where the condition of the while-statement
is a relational expression of the form not-equal-to zero.

e Find all occurrences of three consecutive if-statements.
e Find situations where the values of two variables are being swapped.
e Find a structure of three nested loops.

These kinds of things are hard to find with conventional tools, like grep com-
mand.

There are a lot of redocumentation tools that show useful information
about the program. This information can be called source model [35], and it
consists of the information described in the previous subsection such as data
and control flow graphs, call graphs, etc. There are several papers about
these topics. Cimitile and De Carlini represent algorithms for generating
source models [12]. Their algorithms use an algebraic representation of pro-
gram modules. Jackson and Rollins introduce a new form of the program
dependence graph which is in certain situations more suitable than the origi-
nal program dependence graph [28]. Murphy and Notkin introduce a system
extracting different source models from lexical specifications [35]. Cleveland
describes a tool providing multiple views about a program and the possibil-
ity to move between the views [13]. One simple and quite a useful tool is
such that analyzes differences between two versions of a program in order to
understand the change made in one of program versions [50].

An interesting approach is described in [10]. The authors suggest a
parsing-based system which collects information about the relationships be-
tween language structures. It saves information about object domains, such
as files, macros, data types, global variables and functions. Each object do-
main has attributes. For example a function has the following attributes:
the name of the file containing it, its (return) type, its name, static variables
used in it, its beginning and ending lines. The relationships between each
object domain are stored in the database. Thus, the normal database queries
can be made. For example, the following queries are possible:



e Which functions defined in a certain file are referred to by the functions
in another file?

o Which functions refer to a certain global variable and a certain data
type?

e Which static functions refer to a certain macro?

This system provides also graphical views about the relationships.

There are tools for visualization of programs under re-engineering and
specialized editors for maintenance and re-engineering. Rajlich et al. intro-
duce an editor for Fortran programs [45]. With this tool, programs can be
edited both as text and as a graph. Quite a similar tool for C programs
is introduced in [32]. Ning et al. introduce an editor for Cobol programs
[38, 39]. The authors define program segments to consist of statements which
are semantically related, but not necessarily physically adjacent. With the
tool, these kinds of program segments can be isolated from other program
text to examine them more precisely. In addition, program slicing is possible.

Cordy et al. have a different approach [17]. They introduce a tool whose
comprehensive viewing paradigm is borrowed from program development en-
vironments. This paradigm is source text elision. By using the editor, mean-
ingless parts of the program can be elided. The body of a procedure can be
elided, only showing the header of the procedure. Similarly, the body of a
control structure can be elided, only showing the condition and the ending
of the control structure. This kind of tool makes program browsing easier.
In other context than re-engineering, quite similar tools based on hypertext
[19] and on active text [36] are also introduced.

As shown there are many kinds of tools supporting software maintenance
and re-engineering. The tools introduced in this subsection typically show
the program points requiring modification or help in finding them. The ac-
tual modification is then performed by a human.



4 Searching for objects

This section describes several different systems searching for objects in con-
ventional (procedural) programs, and thus, enabling translation from a pro-
cedural language into an object-oriented one.

4.1 Gradual objectifying

Jacobson and Lindstom show how old systems can be gradually re-engineered
to an object-oriented architecture [29]. They consider different situations in
re-engineering depending on whether the change concerns implementation
technique or functionality. They discuss three different situations: a com-
plete change of implementation technique and no change in the functionality,
a partial change in implementation technique and no change in functionality,
and a change in functionality.

Consider the situation when the implementation technique changes com-
pletely, but the functionality does not change at all. The authors use any
available documents of the old system: requirements specifications, user op-
erating instructions, maintenance manuals, training manuals, design docu-
mentation, source code files, database schema descriptions, etc. From these
elements they prepare an analysis model by using object-oriented analyzing
methods, e.g. [15, 14]. Then the authors map each object obtained from
analysis model to the implementation of the old system. They redesign the
system using a forward engineering technique for object-oriented system de-
velopment.

If the implementation technique changes only partially, the new part
(object-oriented) and the remaining part of the old system (non-object-
oriented) must be made fit together. Some interface is needed between these
different parts via which they can communicate with each other.

The third situation is such that only the functionality changes. The
analysis model is changed according to the requirements on changes in func-
tionality. Forward engineering is performed to obtain new objects. Objects
identified from the old system either are deleted or receive new attributes.

10



The authors only present general rules to re-engineer a system to an
object-oriented architecture. They do not precisely tell how to modify exist-
ing code to object-oriented code.

4.2 Object Finder

Object Finder is described in [33, 40]. The authors introduce two methods
for finding objects: globals-based object identification and types-based object
identification. The former method acts as follows. For each global variable
of the program, the set of routines that directly use the global variable is
determined. After that a graph is constructed. The nodes of the graph
are the routines found in the first step, and the edges connect those nodes
(routines) which have common references to the same global variables. Each
strongly connected component of the graph defines an object and its routines.

However, the program code may be so tightly coupled that the whole
program is one large strongly connected component, and the method can-
not split the program into smaller parts. For these situations, the authors
propose the following solution. The user specifies (by hand) those global
variables which form undesired links between nodes (routines) in the graph.
These global variables are then ignored during the globals-based object iden-
tification analysis.

Another method for identifying objects is based on types. First, a topo-
logical ordering of all types in the program is defined as follows. If type z
is used to define type y, then we say that z is a sub-type of y, and yis a
super-type of z. The relation of types is transitive: if z is a sub-type of y and
y 1s a sub-type of z then z is a sub-type of z. Second, routines and types
are connected together as follows. A type is connected to a routine, if it is
a formal parameter or a return type of the routine. However, if a type and
its super-type would be connected to the same routine, only the super-type
will be connected. The groups consisting of together connected routines and
types form objects and their routines. Again, human assistance is needed to
break too large objects.

The reason why super-types are chosen primarily as described above is to
eliminate some irrelevant connections. We may, for example, have type node,

11



and another type stack whose items are nodes. In this case, type node is a
sub-type of type stack. Consider routine push having two arguments: one of
type node (which will be pushed) and another of type stack (to which will
be pushed). For a human, it is clear that routine push should be a routine
of stack, not a routine of node. If we follow the above rules, the connection
between routine push and type node will be removed, and the remaining con-
nection will be the one between routine push and type stack, as we intended.

4.3 Extensions of Object Finder

Livadas and Johnson [34] use the two methods for identifying objects (globals-
based and types-based) described in the previous subsection. However, they
have extended these methods as follows. First, in programming languages
allowing nested procedures (like Pascal), those variables which are visible
for several procedures should be considered as global variables. Second, the
following situation may occur. A variable is global for a function and the
function passes the variable to another function as a parameter. These con-
nections can be identified with the method proposed by Livadas and Johnson,
because they use a graph as an underlying structure representing bindings
between the language structures. Third, the authors have noticed that the
return type of a procedure (as suggested in the previous subsection) is not
always appropriate criteria for forming connections. For example, routine
is_empty (for a stack) has boolean as its return type. However, the routine
is not a routine of type boolean, but a routine of stack.

Besides the two methods (globals-based and types-based), the authors use
another method, called receiver-based object identification. Receiver param-
eter type of a routine means such a type, the parameter of which is modified
in at least one execution path of the routine. If a routine has several pa-
rameters one of which is modified, the type of the one is typically an object
candidate. For example, consider routine push having two arguments: one
of type node and another of type stack. The routine pushes the given node
to the given stack. Thus, only the parameter of type stack is modified, and
stack should be an object candidate having the routine push.

The objects found by using the above three object identification meth-
ods are called primary objects. They are found via queries on the internal

12



program representation. Another set of objects can be found by queries
on the primary objects and by some additional information. These objects
are called secondary objects. The operations for finding secondary objects
are: selection, union, intersection, subtraction, and deletion. In the selection
operation, object finding is performed on a subset of routines, types, and
global variables. Selection is made according to some property, for example,
selecting all routines that access a certain global variable. With the union
operation, routines can be grouped based on mixed criteria (the union of
several criteria). In intersection, for example, routines having a certain re-
ceiver type, but which also access a certain global variable, can be grouped
together. In subtraction, routines having a certain property can be excluded
from the group. In deletion, some spurious dependencies can be deleted.

In identifying objects, the internal program representation is the system
dependence graph. It is a directed, labeled multigraph consisting of a pro-
gram dependence graph and a collection of procedure dependence graphs.
Program dependence graph represents the main program, and procedure de-
pendence graphs represent procedures. Each node of these graphs represents
a program construct such as declaration, assignment, etc. Additional nodes
represent for example formal and actual parameters. The edges represent
several kinds of dependencies among the nodes and are distinguishable ac-
cording to the labels attached to them. When using system dependence
graph, all the information needed can be obtained from the headings of the
procedures. Thus, also procedures with lacking bodies (for example library
procedures) can be modeled with the system dependence graph.

4.4 Identifying reusable abstract data types

There are several papers about the RE? project [6, 7, 8, 9]. The goal of the
project is to understand how reverse engineering and re-engineering can pro-
mote software reuse. Reusable software components (for example objects)
are extracted from existing systems and they are collected into repositories.

According to the authors, searching for objects in code can be divided
into five phases:

1. candidature,

13



2. election,

3. qualification,

4. classification and storage,
5. search and display.

Candidature phase analyzes the source code and chooses some software com-
ponents as candidates of reusable modules. Election phase analyzes the cho-
sen software components and produces from them reusable modules. Quali-
fication phase produces the specifications of each reusable module obtained
in the election phase. Both the functional and the interface specifications
are produced in that phase. Classification and storage phase classifies the
reusable modules and related specifications according to a reference taxon-
omy. The aim is to define a repository system containing the reusable mod-
ules produced. Search and display phase sets a front end user interface to
interact with the repository system. The aim is to make finding the desired
modules as simple as possible, for example, by giving visual support to navi-
gate through the repository system. Only the first three phases are discussed
in the papers concerning RE? project.

The authors use the globals-based and types-based object identification
methods introduced with the Object Finder [33, 40] (described in subsection
4.2). However, the authors of RE* suggest some improvements for those
methods. They have noticed some situations in which the graph-based ob-
ject identification methods do not suit very well. For example, consider two
abstract types: a stack and a queue. A program may have a common ini-
tialization routine for both of the types. Or a program may have a routine
which copies the elements of the stack to the queue or vice versa. These rou-
tines form undesired links between the abstract data types and among the
corresponding subgraphs. The former kind of link (e.g. with the common
initialization routine) is called coincidental connection and the latter kind of
link (e.g. with the copy routine) is called spurious connection. The authors
suggest that the routines producing coincidental connections are sliced into
several routines via program slicing, and the routines producing spurious
connections are just removed.

14



To find isolated subgraphs from the graph having coincidental and spuri-
ous connections, the authors suggest the following solution. They calculate
the internal connectivity index of each subgraph. It is the ratio between the
number of edges linking couples of nodes in the subgraph and the total num-
ber of edges of the subgraph (both internal edges inside the subgraph and
edges which connect a node of the subgraph with some external node). This
value is always between 0 and 1, and it is 1 for a totally isolated subgraph.
The value of internal connectivity changes when routines are merged, sliced,
and removed. The whole algorithm for finding objects is iterative, and it
stops when the user is satisfied with the internal connectivity index of each
resulting subgraph.

4.5 COREM

There are several articles about the COREM system [20, 21, 22, 23, 24, 25,
26, 31]. The authors do not only consider data stores as object candidates,
but also examine functional relationships between data structures to get more
object candidates from which several are selected to become objects. The
authors divide object recovery into four phases: design recovery, application
modeling, object mapping, and source-code adaptation.

The first step, design recovery generates different low-level design docu-
ments (i.e. structure charts, data flow diagrams). These documents are again
modified to generate entity-relationship diagram (ERD). The ERD consists
of entities based on the data stores of the data flow diagram. Data structures
which are functionally related to these data stores are also added as entities
of the ERD. A functional relationship is defined as a manipulation or use
of one or several attributes of an entity (e.g. data store) by another entity
(e.g. data structure). The relations of the diagram are both special relations
(e.g. is-a, part-of) and general relations. The general relations are derived
from those procedures of the program that incorporate a functional relation
between two entities.

The entity-relationship diagram is transformed into an object-oriented
application model, called RooAM (reversely generated object-oriented appli-
cation model). The transformation is based on the structural similarities of
these two design representations: each entity is mapped to an RooAM-object.

15



The relationships (is-a and part-of) between objects are derived directly from
the corresponding structures of the entity-relationship diagram. These re-
lationships can also be directly derived from the declaration parts of the
source code: is-a relations can be derived from variant records, while part-of
relations can be derived from array or pointer structures within data-type
definitions. The operations for an object can be found both from entity-
relationship diagram and by examination of the source code to recognize the
procedures manipulating the object.

The second phase, application modeling constructs a forwardly generated
object-oriented application model (FooAM). This model is independent of the
actual procedural implementation, but is based on the same requirements as
the examined program. This step needs a human expert who is either ex-
perienced in the application domain or who participated in the development
of the program under consideration. This modeling can be done by apply-
ing any object-oriented analysis methods, for example [15, 14, 46]. Actually,
this step models the application, which is earlier modeled by the means of
procedural program design, again by using object-oriented techniques.

The third phase, object mapping maps the objects of the two models
(RooAM and FooAM) together. The aim of this step is to find a mapping of
similarities between the elements of those two models. Because of the differ-
ent origins, the models have some differences. The FooAM originates from
the requirements analysis and the domain knowledge, and therefore does not
have a high degree of details (e.g. attributes have no types). The RooAM on
the other hand offers a lot of detailed information because it originates from
the examined source code. Thus, in mapping objects, the FooAM is working
as a pattern for the target application model to which the RooAM gives the
detailed information. The two models have varying amount of attributes,
instance connections, and message connections. Thus, some parts remain in
one of the application models without correspondence. These parts contain
elements of the procedural program that cannot be mapped to the target
object-oriented model, and they form so called procedural remainder.

In the fourth step, source-code adaptation, both the earlier mapped el-
ements and the procedural remainder are adapted to object-oriented con-
cepts. Syntactically, objects are formed by encapsulating the attributes and
the declaration parts of the procedures. Global data items are encapsulated

16



in separate objects, too. They are called data objects, because they have
only attributes, but no procedures. The procedural remainder produces the
following objects. First, it gives master objects which include the highest
level of system control and can be compared to a control unit. A typical
example is the main program. Second, it gives aggregation and coordina-
tion objects which perform system control over a specified set of procedures
and provide some kind of functionality for a master object. Third, it gives
provider objects which perform the main functionality (e.g. sorting, search-
ing, computing). These kinds of objects do not perform any system control,
but provide a certain functionality for aggregation and coordination objects.

In each phase, a human expert is needed. In the first phase, various
ambiguities may arise, for example, to which particular object a procedure
should be assigned. These situations can be solved by a human expert.
The second phase is implemented totally by a human expert. In the third
phase, using application domain knowledge, the human expert can perform
the matching of each ambiguous RooAM service candidate to a particular
FooAM service. Many parts of the fourth phase can be automated, however,
the human expert has to deal with adapting the interfaces of procedures and
in the decomposition of the procedural remainder. Especially, the reference
[31] considers the means to decrease human intervention. Section 5 considers
the COREM system from the point of view of re-engineering patterns.

4.6 Programming plans

Quilici [44] presents how to automatically extract object-oriented design
knowledge to support translation from a procedural language into an object-
oriented one. He is especially interested in recognition common objects and
operations from the old code and replacing them with libraries containing
human-generated object-oriented code. He has the following approach to
identify objects in the code. He has studied how programmers understand
short test programs having uninformative variable names. Then he tries to
build a program that mimics their understanding process.

He has noticed that programmers do not try to fit a program fragment

under consideration to every programming plan. Instead, programming plans
form a hierarchy from general plans to more specialized plans. In addition,

17



some plans can be attached to other plans. For example, if a plan computing
distances is found from the program code, it can be assumed that there are
also points, the distances of which are to be computed. He has organized a
plan library due to these notifications. The plans in the library have links to
other plans according to specialization and implication.

4.7 Function abstraction

Philip and Ramsundar [42] consider re-engineering from a procedural lan-
guage into an object-oriented one. To re-engineer software the authors use
function abstractions. They operate the system, invoke all its functions, and
evaluate the behavior of the functions. Based on the functionality, they get
abstractions for each function. The authors collect each extracted function
to the table called function matrix. Each item of the function matrix is as-
sociated with a reuse factor, telling the potential for reusing that function in
the target system.

After identifying the function abstractions, the authors analyze the cor-
responding code to refine the functions to lower levels. During this analysis,
some data elements are also identified, and they are added to a data dictio-
nary. In addition, the identified blocks of code with specific functionalities
are converted to high level algorithms.

To identify objects, the data dictionary is searched to identify items which
correspond to specific components in the system. In most cases these items
become the objects in the target system. In addition, closely related items
in the data dictionary are used as attributes of the found objects. After the
objects are identified, they are compared against the remaining data items
in the dictionary. Those items which describe an identified object are placed
as attributes of that object.

Each element of the function matrix has a corresponding entry in a sep-
arate table. This table contains the algorithms of each function. The al-
gorithms refer to the data elements of the system. This information which
relates functions to data elements is used to assign functions as operations of
the identified objects. Each function is assigned to an object which closely
matches the object or the attributes of the object. However, the decision to

18



assign an operation to an object is usually subjective. The relations between
two objects can also identified through existing procedure invocations within
the algorithms or code. This provides a message path between the objects
where the corresponding operations are located.

In addition to the described techniques, usual object-oriented develop-
ment techniques (for example [46]) are used during the forward engineering
phase.

4.8 Automated object identification

Newcomb [37] describes a highly automated process to re-engineer procedural
programs into object-oriented ones. His object-oriented model is based on
state machines, and it is called hierarchical object-oriented state-machine
model. The paper describes the mapping operations and analyses that
achieve the resultant abstract structures, but not the final process for trans-
lating into a specific target object-oriented language.

The first part of the transformation includes parsing the procedural pro-
gram to create an abstract syntax tree (AST). The abstract syntax tree is
then decorated with semantic properties of the program. The resultant ab-
stract syntax tree is called an augmented abstract syntax tree.

Different kinds of analyses are performed. Scope analysis attaches the
declaration and the occurrence of a variable with each other. Scoping rules
depend on the semantics of the programming language. Block structured
languages usually provide both locally and globally scoped variables. Set-
use analysis identifies the usages and definitions of a variable taking into
advance the meaning of the usage. Program unit analysis describes the local
properties of each data unit and function unit. Examples of local properties
are type, the location of definitions and references. Alias analysis examines
records and their fields to find out the occurrences of records having a dif-
ferent name but an identical structure. The template for a record having
different occurrences is called collision former. The records matching the
collision former are considered aliases. An alias map is a relation whose do-
main is a collision former and whose range is the set of alias records.

19



For procedures, control flow graphs, a data flow graph, and a state tran-
sition graph are constructed. The state transition graph consists of a start
state, an end state and a set of intermediate states joined by state transitions.
A state transition is defined by each distinct sequence of control conditions
followed by a sequence of actions. The state transition table depicts one or
more states and the conditions and actions involved in transitions between
states.

Different kinds of classes can be derived as follows. Data object classes
can be obtained by the alias analysis. The collision former corresponds the
object class, and the instances of the class are the alias records. A program
object class is a class whose instances are top level programs. There are
several classes for different methods: for data transforming methods, for side
effecting methods, for primitive methods, and for composite methods.

The object oriented model must be normalized. This involves transfor-
mations reducing the complexity of the model by merging similar or identical
components into functional or structural unifying generalizations. For data
structures, the generalization is the subclass relationship and the instance-
class relationship. For functional structures, the generalization is parameter-
ization and method inheritance.

4.9 Extracting object-oriented specification

Sneed and Nyary present how object-oriented specification can be derived
from existing procedural programs and databases [47]. They extract struc-
tures, interfaces and algorithms from legacy code and create a program design
specification. The program is then reimplemented according to the specifica-
tion. The functionality of the program is preserved without the constraints
of the legacy design. However, the code has to be rewritten and the test data
regenerated.

The authors use different sources from which they identify different ob-
jects. User interface objects can be derived from panels for communicating
with the user. Data objects can be obtained from databases for storing per-
sistent data. File objects comes from job control procedures which refer to
data sets. Record objects, view objects, work objects, and link objects are

20



derived from programs.

To extract operations for objects the authors examine cross references.
First, they segment the procedures of the program into elementary opera-
tions. Then they check which object each elementary operation refers to.
After that, the connections between objects must be depicted. Objects con-
nect to each other via parameters and interfaces. Thus, in this step, the
parameters of the operations are defined.

The final step is to capture and document the sequence in which the oper-
ations are executed. The sequence is determined by separating the program
control flow from the program operations. Each operation knows its succes-
sor operation, and when an operation has been terminated, the operation
sets a certain global variable to point to the next operation. Thus, after the
invocation of each operation, the global variable tells the operation which
should be invoked next.

5 Re-engineering patterns

There are several kinds of patterns. Probably the most famous patterns are
design patterns, introduced by Gamma et al. [27]. Similar kinds of patterns
are also introduced by Coad [14]. There are also code patterns which are pro-
gramming language oriented abstractions of style guidelines [16]. From the
point of view of this paper, especially interesting patterns are re-engineering
patterns, discussed only in [26]. (In [26] re-engineering patterns are called
object patterns or application patterns.)

There is a difference between re-engineering patterns and the other pat-
terns. The other patterns are ideal solutions, guidelines to follow. Instead,
re-engineering patterns are code fragments found in programs that have been
run and maintained for many years. Thus, they are not patterns to be fol-
lowed, but patterns to be untangled.

The COREM system described in [26] is discussed in subsection 4.5. In
that subsection, we noted that the system has two approaches: forward engi-
neering from the requirements of the software and reverse engineering accord-

21



ing to the same software. Similarly, pattern recognition has two approaches,
too: pattern-driven scavenging for object patterns in source code and source
code -driven capturing of object patterns.

Pattern-driven scavenging uses the reverse engineering approach. In-
stances of object patterns are tried to find in the source code. However,
one cannot expect to find a direct instantiation of a particular object pat-
tern in the source code. Nevertheless, typically a programmer solves similar
problems in similar ways. Consequently, identifying the particular solution
patterns used by a programmer to implement certain aspects which could
be grouped into an object or an abstract data type aids in identifying con-
stituent parts for object patterns.

Source code -driven capturing uses the forward engineering approach.
Abstract data types of the procedural program are considered, and they
are tried to map to some object patterns. Mapping is performed in several
steps, but an exact mapping between a data type and an object pattern is
not necessarily found. In addition, for each kind of object pattern the source
code -driven capturing is influenced by different constraints. Again, there are
some difficulties, because the original problem is not modeled with object-
oriented concepts. Some relationships between entities may not be exactly
the same relationships in the code. The original programmer may have not
seen the relationships clearly enough. For example, she may have not seen
the similarities between some concepts, and thus, given them quite indepen-
dent implementations. Taking advantage of this historical pattern may help
in finding the real relationships.

Together these two approaches, pattern-driven scavenging and source
code -driven capturing, help finding re-engineering patterns. Note that the
method is not totally automated, instead human assistance plays a signifi-
cant role.

22



6 Problems in re-engineering and object iden-
tification

As introduced in this paper, there are a lot of tools to aid re-engineering and
object identification. However, usually the existing tools are not suitable for
a certain situation. For example, they do not support the particular dialect
of the programming language. Parsing-based tools may not accept a defi-
cient program, for example, the program cannot be parsed if some included
files are missing. In addition, usually the tools are not flexible nor extendible.

A typical situation when re-engineering a legacy program is that the only
existing document about the program is the code. The other possible docu-
ments may be either missing or out of date. The other information about the
program is in the heads of the designers and programmers. However, they
may have left the company or moved to other duties. The lacking documents
make re-engineering more difficult. Thus, many tools for re-engineering do
not require any other document than code.

In re-engineering and object identification, domain knowledge is usually
needed. Thus, totally automated tools do not yield good resulting code.
The tools are typically semi-automatic: routine work is performed automat-
ically, but human assistance is needed in some decisions, for example in the
decision whether to accept an object candidate as a final object. However,
producing pure automated tools for as many re-engineering phases as pos-
sible is desirable, because they can significantly reduce resources needed for
re-engineering and object identification.

Object identification area especially has difficulties in recovering objects
in non-object-oriented code. When using the graph-based solutions as de-
scribed in subsections 4.2, 4.3, and 4.4, searching for isolated subgraphs
produces satisfactory results only for the ideal programs which have been
designed according to a fully object based approach [8]. For other programs
the subgraphs are not totally isolated, and human assistance is needed to
dissolve the insignificant relationships.

23



7

Conclusions

In this paper, re-engineering in general and object identification especially
have been considered. Several tools for aiding these processes have been in-
troduced in literature. However, most of the tools are not fully automatic,
instead human assistance is needed.

Re-engineering and object identification have been investigated quite a

lot. However, as stated in the previous chapter considering the problems of
these areas, a lot of questions are still lacking of answers, and further research
is needed.

References

1]

2]

A. V. Aho, R. Sethi, J. D. Ullman, Compilers - Principles, Techniques,
and Tools, Addison-Wesley, 1986.

S. Ajila, Software maintenance: an approach to impact analysis of objects
change, Software - Practice and Ezperience, 25 (10), 1995, 1155-1181.

V. R. Basili, Viewing maintenance as reuse-oriented software develop-

ment, IEEE Software, 7 (1), 1990, 19-25.

S. Bendifallah, W. Scacchi, Understanding software maintenance work,

IEEE Transactions on Software Engineering, SE-13 (3), 1987, 311-323.

T. J. Biggerstaft, B. G. Mitbander, D. E. Webster, Program understand-
ing and the concept assignment problem, Communications of the ACM,

37 (5), 1994, 72-83.

G. Canfora, A. Cimitile, M. Munro, A reverse engineering method for
identifying reusable abstract data types, Proceedings of the Working Con-
ference on Reverse Engineering, Baltimore, Maryland, May 1993, 73-82.

G. Canfora, A. Cimitile, M. Munro, An improved algorithm for identi-
fying objects in code, Software - Practice and Experience, 26 (1), 1996,
25-48.

24



[8] G. Canfora, A. Cimitile, M. Munro, C. J. Taylor, Extracting abstract data
types from C programs: a case study, Proceedings of the Conference on
Software Maintenance, Montreal, Canada, 1993, 200-209.

[9] G. Canfora, A. Cimitile, M. Munro, M. Tortorella, Experiments in iden-
tifying reusable abstract data types in program code, Proceedings of the
2nd Workshop on Program Comprehension (WPC’93), Capri, Italy, July
1993, 36-45.

[10] Y.-F. Chen, M. Y. Nishimoto, C. V. Ramamoorthy, The C information
abstraction system, IEEE Transactions on Software Engineering, 16 (3),
1990, 325-334.

[11] E. J. Chikofsky, J. H. Cross II, Reverse engineering and design recovery:
a taxonomy, IEEFE Software, 7 (1), 1990, 13-17.

[12] A. Cimitile, U. De Carlini, Reverse engineering: algorithms for program
graph production, Software - Practice and Ezperience, 21 (5), 1991, 519-
537.

[13] L. Cleveland, A program understanding support environment, IBM Sys-
tems Journal, 28 (2), 1989, 324-344.

[14] P. Coad, Object-oriented patterns, Communications of the ACM, 35
(9), 1992, 152-159.

[15] P. Coad, E. Yourdon, Object Oriented Analysis, Yourdon Press Com-
puting Series, Prentice Hall, Inc., Englewood Cliffs, 1991.

[16] J. O. Coplien, Advanced C++ Programming Styles and Idioms, Addison-
Wesley, 1992.

[17] J. R. Cordy, N. L. Eliot, M. G. Robertson, TuringTool: a user interface
to aid in the software maintenance task, IEEE Transactions on Software

Engineering, 16 (3), 1990, 294-301.

[18] W. C. Dietrich, Jr., L. R. Nackman, F. Gracer, Saving a legacy with ob-
jects, OOPSLA’89 Conference Proceedings (Object-Oriented Program-
ming: Systems, Languages and Applications), New Orleans, Louisiana,

October 1989, appeared in: Sigplan Notices, 24 (10), 1989, 77-83.

25



[19] B. Freitag, A hypertext-based tool for large scale software reuse, in
G. Wijers, S. Brinkkemper, T. Wasserman (eds.), Advanced Information
Systems Engineering, Proceedings of the 6th International Conference,
CAiSE’94, Utrecht, The Netherlands, June 1994, Lecture Notes in Com-
puter Science, 811, Springer, 1994, 283-296.

[20] H. Gall, R. Kloésch, Capsule oriented reverse engineering for software
reuse, in: I. Sommerville, M. Paul (eds.), Proceedings of the 4th European
Software Engineering Conference (ESEC’93), Garmisch-Partenkirchen,
Germany, September 1993, Lecture Notes in Computer Science, 717, 418-
433, Springer, 1993.

[21] H. Gall, R. Klosch, Program transformation to enhance the
reuse potential of procedural software, ACM Symposium on Ap-
plied Computing (SAC’94), Phoenix, USA, March 1994. (Internet:
http://www.infosys.tuwien.ac.at/Staff/hg/sac94.ps)

[22] H. Gall, R. Klésch, Managing uncertainty in an object recovery pro-
cess, in: Sth International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU’94),
July 1994, also in: B. Bouchon-Meunier, R. R. Yager, L. A. Zadeh
(eds.), Advances in Intelligent Computing, Springer, 1995. (Internet:
http://www.infosys.tuwien.ac.at/Staff/hg/ipmu94.ps)

[23] H. Gall, R. Klosch, E. Kofler, L. Wirfl, Balancing in reverse
engineering and in object-oriented systems engineering to improve
reusability and maintainability, in: 18th IEEE Computer Soft-
ware and Application Conference, COMPSAC’94, 1994. (Internet:
http://www.infosys.tuwien.ac.at/Staff/hg/compsac-cr.ps)

[24] H. C. Gall, R. R. Klésch, R. T. Mittermeir, Architectural trans-
formation of legacy systems, in: W. Griswold (ed.), 17th In-
ternational Conference on Software Engineering (ICSE-17), Work-
shop on Program Transformation for Software Evolution, Tech-
nical Report Number CS95-418, Seattle, April 1995. (Internet:
http://www.infosys.tuwien.ac.at/Staff/hg/icse-ws.ps)

[25] H. Gall, R. Klosch, R. Mittermeir, Object-oriented re-architecturing, in:
W. Schéfer, P. Botella (eds.), Proceedings of the 5th European Software

26



Engineering Conference (ESEC’95), Sitges, Spain, September 1995, Lec-
ture Notes in Computer Science, 989, 499-519, Springer, 1995. (Internet:
http://www.infosys.tuwien.ac.at/Staff/hg/esec-cr.ps)

[26] H. C. Gall, R. R. Klosch, R. T. Mittermeir, Application pat-
terns in re-engineering: identifying and using reusable con-
cepts, 1n: 6th International Conference on Information Pro-
cessing and Management of Uncertainty in Knowledge-Based
Systems (IPMU’96), wvol. III, 1099-1106, July 1996. (Internet:
http://www.infosys.tuwien.ac.at/Staff/hg/ipmu-cr-web.ps)

[27] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[28] D. Jackson, E. J. Rollins, A new model of program dependencies for
reverse engineering, Proceedings of the 2nd ACM SIGSOFT Symposium
on Foundations of Software Engineering, New Orleans, Louisiana, USA,
December 1994, in: Software Engineering Notes, 19 (5), 1994, 2-10.

[29] 1. Jacobson, F. Lindstrém, Re-engineering of old system to an object-
oriented architecture, OOPSLA’91 Conference Proceedings (Object-
Oriented Programming Systems, Languages, and Applications), 1991,
340-350.

[30] S. Jarzabek, C. L. Tan, Modeling multiple views of common features
in software reengineering for reuse, in: G. Wijers, S. Brinkkemper, T.
Wasserman (eds.), Advanced Information Systems Engineering, Proceed-
ings of the 6th International Conference, CAiSE’94, Utrecht, The Nether-
lands, June 1994, Lecture Notes in Computer Science, 811, Springer,
1994, 269-282.

[31] R. R. Klosch, Reverse engineering: why and how to reverse engi-
neer software, in: Proceedings of the California Software Symposium
(CSS96), University of Southern California, 92-99, April 1996. (Internet:
http://www.infosys.tuwien.ac.at/Staff/hg/css-cr-web.ps)

[32] P. K. Linos, P. Aubet, L. Dumas, Y. Helleboid, P. Lejeune, P. Tul-
ula, Visualizing program dependences: an experimental study, Software
- Practice and Experience, 24 (4), 1994, 387-403.

27



[33] S. S. Liu, N. Wilde, Identifying objects in a conventional procedural
language: an example of data design recovery, Proceedings of the Con-
ference on Software Maintenance, San Diego, California, November 1990,

266-271.

[34] P. E. Livadas, T. Johnson, A new approach to finding objects in pro-
grams, Journal of Software Maintenance: Research and Practice, 6, 1994,

249-260.

[35] G. C. Murphy, D. Notkin, Lightweight lexical source model extrac-
tion, ACM Transactions on Software Engineering and Methodology, 5
(3), 1996, 262-292.

[36] H. Mossenbock, K. Koskimies, Active text for structuring and under-
standing source code, Software - Practice and Experience, 26 (7), 1996,
833-850.

[37] P. Newcomb, Reengineering procedural into object-oriented
systems, Proceedings of the 2nd Working Conference on Re-
verse Engineering, Toronto, Canada, July 1995, 237-249. (a
more abstract version of the paper can be found in Internet:
http://www.softwarerevolution.com/tsri/htrpioco.html)

[38] J. Q. Ning, A. Engberts, W. Kozaczynski, Recovering reusable compo-
nents from legacy systems by program segmentation, Proceedings of the
Working Conference on Reverse Engineering, Baltimore, Maryland, May

1993, 64-72.

[39] J. Q. Ning, A. Engberts, W. Kozaczynski, Legacy code understanding,
Communications of the ACM, 37 (5), 1994, 50-57.

[40] R. M. Ogando, S. S. Yau, S. S. Liu, N. Wilde, An object finder for
program structure understanding in software maintenance, Journal of
Software Maintenance: Research and Practice, 6, 1994, 261-283.

[41] S. Paul, A. Prakash, A framework for source code search using program
patterns, IEEE Transactions on Software Engineering, 20 (6), 1994, 463-
475.

[42] T. Philip, R. Ramsundar, A reengineering framework for small scale
software, Software Engineering Notes, 20 (5), 1995, 51-55.

28



[43] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
McGraw-Hill, (Third Edition, European Adaptation), 1994.

[44] A. Quilici, A memory-based approach to recognizing programming

plans, Communications of the ACM, 37 (5), 1994, 84-93.

[45] V. Rajlich, N. Damaskinos, P. Linos, W. Khorshid, Vifor: a tool for
software maintenance, Software - Practice and Ezperience, 20 (1), 1990,

67-77.

[46] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-
Oriented Modeling and Design, Prentice Hall, Inc., Englewood Cliffs,
1991.

[47] H. M. Sneed, E. Nydry, Extracting object-oriented specification from
procedurally oriented programs, Proceedings of the 2nd Working Confer-
ence on Reverse Engineering, Toronto, Canada, July 1995, 217-226.

[48] E. B. Swanson, The dimensions of maintenance, Proceedings of the 2nd
International Conference on Software Engineering, San Francisco, Cali-

fornia, October 1976, 492-497.

[49] M. Weiser, Program slicing, IEEE Transactions on Software Engineer-
ing, SE-10 (4), 1984, 352-357.

[50] N. Wilde, S. M. Thebaut, The maintenance assistant: work in progress,
The Journal of Systems and Software, 9 (1), 1989, 3-17.

29



