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Constructing a binary tree efficiently from its traversals
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FIN-33101 Tampere, Finland

Abstract

In this note we streamline an earlier algorithm for constructing a binary tree from
its inorder and preorder traversals. The new algorithm is conceptually simpler than
the earlier algorithms and its time complexity has a smaller constant factor.
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1 Introduction

Given the preorder and inorder traversals (or postorder and inorder traversals)
of the nodes of a binary tree, the binary tree structure can be constructed.
In the matter of fact, the construction is possible in linear time [1,4]. Re-
cently, Xiang and Ushijima [5] have determined the constant factors of these
algorithms by counting the numbers of comparision operations needed. They
found out that the linear coeflicient of Mékinen’s algorithm [4] is 3 in the best
case and 5 in the worst case, and that the corresponding coefficients in the
algorithm of Andersson and Carlsson [1] are 4 and 7. Moreover, Xiang and
Ushijima presented a new algorithm with linear coefficient 3 both in the best
and in the worst case.

In this note we streamline our earlier algorithm [4], and show that the resulting
algorithm can be implemented to run with linear coefficient 2 in the best case
and 3 in the worst case.

We use the standard tree terminology [3]. In order to simplify our presenta-
tion, we first recall a binary tree coding system introduced by Johnsen [2].
A unique coding system for binary trees can be established by inserting the
nodes into the tree in preorder and recording the positions to which the in-
sertions are made. As an example, consider the tree in Figure 1. There are
three possibilities to insert the next node in preorder. These are numbered
from left to right by 0, 1, and 2. Johnsen [2] uses the phrase trailing leaf for



Fig. 1. A sample binary tree with three trailing leaves.

the positions where the next insertion can take place. So far, the insertions in
the sample tree are done into the positions 0, 2, and 0. The next insertion will
augment the code word to be (0,2,0,0), (0,2,0,1), or (0,2,0,2) depending on
our choice for the place of the next insertion. Notice that a binary tree with
n nodes has a code word with n — 1 code items.

Johnsen has proved that for each item x; in a code word (1, xg,...,T,—1) We
have 0 < a@; <17 — (21 4+ @3+ ...+ 2;-1). This implies the following fact.

Proposition 1 If (1,22,...,%n-1) s a code word of a binary tree with n
nodes in Johnsen’s coding scheme, then Y0 z; <n — 1.

2 The algorithm

We suppose that trees are labeled with symbols from an ordered alphabet.
Moreover, we suppose that inorder sequences always obey this order, i.e., if
LI, ...I, is an inorder sequence, then we have I} < I, < ... < [, according
to the order defined in the alphabet. These assumptions make it possible to
compare labels when the tree is constructed by studying the preorder sequence.
Notice that these assumptions can be done without loss of generality. Namely,
if the inorder sequences do not obey the order in the alphabet, we can store
the inorder positions in a table and compare the table entries. Instead of using
such a table we simply directly compare the labels.

As can be expected, our algorithm needs a stack. It is advantageous to use a
bottom marker in the stack. We define the bottom marker X to be the last
element in the order relation of the label alphabet used.

As an example, consider the tree shown in Figure 2. Its nodes are labeled in
alphabetical order according to inorder. The corresponding preorder sequence
is DACBFEG. The algorithm begins with creating the root labeled with D.
The lable D is also pushed to the stack. The second label in the preorder
sequence 1s A. Since A < D, where D is the top element of the stack, we
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Fig. 2. A sample binary tree with nodes alphabetically labeled in inorder.

know that the left child of the root should be labeled with A. Moreover, A
is pushed to the stack. Next, we notice that A < C but C < D. Now, A is
popped from the stack, and C is pushed to its place. C is the right child of A.
Using the terminology of Johnsen’s coding scheme, popping an element from
the stack means that the leftmost trailing leaf does not actually exist in the
tree. Or equivalently, the corresponding code item is greater that 0. Next, we
compare B and the top element C. Since B < C, we insert B as the left child
of C. Now the stack contains X DC B (, where the top of the stack is on the
right). The next label in the preorder sequence is F. We have B < F', C < F,
D < F,and F < X. It follows, that B, C, and D are popped from the stack,
and F' is pushed to the stack. We now know that the left subtree of the root
is completed. Notice that each label comparision was made for checking to
which trailing leaf the next node can be inserted. The whole construction is
completed by noticing that E is the label of the left child of F', and that G is
the lable of the corresponding right child.

Notice that after pushing an element to the stack we create a left child, and
after popping an element from the stack a right child is created. More im-
portantly, notice the interesting fact that the number of label comparisions
needed to find the correct place for a node, and the corresponding code item
in Johnsen’s coding scheme are in a very close connection with each others.
The code word for the tree in Figure 2 is (0,1,0,3,0,2). It is easy to check
that the number of label comparisions done for placing a node is always one
greater than the corresponding code item. For example, when the code item
is 0, the only comparision is done between the next label in the preorder se-
quence and the top of the stack. Before formulating this as a theorem, we give
the algorithm itself in a more formal notation.



Algorithm 1 (Binary Tree Construction)
{ the preorder sequence is indexed as preorder|i|, where 1 <1 <n;
the phrase ‘current node’ refers to the node labeled with the top element of the stack }

begin
initialize the stack with the bottom marker X ;
create the root and label it with preorder[l];
index := 2;
while (index < n) do
of preorderindex] < top(stack)
then begin
create the left child of the current node and label it with preorderfindez];
push preorder[index| to the stack;
inder:= index + 1
end
else begin
pop top(stack);
while preorder[index] < top(stack) do pop top(stack);
create the right child of the previous current node
and label it with preorder[index];
push preorder[index| to the stack;
inder:= index + 1
end

end {Algorithm}

Consider now again the number of label comparisions done by the algorithm.
The best case occurs when the tree to be constructed is a left list, i.e. a tree
containing the root and left children only. The corresponding code word is
(0,0,...,0), and we need only n — 1 label comparisions. On the other hand,
the worst occurs when the sum of the code items in the code word is n — 1.
Then we need 2n — 2 label comparisions.

In order to make the number of comparisions comparable with those given
by Xiang and Ushijima [5], we also count comparisions other than label com-
parisions made by the algorithm. The algorithm has a while-loop condition
(index < n), which causes n — 1 comparisions when constructing a tree with
n nodes. Hence, by Proposition 1 and the discussion above, we have

Theorem 2 When constructing a binary tree with n nodes, Algorithm 1 makes
n — 1 label comparisions in the best case and 2n — 2 label comparisions in the
worst case. The total number of comparisions is 2n — 2 in the best case and
3n — 3 in the worst case.



3 Conclusions

Our algorithm requires fewer comparisions than the previously known algo-
rithms for constructing a binary tree from its traversals. Moreover, our algo-
rithm is conceptually simple imitating a known binary tree coding scheme.
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