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Abstract: There are many principles to present a hierarchy of knowledge units

i.e. concepts. A concept hierarchy exists on a set of concepts and it is based on

a partial order relation. The set of concepts and the relation among these form a

concept system. The purpose of this paper is to present a method and functions

for inspecting the structure of a concept system and to provide a classification

of typical structures.

Understanding the structure of a concept system is vital when one

considers the utilisation of a concept system. The most common concept

structures include trees, different lattices and semilattices. In order to utilise the

operations for any type of a structure, it is important to recognise the structure.

Our contribution here is to present a set of functions to recognise typical

structures and to form a principle for classification of hierarchical concept

structures. Here, the concept structures are represented on the basis of set

theory, which is a well-known and established formalism. We introduce a path-

oriented method that enables accurate and clear consideration of different

structures.

1. Introduction
In artificial intelligence, knowledge representation and database design, many approaches to

manage a hierarchical structure of "knowledge units" (classes, structured objects, concepts)

have been proposed [Rich and Knight, 1991; Mac Randal, 1989; Ringland, 1989; Elmasri and

Navathe, 1994]. Here, we assume that these knowledge units are concepts and we consider
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different types for hierarchical structures of concepts. We concentrate on hierarchical

structures that concepts can form based on a binary relation in a given, finite set of concepts.

Here we are interested in neither the ontological level on which concepts exist, nor in their

semantics, nor in methods of discovering concepts.

For example Whythe [1969] sees that the use of hierarchical ordering must be as old as

human thought itself and that it can be applied to many fields. One of these fields is the

following category: "logical types, concepts, principles, information, quantities and

abstractions of many sorts". In computer science, there has been much research on the field of

hierarchical concept structures. In their historical work, Smith and Smith [1977] have

presented principles of structures, based on generic-specific distinction. This type of

hierarchies are known as subsumption or IS-A hierarchies. Their structure can be for example

a tree or a lattice [Nilsson, 1994]. However, there are many other principles, too, on the basis

of which one can form a hierarchy in a set of concepts [Nuopponen, 1994]. Here we discuss

some structures more thoroughly and provide a categorisation of structures and functions for

checking the structure at hand.

We assume that concepts are abstract, discrete units of knowledge [Junkkari and

Niinimäki, 1998; see also Sowa, 1984 p.73]. There are many conceptions about the basic

containment relation on the set of concepts. In this paper, we take the binary concept relation

C-rel for representing this relation. It is considered irreflexive, non-transitive and

antisymmetric, and moreover, the transitive closure of C-rel is antisymmetric. C-rel reflects

partial order relation that may be either weak partial order relation (reflexive, transitive,

antisymmetric) or strict partial order relation (irreflexive, transitive, antisymmetric). Now we

assume that C-rel covers weak partial order containment relations, for example concept

subsumption [Woods, 1991], IS-A relation [Brachman, 1983] and intensional containment

[Kauppi, 1967; Palomäki, 1994]. There are also part-whole relations [Winston et al, 1987;

Padgham and Lambrix, 1994; Sattler, 1995; Artale et al., 1996] that are either weak partial

order relations or strict partial order relations. We assume that C-rel can also be applied to

them. We consider only finite concept relations and the relation C-rel is on the finite concept

set C-set.

Since C-rel reflects a partial order relation, it means that the structure imposed by this

relation on a set of concepts is some sort of hierarchical ordering. The weakest type of

structure will be called only a hierarchy. Sowa's [1984 p.80] type hierarchy is an example of

this. In a type hierarchy, any two concepts (types) can have common subtypes and supertypes.

If we restrict the structure so that any two concepts necessarily have a common supertype but
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they have not any common subtype, the structure is a tree. Von Linné's "system of

organization for living organisms” is an example of a tree [Mayr, 1958]1.

Trees, lattices and semilattices are stronger structures than a hierarchy (that is, they are

proper subsets of a set of hierarchies). Pedersen [1994] has used lattices for representing

concepts and relationships in an information storage and retrieval system. Palomäki [1994] has

pointed out that one axiomatisation of Kauppi's [1967] concept theory is a Boolean

semilattice.

In several concept systems, there exists a concept that represents all individuals in the

given Universe of Discourse. In Description Logics (DL) and Classic [Borgida et. al., 1989;

Borgida, 1995], this concept is called THING and it subsumes all other concepts. In Kauppi's

[1967] concept theory the corresponding concept is called the general concept which is

intensionally contained in all concepts. In our illustrations, concepts in which no other

concepts are contained are depicted below all the other concepts, like in figure 1. In our

graphical representation, a concept on an upper level contains a concept on a lower level

connected to it. In our formal presentation, for example the ordered concept pair

<MATERIAL, THING> inheres in the relation C-rel. In this case this is interpreted:

“MATERIAL IS A THING” or “THING subsumes MATERIAL”.

NON-MATERIAL  

THING  

IS-A

MATERIAL  

IS-A

Figure 1. A graphical presentation of IS-A relation.

Due to the IS-A relation, it is natural to have one concept that is contained in every

concept. If the containment relation is applied to other sorts of containment (e.g. whole-part)

we need to employ another graphical method, the one that is presented in figure 2. There, the

most abstract concept is depicted above all the other concepts [Kangassalo, 1983a;

Kangassalo, 1993]. This concept corresponds to the subject of conceptual modelling, like a

company. The concept of company contains all the other concepts of the Universe of

                                               
1 According to Mayr [1958], Linné attempted to establish groups distinguished be the following ways:
(a) Having the greatest possible number of common characteristics.
(b) Having a key character, a diagnostic character that would automatically guarantee correct

idenfication.
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Discourse. A basic concept is a concept that contains no other concepts than itself. Basic

concepts are depicted below all other concepts [Kangassalo, 1983b].

COMPANY

DEPARTMENT EMPLOYEE PRODUCT

NAMEDEP-NUMBER SALARY PROD-NAME PROD-NUMBERID-NUMBER

Figure 2. A concept hierarchy with one top-concept.

We call bottom-concepts2 those concepts that do not contain other concepts. We call a

top-concept such a concept, which is not contained in any other concept. In figure 2, there is

one top-concept and several bottom-concepts.

By combining the visualization principles used in the figures 1 and 2, we end up with a

structure that has exactly one most abstract concept and exactly one general concept. If we

want to impose some further constraints on the relation between concepts, the resulting

structure on the set of concepts is a lattice.

In this paper, we give an approximate classification for concept structures based on four

categories. This is done by inspecting the number of top-concepts and bottom-concepts. Inside

some categories, we can make subcategories (stronger structures). We also present methods

for checking the category to which a given concept system belongs. This is done by means of

a path-oriented approach [see Niemi and Järvelin, 1992].

In section 2, we present basic notations needed in this paper. Section 3 discusses the

relation C-rel on the set of concepts. We define two functions: top_concept_set and

bottom_concept_set for collecting on C-rel top-concepts and bottom-concepts respectively.

These sets and paths top-concepts to bottom-concepts form the basis of our categories. In

section 4, we introduce the basic types of connections between two concepts. This is

generalised by using a path oriented definition method. Section 5 discusses connected and

disconnected concept systems. The categories are presented in section 6, where we also

construct functions for checking the category for a given concept system. Finally, in section 7

we give a simple analysis of relationships among concepts in various concept structures.

Moreover, we maintain that our methods are suitable for analysis of more complicated

situations, i.e. a concept structure is a model from several Universes of Discourse.
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2. Mathematical background
In this paper, some fields of mathematics are prerequisite. Our formalism is based on set

theory, more specifically on formalism developed by Niemi and Järvelin [1992]. In this

notation, a finite n-tuple is denoted between angle brackets, for example <a,b,c>. A two-place

tuple is also called an ordered pair. A set of ordered pairs is always a binary relation. The

empty tuple is denoted by <>. The tuple set of a set S is denoted by T(S). A tuple is an

element of T(S) if all elements of the tuple are different and they are members in the set S. The

tuple set T(S) is composed of all permutations of the power set P(S) which are presented as

tuples. For example, if S ={a, b, c} then the T(S) is {<>, <a>, <b>, <c>, <a,b>, <b,a>, <a,c>,

<c,a>, < b,c>, <c,b>, <a,b,c>, <a,c,b>, <b,a,c>, <b,c,a>, <c,a,b>, <c,b,a>}.

Functions are described normally so that also their signatures are given explicitly.

Generally a signature for function f is denoted by f: S1 → S2. S1 defines a set of values to

which the function f can be applied and S2 defines the set to which values yielded by f belong.

In this paper, we introduce a partial order relation that does not include reflexive and

transitive relationships explicitly. This kind of a relation can be deduced from a partial order

on a finite set. Formally:

• If A is a finite set and R is a strict partial order relation on it then the predecessor of an

element b is the element a provided <a,b> ∈ R and there is no element x ∈ A such that

<a,x> ∈ R and <x,b> ∈ R. The successor of an element b is the element c provided

<b,c> ∈ R and there is no element x ∈ A such that <b,x> ∈ R and <x,c> ∈ R.

• The subset of R that contains only predecessor-successor -pairs is called the immediate

subset of R. For example, if R is called a containment relation, then its immediate

subset is called the immediate containment relation.

In addition to set theory, we need basics of lattice theory and algebra. We discuss

axiomatised systems that have several operations. An operation is a relation. For example, the

operation of least upper bound (lub) is a three-placed relation expressed by a lub b = c. We

present some basic properties of algebra operations:

• An operation o is idempotent if x o x = x for any x ∈ A.

• An operation o is commutative if x o y = y o x for any x, y ∈ A.

                                                                                                                                        
2 For example Borgida [1995] would call our unique bottom-concept TOP-CONCEPT.
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• An operation o is associative if (x o y) o z = x o (y o z) for any x, y, z ∈ A.

In addition to these definitions, we apply some basic notions of graph theory. We assume

that the reader is familiar with them.

3. Basic relation and concept system.
C-set is the finite set of concepts related to a specific concept system. In each concept system,

there is a containment relation C-rel on the set C-set. This relation is a binary relation that

corresponds to immediate containment. As an example, let us take a concept set C-set1 = {c1,

c2, c3, c4, c5, c6, c7, c8} and a relation on it, C-rel1 = {<c1,c2>, <c1,c8>, <c2,c6>, <c3,c4>,

<c3,c5>, <c4,c6>, <c4,c7>, <c5,c7>, <c5,c8>}. This is presented in the figure 3 below.

c1  

c2  

c3  

c4  c5  

c6  c7  c8  

Figure 3: C-rel1.

Any C-rel describes a concept system and transitive and reflexive relationships among

concepts can be defined when necessary. A simple way to do this is by using closures [Niemi

and Järvelin, 1992; Junkkari and Niinimäki, 1998] or a path-oriented approach [Niemi and

Järvelin, 1992].

We define a function relation_on to generate a C-rel-like substructure of the original C-rel

from a given concept set C-set’.

relation_on: P(C-set) × P(C-set × C-set) → P(C-set × C-set)
relation_on(C-set', C-rel) = {<x,y> | x ∈ C-set' ∧ y(≠x) ∈ C-set': <x,y> ∈ C-rel}

For example, in C-rel1, the function relation_on({c2,c4,c6,c7}, C-rel1) produces the

relation {<c2,c6>, <c4,c6>, <c4,c7>}.

In any non-empty concept system, there is at least one concept, which does not contain

any concepts in C-rel, and at least one concept, which is not contained in any concepts in C-

rel. These two cases have a specific role in our system. Next, we define the functions that

return the sets of these specific concepts. The function bottom_concept_set returns the set of

such concepts, which do not have successors in C-rel.



7

bottom_concept_set : P(C-set × C-set) → P(C-set)
bottom_concept_set(C-rel) = {x | x ∈ C-set ∧ ¬∃y ∈ C-set : <x,y> ∈ C-rel}

For example, the function bottom_concept_set(C-rel1) returns the set {c6, c7, c8}.
Respectively, the function top_concept_set computes the set of all concepts that do not

have any predecessors in C-rel.

top_concept_set : P(C-set × C-set) → P(C-set)
top_concept_set (C-rel)= {x | x ∈ C-set ∧ ¬∃y ∈ C-set : <y,x> ∈ C-rel}

Clearly, top_concept_set(C-rel1) returns the concept set {c1, c3}.
Furthermore, we need the operation in terms of which we can consider indirect or

immediate containments between two concepts. For this purpose we define the function

path_set which returns the set of paths from a concept a to a concept b in the concept system

at hand. It generates all possible paths for connecting two concepts. The function takes three

arguments: two concepts, a and b, and a containment relation C-rel. On the basis of ordered

pairs in C-rel, we construct the paths from a to b (see the operation 15 in [Niemi and Järvelin,

1992]3).

path_set: C-set × C-set × P(C-set × C-set) → P(T(C-set))
path_set(a, b, C-rel)=

  






=><
 ≠} ∈ >,<

 :1}− .., {1, ∈ ∀∧=∧  =  :)−(Τ ∈><><

+
b a if  },a{

b  a if  , rel-C aa                    

ni  b a  aasetC  a,..,a | a,..,a{

1i1

n1n1n1

Now in the example in fig. 3 path_set(c1, c6, C-rel1) produces the set {<c1,c2,c6>} and

respectively, path_set(c3, c7, C-rel1) = {<c3,c4,c7>, <c3,c5,c7>}. For example path_set(c1,

c5, C-rel1) and path_set(c8, c1, C-rel1) return an empty set.

By using the function path_set we can consider all possible paths between any two

concepts in a concept system. Here we are especially interested in paths from top-concepts to

bottom-concepts.

4. Basic structures
We take five situations for considering connections between two concepts. First we introduce

these five structures in a simple form and then we generalise these situations by using path-

oriented approach. In section 7, we use these situations to analyse different concept structures.

                                               
3Niemi and Järvelin have taken also the relation base as an argument. Our assumption in the operation

is that, if a and b are identical, the function returns {<a>}.
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The immediate containment between two concepts a and b has two alternatives: a contains

b, denoted by <a,b> ∈ C-rel, or b contains a, denoted by <b,a> ∈ C-rel. If we take a third

concept c then we can associate concepts a and b via it. We say that concepts a and b are

immediately top-connected, if there is a concept c that contains immediately both the concepts

a and b, i.e. <c,a> and <c,b> belong to C-rel. Respectively, we say that concepts are

immediately bottom-connected, if there is a concept d such that <a,d> ∈ C-rel and <b,d> ∈ C-

rel. Moreover, concepts are immediately cross-connected if they are immediately top-

connected and bottom-connected. The basic structures are presented in figure 4.

a

b

b

aa

a

a

c

b
d

c
b

b

d

Figure 4: Basic structures: contains, is contained, top-connected, bottom-connected and cross-
connected.

We generalise these basic structures to take into account indirect (transitive) relationships

among concepts in C-rel.

The first generalisation concerns contains relation. The Boolean function contains(a, b, C-

rel) returns true, if in C-rel there is at least one path from the concept a to the concept b. This

means that a contains b immediately or indirectly (transitively).

contains: C-set × C-set × P(C-set × C-set) → {false, true}
contains(a, b, C-rel) =

The converse for the contains function is is_contained function. The function

is_contained(a, b, C-rel) yields true, if and only if the concept a is contained in the concept b

immediately or indirectly.

is_contained: C-set × C-set × P(C-set × C-set)  → {false, true}
is_contained(a, b, C-rel) =



 ≠

otherwise false,

{} rel)-C b, (a, if true, path_set





otherwise false,

rel)-C a, (b, if true, contains
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We get all those concepts which the concept a contains by applying the function

contains_set(a, C-rel). Respectively, the function is_contained_set(a, C-rel) returns all those

concepts which contain the concept a. Next we define these functions.

contains_set: C-set × P(C-set × C-set) → P(C-set)
contains_set(a, C-rel) = {x | x ∈ C-set ∧ contains(a, x, C-rel)}

is_contained_set: C-set × P(C-set × C-set)  → P(C-set)
is_contained_set(a, C-rel) = {x | x ∈ C-set ∧ is_contained(x, a, C-rel)}

If a and b are top-connected with each other then there is such concept x from which there

is at least one path both to the concept a and to the concept b. It is easy to see that in C-rel1

every concept is top-connected with all the other concepts. The function top_connected(a, b,

C-rel) is true if two concepts a and b are top-connected with each other.

top_connected : C-set × C-set × P(C-set × C-set) → {false, true}
top_connected(a, b, C-rel)=

We say that two concepts a and b are bottom-connected, if and only if there is a concept x

which is contained immediately or indirectly in both the concepts a and b. In our path-oriented

formalism, this means that there exists a path both from the concept a and the concept b to the

concept x. The function bottom_connected(a, b, C-rel) is true if two concepts a and b are

bottom-connected with each other

bottom_connected : C-set × C-set × P(C-set × C-set) → {false, true}
bottom_connected(a, b, C-rel)

By combination of top-connected and bottom-connected concepts, we get cross-

connected concepts. The function cross_connected(a,b,C-rel) is true, if and only if the

concepts a and b are both top-connected and bottom-connected.

cross_connected: C-set × C-set × P(C-set × C-set) → Boolean
cross_connected(a, b, C-rel)



 ∧∈∃

otherwise false,

 rel)-C b, (x,  rel)-C a, (x, :set-C x  if true, containscontains



 =∨∧∈∃

otherwise false,

ba  rel)-C  x,(b,  rel)-C  x,(a, :set-C x  if true, containscontains
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5. Connected and partial structures
In this section we consider whether a concept system is connected or disconnected. If the

system is connected then some connection for any two concepts has to be. This connection

can be direct or indirect through one or several concepts. For example in figure 5, all the

concepts are connected with each other.

c2

c3

c4

c5

c6

c1

Figure 5. A connected structure.

We define the following functions in order to find connected substructures in a concept

system. The recursive function connected_concepts(s, S, C-rel), where S =

top_concept_set(C-rel), returns a set of concepts that are in some way connected with the

given top-concept s, i.e. s ∈ S.

connected_concepts: C-set × P(C-set) × P(C-set × C-set) → P(C-set)
connected_concepts(s, S, C-rel) =

         

rel)}-(C_  b                         

   S  a  :b)(a,   b,..,s’ ,s,...b |{s’   T                  

  rel)-C (s, A  re       whe

 rel)-C {s}, -S ,(x  A 

 

Ts)x(

setceptbottom_con

path_set

etcontains_s

conceptsconnected_

∈
∧∈∈><∃><∃=

∧=
∪

∈≠U

The function substructures return a set of distinct sets of concepts.

substructures: P(C-set × C-set) → P(P(C-set))
substructures(C-rel) = {X |  ∀y ∈ top_concept_set(C-rel):
    X = connected_concepts(y, top_concept_set(C-rel), C-rel)}

Now if a concept system is connected, there is only one set in the set that the function

returns. Using this we can define the function that checks if a concept system is connected. If a

concept system is not connected then it is disconnected, i.e. the function yields false.

connected: P(C-set × C-set) → {false, true}
connected(C-rel) =



 ∧

otherwise false,

rel)-C b, (a,  rel)-C b, (a, if true, nectedbottom_contedtop_connec
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6. Approximate classification for concept structures
The first principle for our classification is the number of top and bottom-concepts in a concept

system. We are especially interested in whether the number of top-concepts or bottom-

concepts equals to one.  In the strongest category, it holds that there is exactly one top-

concept and bottom-concept. In this case, we call the concept system a closed hierarchy. A

special case of this is a lattice (see section 6.1). Since we only consider finite concept systems,

the lattice is always bounded [see Birkhoff, 1993].

If either the number of top-concepts or the number of bottom-concepts equals to one, we

call the concept system a semi-closed hierarchy. The two cases of these are a top-closed

hierarchy and a bottom-closed hierarchy. The functions in both cases are very much alike, and

we consider thoroughly only top-closed hierarchy in section 6.2. The special cases of a semi-

closed hierarchy are tree and semilattice.

If there are more than one top-concepts and more than one bottom-concepts in the

concept system, we call the concept system an open hierarchy. This is the only case where it is

reasonable to inspect whether the concept system is disconnected. If the concept system is

disconnected, we can inspect each of the substructures. In this way we can find out if the

concept system is for example a collection of lattices.

|top_concept_set(C-rel)| = 1    |top_concept_set(C-rel)| > 1
Closed hierarchy
-connected
    -lattice

Bottom-closed hierarchy
  -connected
     -semilattice
     -tree

|bottom_concept_set(C-rel)|
=1

|bottom_concept_set(C-rel)|
> 1

Top-closed hierarchy
-connected
    -semilattice
    -tree

Open hierarchy
    1. connected
     2. disconnected
         -collection

Figure 6. Classification of structures.

6.1. Closed hierarchy
A closed hierarchy has exactly one top-concept and one bottom-concept. The function

closed_hierarchy returns true, if these conditions are satisfied.



 =

otherwise false,

1  |rel)-(C| if true, ressubstructu
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closed_hierarchy: P(C-set × C-set) → {false, true}
closed_hierarchy(C-rel)=

In figure 7, all the structures are closed hierarchies. Only (b) and (c) are lattices. First we

introduce functions to inspect whether the concept system is a lattice.

c1

c2 c3

c4 c5

c1

c2 c3

c4

c5 c6

c7
c6

c1

c2 c3 c4

c5

(a) (b) (c)

Figure 7. Closed hierarchies.

In a concept system, the lower bounds of two concepts, a and b, are concepts that are

contained in both a and b. The greatest lower bound (glb) for concepts a and b is the concept

that is nearest to a and b in the set of their lower bounds. If it exists, it is unique. The least

upper bound (lub) is defined respectively.

In a lattice, any two concepts have the greatest lower bound (glb) and the least upper

bound (lub). In order to check the unique greatest lower bound of two concepts a and b we

inspect the sets that the function contains_set returns for both a and b. We study the

substructure of C-rel restricted by the intersection of these sets. If the constructed

substructure has exactly one top-concept then a and b have one greatest lower bound. This is

done in the function check_glb. The check is done for all concepts in function check_glbs. The

functions check_lub and check_lubs are defined in an analogous manner.

check_glb: C-set × C-set ×  P(C-set × C-set) → {false, true}
check_glb(a, b, C-rel) =



 1 = |)(| ∧=

otherwise false,

set-C__ 1  |rel)-(C| if true, setconceptbottomt_settop_concep







∨∨=
∩

otherwise false,

rel)-C a, (b,  rel)-C b, (a,  1  |rel)))-C (b,      

  rel)-C (a,((| if true,

containscontainsetcontains_s

etcontains_snrelation_ot_settop_concep
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check_glbs: P(C-set × C-set) → {false, true}
check_glbs(C-rel)=

check_lub: C-set × C-set ×  P(C-set × C-set) → {false, true}

check_lub(a, b, C-rel)=

check_lubs: P(C-set × C-set) → {false, true}

check_lubs(C-rel)=

A structure is a lattice if there is a unique greatest lower bound and a unique least upper

bound for any two concepts. The function check_lattice inspects if C-set is a lattice.

check_lattice:  P(C-set × C-set) → {false, true}

check_lattice(C-rel) =

For example, in the figure 8(a), the structure is not a lattice, since there is no unique least

upper bound for the concepts c4 and c5 and there is no unique greatest lower bound for

concepts c2 and c3.

A lattice can be distributive or complete [Birkhoff, 1993], but we do not include function

for checking these special lattices in this paper.

6.2. Semi-closed hierarchy
A semi-closed hierarchy can be top-closed or bottom-closed. We inspect the top-closed

hierarchy in more detail. The function top_closed_hierarchy inspects whether the hierarchy is

top-closed.

top_closed_hierarchy: P(C-set × C-set) → {false, true}
top_closed_hierarchy(C-rel)=







∨∨=
∩

otherwise false,

rel)-C a, (b,  rel)-C b, (a,  1  |rel)))-C (b,      

  rel)-C (a,((| if true,

containscontainsed_setis_contain

ed_setis_containnrelation_ocept_setbottom_con



 ∈≠∀∀

otherwise false,

y) (x,  :set-C  x)y(x if true, check_glb



 ∈≠∀∀

otherwise false,

y) (x,  :set-C  x)y(x if true, check_lub



 ∧

otherwise false,

rel)-(C  rel)-(C if true, check_lubscheck_glbs



 =

otherwise false,

1  |rel)-(C| if true, t_settop_concep
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Analogously, one can inspect whether the concept system is a bottom-closed hierarchy.

This inspection can be based on the number of bottom concepts.

c1  

c2  c3  

c4  c5  

c1  

c2  c3  

c4  c5  c6  

c1  

c2  c3  

c4  c5  c6  

(a) (b) (c)

Figure 8: Some top-closed hierarchies.

In a semi-closed hierarchy, C-set can be a semilattice. A semilattice is a system with a one

idempotent, commutative and associative operation [Birkhoff, 1993]. It is either the glb or the

lub operation.

check_semilattice: P(C-set × C-set) → {false, true}
check_semilattice(C-rel) =

If we want to study for example top-closed semilattices, we only check the lub operation.

In figure 8, (b) and (c) are top-closed semilattices.

If C-rel is a top-closed hierarchy, it can be a directed tree. If a top-closed hierarchy is a

tree, then the only top-concept is called the root of the tree. We can use the function

check_tc_tree(C-rel) for checking that C-rel is a directed tree. A directed graph is a directed

tree, if and only if it has a root from which there is a unique (directed) path to every vertex

(concept) [Even, 1979]. It can be proved that a top-closed hierarchy is a tree if there is a

unique path from the top-concept to every bottom-concept. The function check_tc_tree gives

the value true, if there are these unique paths in the relation C-rel.

check_tc_tree: P(C-set × C-set) → {false, true}
check_tc_tree(C-rel)=







∈=
∈∀∧

otherwise false,

rel)-(C a    where1|rel)-C  x,(a,|        

:rel)-(C x   rel)-(C if true,

t_settop_conceppath_set

cept_setbottom_con_hierarchytop_closed



 ∨

otherwise false,

rel)-(C  rel)-(C if true, check_lubscheck_glbs
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If the concept system is a bottom-closed hierarchy, it can be an inverted tree, which is a

tree based on the inverse relation of containment. The function for checking this is analogous

to the above definition.

6.3. Open hierarchy
The last situation of our rudimentary classification for concept structures is an open hierarchy.

In an open hierarchy, there are more than one top-concepts and more than one bottom-

concepts. It is inspected as follows:

open_hierarchy: P(C-set × C-set) → {false, true}

open_hierarchy(C-rel)=

Unlike other categories, an open hierarchy can be connected or disconnected. If there are

any connections between any two concepts in a concept system, then the open hierarchy is

connected. The function open_connected_hierarchy returns true if C-rel is connected and the

concept system is an open hierarchy:

open_connected_hierarchy: P(C-set × C-set) → {false, true}
open_connected_hierarchy(C-rel) =

In an open hierarchy, we are interested in finding the components of C-rel that are sets of

concepts that are connected to each other. In section 5, we defined the function substructures

that finds the connected components of a concept system. We can check if all the components

correspond to the given structure. As an example, the next function checks if the components

are lattices.

collection_of_lattices: P(C-set × C-set) → {false, true}
collection_of_lattices(C-rel) =



 ∧∈∀∧

otherwise false,

(X) rel)-(C X :X     rel)-(C if true, icecheck_lattressubstructurchyopen_hiera

It is trivial to construct similar functions that inspect if the concept system is a collection

of trees, a collection of inverted trees etc.



 >∧>

otherwise false,

1  |rel)-(C|    1  |rel)-(C|if true, cept_setbottom_cont_settop_concep



 ∧

otherwise false,

rel)-(C     rel)-(Cif true, rchyopen_hiera connected
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7. An analysis of concept structures
The introduction to our categorisation has been based on the number of top-concepts and

bottom-concepts. The closed hierarchy is a structure, where there is exactly one top-concept

and one bottom-concept. Considering relations that were presented in the section 4, we can

notice that every two concepts in this kind of system are cross-connected. Moreover, we can

check if the concept structure is a lattice.

The top-closed hierarchy is a concept hierarchy where there is one top-concept and

several bottom-concepts. In this kind of a structure any two concepts are top-connected.

There can be some bottom-connected concepts with each other. In the case of that the

structure is a semilattice. If any two concepts are not bottom-connected then the concept

structure is a tree.

Respectively, as above, in a bottom-closed hierarchy any two concepts are bottom-

connected. In this case the structure is a tree if there are no two such concepts, which are top-

connected. If the structure is a semilattice then there can be some concept pairs that are top-

connected.

The last major category in our discussion was open hierarchy. Now there are several top-

concepts and bottom-concepts. In an open hierarchy, there has to be at least two concepts that

are not bottom-connected and two such concepts that are not top-connected. The open

hierarchy can be connected or disconnected. A disconnected structure can be a collection of

other structures. Therefore, we can check if every substructure is, for example, a lattice or a

tree and we can consider collections of stronger structures.

The question of conceptual collection becomes advantageous, if we consider information

models from several Universes of Discourse. If we assume that a concept lattice is

characteristic of one Universe of Discourse, then naturally a collection of isolated concept

systems is a collection of concept lattices [Kangassalo, 1997].

The situation can be such that concept lattices are not totally isolated, but there are some

common concepts. Finding these concepts forms a basis to knowledge sharing from different

directions to use common information resource. Using our systems, it is easy to present

formally, how to find these concepts.

As an example, we present a function that produces the relation, which is the common

structure of two concept lattices. Let us assume two concept lattices C-rel1 and C-rel2 that

are relations on the set C-set.

sharing_lattice: P(C-set × C-set) × P(C-set × C-set) → P(C-set × C-set)
sharing_lattice (C-rel1, C-rel2) =
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relation_on (contains_set(x, C-rel) ∩  contains_set(y, C-rel)
    ∩ is_contained_set(z, C-rel) ∩ is_contained_set(w, C-rel))

   where x ∈ top_concepts(C-rel1) ∧ y ∈ top_concepts(C-rel2) ∧ 
    z ∈ bottom_concepts(C-rel1) ∧ w ∈ bottom_concepts(C-rel2)

 The result of the function sharing_lattice is a concept structure and in this paper, we have

presented the functions for checking the form of this structure. In the same way, it is possible

to construct operations that produce the common substructure for any two concept systems.

In addition, it is possible to enlarge operations to sets of structures so that we can consider

several concept systems.

The consideration can be also applied so that for example in an open hierarchy we choose

one top-concept and then we consider the substructure that the concept determines.

Therefore, we can also make concept analysis under one concept system.

8. Summary
In this paper, we have discussed various concept structures based on the containment relation.

Our formalisation approach can be characterised path-oriented which, to our knowledge, is a

novel approach in concept theory. In this paper, we presented a categorisation for concept

structures.

The containment relation in our study was partial order and we have noticed that several

concept structures can be presented based on it. In general, this means that concept structures

of this type can be presented as a directed acyclic graph. There are also stronger structures

such as lattices, semilattices and trees and we have presented how to recognise them.

Moreover, we have presented how to recognise a collection of similar structures. In addition,

we have argued that with this kind of system is possible to analyse common parts in different

concept systems.

The definitions and functions given in this paper provide many possibilities for conceptual

modelling. For instance, if there are two concept systems, the functions reveal their structure.

More functions can be designed to discover the part that is common for the concept systems.
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