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Abstract

This paper surveys algorithms for generating unbiased random bi-
nary trees. There exist several linear time algorithms. The best al-
gorithms use only integers of size O(n) to generate binary trees on n
nodes.

1 Introduction

Binary trees are essential in various branches of computer science [7]. In time
to time, there is a need to generate random binary trees. For example, when
writing a program to manipulate binary trees, it is advantageous to have an
e�cient method to genarate random binary trees with some �xed number n
of nodes in order to test the program.

Mathematically, there are no problems at all in generating random binary
trees. Namely, there exist algorithms to enumerate binary trees. Simply
choose a random natural number i from the interval [1::Bn], where the nth
Catalan number

Bn =

 
2n

n

!
1

n + 1
(1)

gives the number of binary trees with n nodes, and output the ith binary
tree from the enumeration.

Computationally the problem is more complicated. As Martin and Orr
[12] notice, B5000 needs 2000 digits in decimal notation. It is most prefer-
able that algorithms generating random binary trees with n nodes use only
integers of size O(n). We naturally have to use probabilities, that is, real
numbers from the interval [0::1]. In that case it might seem articial to record
the size of integers used. However, the time and space complexities of the
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best algorithms are so close to each others that the size of the integers used
is indeed a good measure for ranking the algorithms.

We consider (rooted, ordered) binary trees (except in section 6). Each
internal node in a binary tree has two children; a leaf has no children. When
speaking about \binary trees with n nodes" we mean binary trees with n
internal nodes and n+ 1 leaves.

Algorithms generating random binary trees work with some kind of coding
schemes. Instead of directly generating binary trees, the algorithms actually
generate random code words which are in 1-1 correspondence with binary
trees. This requires an e�cient way to travel between trees and code words.
We do not discuss the transformation of a code word into the corresponding
tree since all the coding schemes considered allow e�cient transformation
algorithms.

All algorithms introduced here assign equal probability to all members
of the family of trees under consideration, i.e. we always use the uniform
distribution.

Random generation of labeled trees is studied by Quiroz [14]. Another
di�erent approach is introduced by Alonso et al. [1]. Generation of random
labeled trees and Alonso et al.'s approach are not considered in this paper.

2 Grammatical methods

There are several coding methods for binary trees (see e.g. [11]). Some of
these methods have the property that the set of valid code words can be
generated by a simple context-free grammar. In what follows, we consider
two such methods, the strings of balanced parentheses and Zaks' sequences.

Mairson [9] gives a general method for generating random words in a
context-free language. This method runs in linear time but it needs O(n2)
space preprocessing phase. Moreover,it uses integers of exponential size (on
n). Better results are reached when applying ad hoc methods to context-free
grammars generating sets of valid code words.

Strings of balanced parentheses are well-known to be in 1-1 correspon-
dence with binary trees. The set of all balanced parentheses can be generated
by the grammar with productions

S ! fSgS; S ! �;
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where � stands for the empty string. (For notational clarity we consider
strings of curly brackets ( f and g ). Arnold and Sleep [2] propose a method
for generating random strings of balanced parentheses, or equivalently, a
method for generating random binary trees.

Suppose we are generating binary trees with n nodes. The corresponding
strings of balanced parentheses are of length 2n. During the construction
of a balanced string we repeatedly choose between a left parenthesis (the
production S ! fSgS) and a right parenthesis (the production S ! �). The
decision is based on the number r of unmatched left parentheses produced
so far and on the total number k of symbols remaining to be produced. In
any situation, the number of valid continuations of the string depends only
on k and r, and not on the length of the string so far produced. Let A(r; k)
denote the number of valid continuations when there are r unmatched left
parentheses and k symbols remaining to be produced.

The probabilities to produce left or right parentheses can be expressed
by using A. Namely, the number of valid continuations starting with left
parenthesis is A(r+1; k � 1) and the number of valid continuations starting
with right parenthesis is A(r � 1; k � 1). Hence, the probability P (r; k) to
produce a right parenthesis when there are r unmatched left parentheses and
k symbols remaining to be produced is

P (r; k) =
A(r � 1; k � 1)

A(r; k)
: (2)

A string of parentheses can be geometrically represented as a zigzag di-
agram shown in Figure 1. Each upward edge represents a left parenthesis
and each downward edge represents a right paranthesis. A balanced (or well-
formed) string of parentheses has a drawing in which the line returns to the
base line and has no edges below it.

A geometric representation for the situation where there are r unmatched
left parentheses and k symbols remaining to be produced is a similar zigzag
line from the point (0; r) to the point (k; 0) not leaving the positive region of
the plane. Such paths are called positive paths. The other paths are negative
paths. Arnold and Sleep [2] determine the number of positive paths, that is
A(r; k), by subtracting the number of negative paths from the total number
of paths. This di�erence is

A(r; k) =
2(r + 1)

(k + r + 2)

 
k

(k + r)=2

!
: (3)
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Figure 1: The zigzag diagram corresponding to the string ())((()).

Based on (2) and (3) the probability P (r; k) can now be written as

P (r; k) =
r(k + r + 2)

2k(r + 1)
: (4)

Note that r = k gives P (r; k) = 1.
Obviously, equation (4) solves the problem of generating random binary

trees. We simply choose random real numbers from the interval [0::1] and
compare them to the results obtained by equation (4) with the present values
of r and k. Since the string of parentheses corresponding to a binary tree
with n nodes is of length 2n, and equation (4) does not contain digits greater
than n, we have

Theorem 2.1 The method of Arnold and Sleep generates balanced strings
of parentheses in linear time using integers no larger than O(n2).

In Zaks' coding method [17] we �rst label each intenal node by 1 and each
leaf by 0. The labels are then read in preorder to obtain the code word. The
Zaks' sequence of the sample tree shown in Figure 2 is 11001110010010.

Zaks' sequences have dominating property, i.e. in each proper pre�x the
number of ones is not smaller than the number of zeros. Zaks' sequences on
length 2n are in 1-1 correspondence with binary trees with n nodes [17].

Zaks'sequences can be produced by the grammar with productions

S ! 1SS; S ! 0:

Given a binary tree, the corresponding string of balanced parentheses
and the corresponding Zaks' sequence are generated such that the strings of
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Figure 2: A sample tree with Zaks' sequence 11001110010010.

productions applied are identical in the sense that productions S ! fSgS
and S ! 1SS are in 1-1 correspondence as are the productions S ! � and
S ! 0. Hence, the probability given in equation (4) can be applied also in
the case of Zaks' sequences.

Theorem 2.2 Random Zaks' sequences can be generated in linear time using
integers no larger than O(n2).

3 Atkinson and Sack

Atkinson and Sack [4] give a totally di�erent approach to generate random
strings of parentheses than that of Arnold an Sleep's.

A string of parentheses is said to be balanced with defect i if (1) it contains
equal number of left and right parentheses, i.e. its zigzag line (ch. Figure 1)
returns to the base line, and (2) the zigzag line has precisely 2i egdes below
the base line. Note that the set of balanced strings with defect 0 is the one
having 1-1 natural corresponding with binary trees.

Let Bni stand for the balanced strings with defect i and with length 2i.
The sets Bn0, Bn1, . . . , Bnn are disjoint and their union Bn is the set of
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all strings of parentheses containing equal number of left and right paren-
theses. All the sets Bni have the same size

�
2n

n

�
1

n+1
[5]. The algorithm of

Atkinson and Sack choose any member of Bn, and then transform it to the
corresponding member in Bn0.

We �rst de�ne some new notations. If w is a string of parentheses, we
denote by w the string obtained by replacing each left parenthesis by a right
parenthesis and each right parenthesis by a left parenthesis.

Let w be a string (not necessarily balanced) containing equal number of
left and right parentheses. We say that w is reducible if it can be written in
the form w = w1w2 where both w1 and w2 are nonempty and contain equal
number of left and right parentheses. Otherwise, w is irreducible.

Proposition 3.1 [4] If an irreducible string w contains equal number of left
and right parentheses, then one of w and w is balanced. Moreover, w has a
unique factorization w = w1w2 : : :wk, where each wi is irreducible.

The algorithm of Atkinson and Sack �rst generates a random combina-
tion X of n integers from f1; 2; : : : ; 2ng. This is possible in linear time (for
details, see e.g. [16]). Next, we construct a random string of parentheses
x = x1x2 : : : xn by settting xi = f if i 2 X; otherwise xi =g. There are equal
number of left and right parentheses in x, and hence, x is in Bn. The �nal
step of the algorithm is to map x to a unique member of Bn0.

Formally, we need a map � : Bn 7! Bn0 de�ned inductively as follows.
When n = 0, we have �0(�) = �. For n > 0, we express w 2 Bn as w = uv,
where u is nonempty and irreducible and v is of length s � 0. Now we de�ne
�n by setting �n(w) = u�s(v), if u is balanced; otherwise, �n(w) = f�s(v)gt,
where u =gtf. It is possible to prove that �n is bijective on each Bni [4].
Hence, we have the following

Theorem 3.1 [4] The method of Atkinson and Sack generates random bal-
anced strings of parentheses in linear time using integres no larger than 2n.

4 Martin and Orr

Consider now the following coding method for binary trees. Each node in the
right arm (the path from the root following right child pointers) is labeled
by 0. If a node is a left child, its label is i + 1 where i is the label of its
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Figure 3: A sample tree with right distance code word (0,1,0,2,1,0).

parent. The label of a right child is the same as the label of its parent. Read
the labels in preorder. The code word obtained is called inversion table in
[12]. It is a mirror image of left distance code word of [10]. Hence, we refer
it to as right distance code word. Figure 3 shows the tree of Figure 2 labeled
according to the right distance coding scheme. The corresponding code word
is (0,1,0,1,2,1,0). Since leaves of are not labeled in right distance coding
scheme, they are not shown in Figure 3.

The code items (x0; x1; : : : ; xn�1) in a right distance code word have the
properties x0 = 0 and xi � xi�1 + 1, i = 1; : : : ; n� 1.

Generating a binary tree is now equivalent to generate a code word
(x0; x1; : : : ; xn�1). If xj = i, Martin and Orr [12] use a cumulative probability
distribution function F (k) which gives the probability that xj+1 2 f0; : : : ; kg,
k � i+1. If a is the number of all valid code words with the pre�x so far pro-
duced and b is the number of valid code words with the pre�x so far produced
augmented with any code item from the set f0; : : : ; kg, then F (k) = a=b.
More generally, F is a function of n, the length of the code word, i, the value
of the previous code item, j, the position in the code word, and k, the upper
bound for the next code item considered.

Martin and Orr [12] give the following formula

F (n; i; j; k) =
(k + 1)(n � j + i+ 2)!(2n � 2j + k)!

(i+ 2)(n� j + k + 1)!(2n � 2j + i+ 1)!
: (5)
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Now, we can choose a random number x from the interval [0; 1), and �nd
the largest m such that x � F (n; i; j;m� 1). Then m is the next code item.

Let P (n; i; j; k) = F (n; i; j; k) � F (n; i; j; k � 1) denote the probability
that k is the next code item and let Q(n; j; k) = P (n; i; j; k� 1)=P (n; i; j; k).
Fortunately, there are simple formulas for P (n; i; j; k) and Q(n; j; k). Martin
and Orr [12] derive the formulas

Q(n; j; k) =
(k + 1)(n� j + k + 1)

(k + 2)(2n � 2j + k � 1)
(6)

and

P (n; i; j; i+ 1) =
(i+ 3)(n� j)

(i+ 2)(2n � 2j + i� 1)
: (7)

By using equations (6) and (7) we can compute the values P (n; i; j; k)
for all necessary k's starting at i + 1 (to highest possible values for k) and
continuing iteratively to 0 (the lowest possible value). The form of equations
(6) and (7) implies to following

Theorem 4.1 The method of Martin and Orr generates right distance code
words in linear time using integers no larger than O(n2).

Lucas et al. ([8], Thm. 2) show that there exist linear time bijections be-
tween valid left distance code words (and hence equivalently for right distance
code words or inversion tables of Martin and Orr [12]), Zaks' sequences, code
words in Zerling's method (to be discussed in the next section) and Pallo's
weight sequences [13] not considered in this paper.

Theorem 4.2 There exist algorithms for generating random valid Zaks' se-
quences, code words in Zerling's method, and weight sequences in linear time
using integres no larger than O(n2).

5 Johnsen and Zerling

A unique coding system for binary trees can be established by inserting
the nodes into the tree in preorder and recording the positions to which
the insertions are made [6]. As an example consider the tree in Figure 4.
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Figure 4: The three possibilities to insert the next node in preorder.

There are three possibilities to insert the next node in preorder. These are
numbered from left to right by 0, 1, and 2. So far, the insertions are done
into the positions 0, 2, and 0. The next insertion will augment the code
word to be (0,2,0,0), (0,2,0,1), or (0,2,0,2) depending on our choice for the
place of the next insertion. Johnsen [6] uses the phrase trailing leaf for the
positions where the next insertion can take place. If t is a binary tree, then
tl(t) denotes the number of its trailing leaves. The operation of inserting a
node in preorder is called grafting. Johnsen proves that for each item xi in a
code word (x1; x2; : : : ; xn�1) we have 0 � xi � i� (xi + x2 + : : :+ xi�1).

Zerling [18] develops a method for establishing a 1-1 correspondence be-
tween binary trees and code words related to rotations. In Zerling's method
the code word (xn�1; xn�2; : : : ; x1) corresponding to a tree on n nodes is ob-
tained as follows. We make left rotations on the root of the tree as long
as possible, i.e. until the greatest node in symmetric order (inorder) is on
the root. The code item x1 related to the greatest node in symmetric or-
der is the number of rotations done. The same procedure is then repeated
in the left subtree; i.e. the greatest node is deleted and left rotations are
done on the new root. This continues until the code word item xn�1 is set
to have value 0 or 1 depending on whether we must rotate when there are
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two nodes left. For an item xi in a code word (xn�1; xn�2; : : : ; x1) we have
0 � xi = n � i� (xn�1 + xn�2 + : : :+ xi+1) [18]. By noticing the di�erence
in indexing the code items, we can conclude the following.

Proposition 5.1 The set of valid code words in Johnsen's method equals
that of Zerling's method.

Johnsen's method handles nodes in preorder while Zerling's method refers
them in (reversed) symmetric order. It is then natural that a code word
usually corresponds to di�erent trees in the two methods. However, the code
word (0,0,...,0) corresponds to the same binary tree in both methods. For
the process of generating random binary trees these two methods are equal.
Indeed, the form of the bijectivemapping between code words is not essential.
It is su�cient that there is a unique tree for each valid code word.

By Theorem 4.2 and Proposition 5.1 we have

Theorem 5.1 There exists an algorithm to generate random valid code words
in Johnsen's method in linear time using integers no larger than O(n2).

Johnsen introduces his method for generating random code words as a
Markov chain. The process always starts with the tree t1 with a single node,
and the trees are built by making graftings. Given a binary tree t, there
is a unique sequence of graftings given binary trees t1; t2; : : : ; tn = t, with
increasing numbers of nodes.

Let L(n; j) stand for the number of binary trees obtainable from a binary
tree with n trailing leaves by using j graftings. Johnsen shows that the
number of trees obtained indeed depends only on n and j.

The transition probabilities of the Markov chain are de�ned as follows:

prob(ti j ti�1) =
L(tl(ti); n� i)

L(tl(ti�1); n� i+ 1)
: (8)

Note that prob(t j s) can be greater than zero only when t is obtainable
from s by a grafting operation.

The state probabilities are de�ned recursively as

prob(t1) = 1
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and
prob(ti) = prob(ti j ti�1)prob(ti�1)

provided that ti is obtainable from ti�1 by a grafting operation. If t1; t2; : : : ; tn =
t is a sequence of binary trees obtained by graftings, we have

prob(t) = prob(tn j tn�1) : : : prob(t2 j t1)prob(t1) = 1=Bn:

Equation (8) gives the probabilities used in Johnsen's algorithm to deter-
mine the code items. However, L(tl(ti); n� i) can be exponential on n, and
no simple formula is known to be equivalent with (8). Hence, Theorem 5.1
gives better results than is obtainable by using Johnsen's algorithm.

6 Trees with prescribed degrees

Contrary to the previous sections we now consider trees other than binary
trees. We say that the type of a tree is a vector (d0; d1; : : : ; dn�1) where each
di gives the number of nodes with i children in the tree. The trees so far
considered have type (n+1; 0; n) and di = 0, for i > 2, i.e. binary trees with
n internal nodes have n+ 1 leaves.

A type vector must satisty the condition

n�1X
i=0

(r � 1)dr = �1: (9)

This condition simply says the number of nodes in a tree exceeds the number
of edges by one.

A tree with an arbitrary degree can be coded by labeling each node by
its degree, and reading the labels in preorder. A valid degree sequence has
the property that it starts with a positive integer r and then contains r valid
sequences.

If �1�2 : : : �n is a valid degree sequence, then it must satisfy condition (9)
rewritten as

nX
i=1

(�i � 1) = �1: (10)

A su�ent condition for a degree sequence to be valid is obtained when (10)
is augmented by the following \dominating" condition (cf. Zaks' sequences):
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mX
i=1

(�i � 1) � 0; 0 � m < n: (11)

Raney [15] proves that any sequence � = �1�2 : : : �n of integers where di
is the number of symbols equal to i satisfying condition (9) has exactly one
cyclic shift which is a valid degree sequence.

Suppose now that we are given a type vector satisfying (9) with
P
di = n.

We can generate uniformly at random an integer sequence � of length n
having i occurrences of r, r = 0; 1; : : : ; n� 1. Raney's result guarantees that
there is exactly one cyclic shift of � which is a valid degree sequence. Hence,
our problem is now to �nd the unique cyclic shift having the \dominating"
property (11).

Atkinson [3] shows that the correct shift can be determined by �nding
the minimum of the partial sums

Pm
i=1 �

0

i, where �
0

i = �i� 1. Hence, we have

Theorem 6.1 [3] There exists an algorithm to generate random valid degree
sequences in linear time using integers no larger than O(n).
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