
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

BINARY TREE CODE WORDS

AS CONTEXT-FREE LANGUAGES

Erkki M�akinen

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF TAMPERE

REPORT A-1998-2



UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1998-2, JANUARY 1998

BINARY TREE CODE WORDS

AS CONTEXT-FREE LANGUAGES

Erkki M�akinen

University of Tampere

Department of Computer Science

P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4300-4

ISSN 0783-6910



Binary tree code words as context-free languages

Erkki M�akinen

em@cs.uta.�

Abstract

Given a binary tree coding system, the set of valid code words of

all binary trees can be considered as a context-free language over the

alphabet used in the coding system. The complexity of the language

obtained varies from a coding system to another.

Xiang, Tang and Ushijima have recently proved some properties

of such languages. We show that their results can be more easily

proved by noticing the form of the generating grammar in question.

Namely, in the most simplest cases the language obtained is a left

Szilard language, a very simple deterministic language. Moreover, we

prove some new results concerning the \binary tree languages".

1 Introduction

Di�erent binary tree coding systems are introduced (for a survey, see [1]) and
compared [2, 3, 4, 5] in the literature. Given a coding system, the set of valid
code words forms a language over the alphabet used in the code words.

Xiang, Tang and Ushijima [5] have recently studied the properties of the
languages generated by the following two context-free grammars

G1 : S ! aSS; S ! bS; S ! cS; S ! d

and
G2 : S ! aSS; S ! b:

G1 produces valid code words in a system where a node with two children
is labeled with a, a node with only a left (resp. right) child with b (resp. c),
and a leaf with d. The code word is then obtained by reading the labels in

1



preorder. Variants of this coding system are studied also by Korsh [6] and
Bapiraju and Bapeswara Rao [7].

The coding system related to G2 makes di�erence only between internal
nodes and leaves. The former are labeled with a's and the latter with b's.
Again, the labels are read in preorder. The code words obtained are often
called Zaks' sequences, since they are introduced by Zaks in [8].

In what follows we study G1 and G2 and other context-free grammars
generating valid binary tree code words. Xiang, Tang and Ushijima [5] have
proved several theorems concerning the languages L(G1) and L(G2) gener-
ated by G1 and G2. We show that these results follow directly from the fact
that G1 and G2 are so called left Szilard grammars obeying a certain strict
form of context-free determinism.

We also consider other binary tree coding systems and the corresponding
languages of their valid code words.

2 Preliminaries

When concerning context-free grammars and languages we mainly follow
the notations and de�nitions of [9]. Similarly, we use the standard tree
terminology [10].

Let G = (V;�; P; S) be a context-free grammar (hereafter simply \gram-
mar") whose productions are uniquely labeled by the symbols of an alphabet
C. If a production A! � is associated with the label � we write � : A! �.
The production labeled with � is called the �-production. If a sequence �
of labeled productions is applied in a leftmost derivation � )� 
, we write
� )� 
. Notice that we consider leftmost derivations only and omit the
normal subscript indicating leftmost derivations. The left Szilard language
Szl(G) of G is de�ned as

Szl(G) = f� 2 C� j S )� w;w 2 ��g[11]:

We consider reduced [9] grammars only; i.e. grammars in which each
nonterminal and terminal symbol appears in some terminal derivation from
the start symbol to a terminal string. A production is called terminating if
there is no nonterminals in its right hand side. Otherwise, a production is
continuing. If w is a word over an alphabet � and a is a symbol in � then
a(w) stands for the number of a's in w. The empty word is denoted by �.

2



Given a grammar G, a grammar generating Szl(G) can be obtained by
replacing each production � : A ! � in P by the production A ! ��(�),
where � is a homomorphism erasing terminal symbols. The grammar ob-
tained has the property that each production has a unique terminal symbol
in the beginning of its right hand side and this is the only terminal in the
right hand side. We refer such grammars to as left Szilard grammars. A left
Szilard grammar is always unambiguous. We have a one-to-one correspon-
dence between productions in the original grammar G, the labels indicating
the productions, and the productions in the left Szilard grammar generating
Szl(G).

3 Left Szilard binary tree languages

In this section we �rst reformulate and reprove some result by Xiang, Tang
and Ushijima [5]. Our proofs are based on the fact that G1 and G2 are both
left Szilard grammars. Moreover, we give some new results concerning L(G1)
and L(G2).

Proposition 3.1 1. G1 is unambiguous (Theorem 1 in [5]).

2. A string w is a word in L(G) if and only if d(w) = a(w) + 1. A string
w0 is a su�x of a word w in L(G1) if and only if d(w0) � a(w0) + 1
(Theorem 3 in [5]).

3. A string w0 = wiwi+1 : : : wn is a su�x of a word w = w1 : : :wi : : :wn in
L(G1) if and only if

1 � d(w0)� a(w0) � i

(Lemma 1 of [5]).

4. For each proper pre�x w0 of a word in L(G1) we have a(w0) � d(w0)
(Theorem 5 of [5]).

5. Each word in L(G) ends up with a symbol d (Corollary 3 of Theorem
3 in [5]).

3



Proof

1. All left Szilard grammars are unambiguous.

2. Each terminal derivation in G1 starts from S and ends up with a string
with no appearances of S. Productions S ! bS and S ! cS do not
change the number of S's, while S ! aSS increases the number and
S ! d decreases the number by one. Hence, in each terminal derivation
there must be one production S ! d more than S ! aSS to rewrite all
S's. The one-to-one correspondence between productions and terminal
symbols implies the claim concerning words in L(G).

The claim concerning su�xes follows from the fact that each proper
su�x corresponds to a derivation from some sentential form to a ter-
minal string. In order the su�x to be proper the sentential form in
question must contain at least one appearance of a nonterminal. Since
S is the only nonterminal in G1, we can repeat the reasoning above.
In fact, if a sentential form contains k appearances of S then we have
d(w0) = a(w0) + k for the corresponding su�x w0.

Again, since productions S ! bS and S ! cS do not change the
number of nonterminals, w0 is a su�x of any word w = vw0 where

a(v)� d(v) + 1 = d(w0)� a(w0):

3. The lower bound follows from Item 2. The upper bound follows from
the fact that the correspondng pre�x w1 : : : wi�1 is produced by a
derivation of length i � 1 where each step can increase the number
of nonterminals by 1. Hence, the derivation producing w0 starts from a
sentential form containing at most i nonterminals. The upper bound is
reached when S ! d is applied i times to such a sentential form. (The
derivation related to the upper bound is S ) : : : ) ai�1Si ) : : : )
ai�1di.)

4. This is obvious from the grammatical point of view. If the claim does
not hold, we have no nonterminals left, and we cannot continue the
derivation. Hence, w0 could not be a proper pre�x. (Again, the number
of b's and c's is irrelevant.)

4



5. S ! d is the only terminating production in G1. Each terminal deriva-
tion ends up with an application of a terminating production.

2

The other results concerning L(G1) given in [5] could be proved in a
similar manner.

Similar to Item 2 of Proposition 3.1 we can prove the following

Proposition 3.2 [5] If w0 is a su�x of a word in L(G2), we have

b(w0)� a(w0) � 1:

Usually this result is given in the form

Proposition 3.3 If w0 is a proper pre�x of a word in L(G2), we have

a(w0)� b(w0) � 0:

Proposition 3.3 is known as the dominating property of Zaks' sequences
[8].

The rest of this section is devoted to some new results concerning G1 and
G2 and the languages generated by them.

Proposition 3.4 Each word w, w 6= d, in L(G1) can be written in the form
w = xyz, y 6= �, such that all words xyiz, i = 0; 1; : : :, are in L(G1).

Proof If w has a subword u in fb; cg+, we can choose y = u. Otherwise,
w must contain the subword ad, and we can set y = ad. (The subword ad

is produced by the subderivation S ) aSS ) adS which can always be
repeated arbitrary number of times.) 2

Actually, since S is the only nonterminal in G1, we can insert subwords
(ad)i, i = 1; 2; : : :, and u, u 2 fb; dg+, in any word w in L(G1) and to obtain
a new word in L(G1). The only restriction is that the subword cannot be
inserted to the rear of w.

This observation has a natural interpretation: inserting ad corresponds
to an expansion of an edge to contain a node with two children so that the
left subtree has one node, and inserting u corresponds to an expansion of an
edge to contain nodes with one child.

A result similar to Proposition 3.4 holds also for G2

Proposition 3.5 Each word w, w 6= b, in L(G2) can be written in the form
w = xyz, y 6= �, such that all words xyiz, i = 0; 1; : : :, are in L(G2).

Proof We can always choose y = ab. 2

5



4 Other coding systems

The set of binary trees on n nodes is known to be in one-to-one correspon-
dence with well-formed bracket sequences with n pairs of brackets. Hence,
such a bracket sequence can be considered as a binary tree code word. The
language related to this coding system can be generated by the grammar

G3 : S ! [S]S; S ! �:

Since L(G3) is not pre�x-free, it cannot be a left Szilard language. (L(G3)
is deterministic, but not strict deterministic in the sense of [9].)

To obtain Zaks' sequences or the words in L(G2), we can perform the
following algorithm: label all internal nodes by a, label all leaves by b, and
read the labels in preorder. Reading the labels in level-by level order (from
top to bottom and form left to right) we obtain di�erent kind of code words.
Level-by-level code words are used e.g. in [12].

The set of all level-by-level code words coincides with L(G1). The only
di�erence between the two methods is the order in which nodes are han-
dled. In the corresponding grammars this determines the rewriting order of
nonterminals in sentential forms. In the method related to G1 this order is
depth-�rst, while level-by level code words use \�rst-in-�rst-out" order or
breadth-�rst order. In general, breadth-�rst order is not possible in normal
context-free grammars. However, our grammars contain only one nontermi-
nal (S). Hence, it does not make any di�erence whether we use depth-�rst
or breadth-�rst order of nonterminal rewriting. (Breadth-�rst restriction in
context-free derivations is studied e.g. in [13, 14].)

So far, we have restricted ourselves to coding systems using a �xed al-
phabet. Most of the coding systems introduced in the literature use integers
from interval [1::n] when coding binary trees on n nodes. As an example
of such coding systems we shortly discuss the left distance method [15]. In
this coding method the code item related to a node equals the node's dis-
tance from the left arm (i.e., the path from the root following the left child
pointers). The code items are read in preorder in order to obtain the whole
code word. The valid code words in the left distance method have a simple
characterization: (x0; x1; : : : ; xn�1) is a valid code if and only if x0 = 0 and
0 � xi � xi�1 + 1, for i = 1; : : : ; n � 1. Based on this characterization, we
can de�ne a grammar generating the code words for binary trees on at most

6



n nodes. The language generated is �nite, and hence, a regular grammar is
su�cient. The productions are essentially of the form

Xi;j ! a0Xi+1;0;Xi;j ! a1Xi+1;1; : : : ;Xi;j ! aj+1Xi+1;j+1;

where the subscripts (i; j) of a nonterminal indicate the position in the code
word (i), and the value of the code item in the ith position (j). On the right
hand sides, the position is incremented (i+1), and the possible value for the
next code item is on the interval [0::j + 1].

5 Conclusion

We have studied binary tree code words as context-free languages. We have
shown that properties of these languages can be more easily proved by notic-
ing the derivational structure of the corresponding context-free grammar.

References

[1] M�akinen, E. (1991a) A survey on binary tree codings. Comp. J., 34,
438{443.

[2] M�akinen, E. (1991b) E�cient generation of rotational-admissible code-
words for binary trees. Comp. J., 34, 379.

[3] M�akinen, E. (1992) A note on graftings, rotations, and distances in binary
trees. EATCS Bull., 46, 146{148.

[4] Lucas, J.M., Roelants van Baronaigien, D. and Ruskey, F. (1993) On
rotations and the generation of binary trees. J. Algorithms, 15, 343{366.

[5] Xiang, L., Tang, C. and Kazuo Ushijima (1997) Grammar-oriented enu-
meration of binary trees. Comp. J., 40, 278{291.

[6] Korsh, J.F. (1993) Counting and randomly generating binary trees. Inf.
Process. Lett., 45, 291{294.

[7] Bapiraju, V. and Bapesraju Rao, V.V. (1994) Enumeration of binary
trees. Inf. Process. Lett., 51, 125{127.

7



[8] Zaks, S. (1980) Lexicographic generation of ordered trees. Theoret. Com-
put. Sci., 10, 63{82.

[9] Harrison, M.A. (1978) Introduction to Formal Language Theory. Addison-
Wesley, Reading.

[10] Knuth, D.E. (1997) The Art of Computer Programming. Vol 1, Funda-
mental Algorithms. Third Edition. Addison-Wesley, Reading.

[11] M�akinen, E. (1985) On context-free derivations. Acta Universitatis Tam-
perensis, 197.

[12] Lee, C.C., Lee, D.T. and Wong, C.K. (1983) Generating binary trees of
bounded height. Acta Inf., 23,529{544.

[13] Cherubini, A., Citrini, C., Crespi-Reghizzi, S. and Mandrioli, D. (1990)
Breadth and depth grammars and deque automata. Intern. J. Found.
Computer Science, 1, 219{232.

[14] E. M�akinen (1991), A hierarchy of context-free derivations. Fundam.
Inf., 14, 255{259.

[15] E. M�akinen (1987), Left distance binary tree representations. BIT, 27,
163{169.

8


