
1

THE MODELING PRIMITIVES FOR COMPONENT
RELATIONSHIPS AND A ’DESIGN BY EXAMPLES’ METHOD

Marko Junkkari

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF TAMPERE

REPORT A-1998-13

2

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A
A-1998-13, DECEMBER 1998

THE MODELING PRIMITIVES FOR COMPONENT
RELATIONSHIPS AND A’DESIGN BY EXAMPLES’
METHOD

Marko Junkkari

University of Tampere
Department of Computer Science
P.O. Box 607
FIN-33101 Tampere, Finland

ISBN 951-44-4475-2
ISSN 0783-6910

1

The modeling primitives for component relationships
and a `design by examples´ method

Marko Junkkari

junken@cs.uta.fi

University of Tampere, Finland

Department of Computer Science

Abstract: In this paper we present essential primitives for abstraction of
relationships among composed objects and their components. We start
out from modality and then present whether an object, by nature, occurs
only in some specific construct or whether it is an independent one.
These approaches are well-known in many areas of computer science,
but the integrated and exact systematic presentation of these is generally
lacking, especially in modeling approaches for component based
systems. We represent a ‘design by example’ method for modeling and
designing an abstraction from single component structures of objects.
This approach enables us to modify the object type structure during the
designing process. Primitives of modeling methods are generally defined
only on graphical level, but more accurate presentation is needed because
the result of this modeling analysis gives input for detailed design and
implementation. For this reason, our definitions are based on an exact
and implementation-independent presentation language, that is, set
theory.

1. Introduction
The description of relationships among components is a complex question in the

component-oriented approaches to information systems engineering. When a

designer discusses the reuse of class libraries, environments, components, or

frameworks, the consideration is often rather imprecise. It can be said that one

reason for this is that the essential primitives of object type structures (aggregation

schema) for components are not well defined. Here, we present both the basic

primitives for describing the conceptual structure of object types (classes) and a

method for modeling the structure on the basis of primitives, a method we call the

‘design by example’ method. Similar approaches have been used for example in

database design [e.g. Kantola et al., 1992] and in formulation of complicated

2

queries1 and in designing of frameworks [Koskimies and Mössenböck, 1995].

To begin with, we need two kinds of relations among the object types for

describing the modality of containment in the application domain at hand. One to

describe whether a complex object necessarily has some component of the type at

hand and one for established whether a relationship is a possible one. Moreover, we

need two kinds of object types: weak and independent ones. The first describes the

situation when an object of the type cannot appear without a composed object. The

second describes the situation when objects can appear independently from any

composed object. The presented primitives are well known in different approaches,

but as far as we know this is the first time when the primitives are put together by a

systematic and integrated view in order to describe relationships for component

based systems.

The object type structure at hand functions as the framework for every single

object structure. Under the type structure, necessary relationships form the minimal

object structure that all the object structures have to satisfy. Together, necessary and

possible relationships form the maximal framework, into which every object

structure has to fit.

Modeling begins typically from a type structure. The modeler tries to find a

model that every single object structure has to satisfy. The problem in this approach

is that it requires both a knowledge of every future structure of objects and the

testing of the model during the modeling and designing processes. To bypass such

complications, we suggest the use of the ‘design by example’ method for describing

the object type structure. This method enables the testing of the type structure and,

analogously, of the new object structure so that we can determine whether it satisfies

the general model.

Most of the modeling methods are defined only on a graphical level, the formal

definitions are generally missing. Because the modeling of application domains

gives the input for design and implementation of information systems, it should be

clear that the exact definition of application specific concepts is an essential aspect

in the analysis of application domains. Our formalisms are, therefore, presented in

terms of set theory which is an exact, well-know and implementation-independent

1 The first presentation: Moshé M. Zloof: Query-by-Example: the Invocation and Definition of

Tables and Forms. VLDB 1975: 1-24

3

presentation method. In this paper, we assume the reader to be familiar with standard

set theory. Some notational conventions have alternative ways of representing in set

theory. According to [Niemi and Järvelin, 1992], we use the following notational

conventions.

• The ordered pairs are denoted between angle brackets, e.g. <a,b>.

• The power set of a set S is denoted by P(S).

• The signature of a function is denoted by f: D→ R where f is a function symbol,

D is a domain set and R is a range set. In complex cases a domain set is a

Cartesian product.

Section 2 discusses related work especially from the point of view of the

problems with relationships between parts and wholes in general. The definitions of

modeling primitives are presented in section 3. In section 4, then we present our

modeling method, ‘design by example’. In conclusion, further studies are discussed

briefly in section 5.

2. Related work

The basic principles we define are well known in computer science. The concept of

modality is familiar from several contexts. Therefore we overlook references to

modal logic as well as to modality with an entity and its possible attributes. The

concept of weakness (an object depends on another object) is familiar from the

basics of ER-model [Chen, 1976] as well as from object oriented analysis, design,

and databases.

Problems that are related to component relation are, thus, common within several

areas of computer science, in areas such as AI, object oriented analysis and design,

semantic data models and database design. Transitivity and strong dependency

between related objects are the characteristics of a component relation. These make

the processing of the relation complicated and systematic and exact management

rules are typically missing. Especially the consideration of component relations

among concepts (object types, entity types) is an open problem with part-whole

relations [Artale, Franconi and Guarino, 1996]. The component relationship between

objects is a kind of a fact in the real world and the conceptual component relation is

a kind of a generalization of single object relationships.

Together with generalization, aggregation has been understood as on of the most

important methods for conceptualization with database abstractions [Smith and

4

Smith, 1977]. Therefore, in semantic data models, there is a need to present

component relationships. In IFO [Abiteboul and Hull, 1987] and in GSM [Hull and

King, 1987], a kind of a component relationship is described by aggregation with so

called cross-vertex and formally the connection of the components is described by

tuples. For example the domain of the motorboat is described as a set of ordered

pairs which have a hull and a motor as their elements. In some enlargements of ER-

model [see e.g. Spaccapietra and Parent, 1992] the problems of component relations

have come current with the so-called complex attributes. One purpose of the object

oriented database development has been the presentation and management of

complex object [e.g. Hua and Tripathy, 1994; Cluet, 1998].

In object oriented analysis the component hierarchy is called a whole-part

structure, an assembly structure or an aggregation structure [Coad and Yourdon,

1991]. In OMT [Rumbaugh et al., 1991] and in UML [Harmon and Watson, 1997]

aggregation is understood as a kind of an association and it is defined among classes

(types). In the object-oriented approach, our weak type refers to the kind of

aggregation that is also sometimes called composition or composite aggregation. In

this case when the composed object is deleted also its components are necessarily

deleted. The purposes of aggregation do still mostly fall under definitions on the

graphical level and generally accurate definitions are missing.

Description logics2 [e.g. Brachman and Levesque, 1984; Borgida et al, 1989;

Borgida, 1995] are languages for presenting structural knowledge by is-a and part-

whole hierarchies. The ontological primitives of description logics are individual

(object), concept and role. A concept refers a set of individuals and the role is a

principle that restricts extension of the concept. A part of a whole can also be seen as

a kind of role. Traditionally, role is presented as a binary relation but there are also

extensions for transitive and multi-placed roles [e.g. Borgida, 1995; Sattler, 1996].

With part-whole relations, one purpose of the description logics has been in

distribution of different kinds of part-whole relations [Sattler, 1995]. Another

purpose for it has been the transitive management of one basic part-of relation to

objects and concepts [Padgham and Lambrix, 1994; Lambrix, 1996]. The direct part

relation between two concepts can be defined informally [Lambrix, 1996, p. 81]: ‘A

concept C1 is a direct part of another C2 if individuals belonging to C1 can be parts

2 Description logics have also been referred to as terminological logics, KL-ONE-like

languages and frame-based systems.

5

of individuals belonging to C2.’ This corresponds considerably with the union of

necessary and possible component relations in our terminology.

Theoretical aspects of part-whole relations are generally based on mereology

[Lesniewski, 1984; Simons and Dement, 1996, see also Varzi, 1996] or

mereotopology [Varzi, 1996; Smith, 1996] that study only composed objects instead

of types or concepts. From the conceptual modeling perspective we can consider the

objects of a domain by simply considering the connections of objects. Another

modeling choice is the use of an attribute ”has-component” when connections

between individuals are ensued from this [Artale et al., 1996]. We can make a

hierarchy for attributes, but this approach is more like an ‘ad hoc’ solution.

In this paper, we adapt the term ‘design by examples’ (DBE) from relational

database design [Mannila and Räihä, 1986; Kantola et al., 1992]. In that appraoch

the extensional level is called database instances whereas the term database schema

can be interpreted to correspond with the conceptual level. The database design is

typically begun by using an example ER-model. If the modeler does not know what

kind of demands the database paradigm makes, then the actualization of ER-schema

can be impossible to satisfy as a database. That is why particular database instances

are said to satisfy the integrity constrains. One aim of DBE has been to provide real-

time feedback to the designer. If given examples indicate a failure in the design then

the designer can immediately modify the examples or modify the database schema.

3. The modeling primitives of a component based system.

An object is an extensional level entity with identity. The object type, shortly type, is

understood to be an abstract type that refers to objects. The set of objects in the

application domain at hand is represented by an object set, denoted by O-set. Of the

component relationships in the application domain we present only the immediate

component relationships explicitly. If an object b is a part of another object a, we say

that b is an object-component of a.

Definition 1: If a (∈ O-set) and b (∈ O-set) are two objects in the application
domain at hand so that a has the immediate object-component b or b is the
immediate object-component of a then this immediate relationship is denoted
by the pair <a,b>.

The component system of objects is called the object system and it contains the

set of objects and immediate component relationships O-rel on this set. The

6

interpretation of O-rel is: if <a,b> ∈ O-rel, then the object b is an immediate

component of a.

Definition 2: Component hierarchies among objects related to the application
domain at hand are represented as an acyclic binary relation consisting of
immediate object-component relationships. This binary relation is called by
object system and it is denoted by O-rel, i.e. O-rel ⊆ O-set × O-set or O-rel ∈
P(O-set × O-set).

The set of types related to the application domain at hand is denoted by T-set.

We assume that every object of the application domain has some object type. When

an object a is of the type A we say that a inheres in the extension of the object type A

or the object a is type A.

Definition 3: If A is an object type, i.e. A ∈ T-set then extension of A
(denoted by ext(A)) means the set consisting of all the objects to be type A. In
other words the notation ext(A) contains all instances of A.

As well as we define the connection between two objects by ordered pair,

analogously we present immediate relationships between two object types. The set of

object types abstracted from the application domain at hand is denoted by T-set. We

will give the semantic of immediate relationships among object types later in

definitions 5-7.

Definition 4: If A (∈ T-set) and B (∈ T-set) are two object types abstracted
from the application domain at hand so that A has immediate type-component
B or B is the immediate type-component of A then this immediate relationship
is denoted by the pair <A,B>.

If the type A has a necessary type-component B then all the objects of type A

have a component that is type B. The immediate necessary component relation

between two types A and B is informally defined as follows: A contains immediately

B as a component if and only if every object of A has a direct component that

inheres in the extension of B. The binary relation TN-rel contains all the immediate

necessary type-component relationships.

Definition 5: The object type A has immediate necessary type-component B
(denoted by <A,B> ∈ TN-rel) iff every objects of A has object-component to
be type B, i.e. <A,B> ∈ TN-rel ↔ ∀a ∈ ext(A) ∃b ∈ ext(B): <a,b> ∈ O-rel.

If the type A has a possible type-component B then some objects of the type A

7

have a component of type B but not all.

Definition 6: The object type A has immediate possible type-component B
(denoted by <A,B> ∈ TP-rel) iff some object of A has object-component to be
type B, but not all, i.e. <A,B> ∈ TP-rel ↔ ∃a ∈ ext(A) ∃b,c(≠b) ∈ ext(B):
<a,b> ∈ O-rel ∧ <a,c> ∉ O-rel.

Naturally, the sets of necessary and possible relations are mutually disjoint. Type

system T-rel is now defined as a union of necessary and possible relation.

Definition 7: The component relation among object types contains immediate
necessary and possible component relationships and it is denoted by T-rel, i.e.
T-rel = TN-rel ∪ TP-rel.

A weak type is an object type whose all occurrences appear only as a part of

some construct. If a type is not weak, it is independent.

Definition 8: The object type A is a weak type iff all the objects of A are
immediate object-component of some objects, i.e. ∀a ∈ ext(A) ∃b ∈ O-set:
<b,a> ∈ O-rel.

Definition 9: The object type A is an independent type iff some objects of A
are not immediate object- components of any object, ∃a ∈ ext(A) ¬∃b ∈ O-
set: <b,a> ∈ O-rel.

The description of object type depends on the demand of the application domain

and environment at hand. In the example of real life, where the object type CAR has

type-component MOTOR, there can be alternative purposes relating the environment

of the information system. At first MOTOR can be independent type, when the

instances of MOTOR can exist without any car. However, if in our information

system one sells and buys used cars but not any components of these, then MOTOR

is by nature of a weak type. In general the modeler of an information system

determines whether a type-component is a weak or independent one.

4. Design by example and structure testing

From the modeling perspective we are primarily interested in general concept

structures or type structures, not just merely objects. A type structure is the frame for

structural objects that satisfy the relevant part of the object type model. We can

examine an arbitrary object structure and the type hierarchy which is the frame at

hand. Within the component structure, necessary relationships form the minimal

8

object structure that every object of the current type has to satisfy. By appending

possible relationships into the system we get the maximal structure in which every

object of the type has to fit in.

On the basis of our primitives, we present a method for designing and testing a

component type hierarchy during the modeling process. This method is called

‘design by example’. In this model there is first a component structure of objects

from which the type model is generalized on the basis of given object structures. We

start out from extensional level i.e. single object structures and basing on these we

generalize a type model basing on example object structures. This approach enables

changes in the type model during the designing process. Moreover, in this method

we can test both the particular object structures and our general type structure during

the modeling and designing process. A few arbitrary example object structures can

hardly provide all the information for the general model, but these are valuable

pieces of knowledge. A suitable example can clearly illustrate the problems in a

suggested design. From particular object structures we can automatically generate a

type model that is a generalisation of given structures.

With the operations we define, it is presumed that the set of object types is

implicitly given and for every object there is a known object type. These primitives

are typically modelled by classification so that every relevant object has a current

object type, and inversely.

We start out with the function necessary_relations that yields the set of ordered

pairs of types basing on the definition 5. The function takes two arguments: the type

set T-set and an object relation O-rel, where all the object structures are given by one

object relation. If an object relation O-reli presents one structure instance, then the

whole relation O-rel is the union of every single structure.

Operation 1:
necessary_relations: P(T-set) × P(O-set × O-set) → P(T-set × T-set)
necessary_relations(T-set, O-rel) =

{<A,B> | ∀a ∈ ext(A) ∃b ∈ ext(B): <a,b> ∈ O-rel ∧ A,B ∈ T-set}

Analogously the function possible_relations yields possible ordered pairs of

types on the basis of definition 6.

9

Operation 2:
possible_relations: P(T-set) × P(O-set × O-set) → P(T-set × T-set)
possible_relations (T-set, O-rel) ={<A,B> | ∃a ∈ ext(A) ∃b,c(≠b) ∈ ext(B):

<a,b> ∈ O-rel ∧ <a,c> ∉ O-rel ∧ A,B ∈ T-set}

Weak types can be generated from an object system at hand by using the

function weak_types. On the basis of definition 8, an object type inheres in the set

which the function returns if for every object of the current type, there exists a

construct in the object system. The function independent_types yields, analogously,

the set of these types that are independent according to definition 9.

Operation 3:
weak_types: P(O-set × O-set) × P(T-set) → P(T-set)
weak_types(O-rel, T-set) = {X ∈ T-set | ∀z ∈ ext(X) ∃y ∈ O-set: <y,z> ∈ O-rel}

Operation 4:
independent_types: P(O-set × O-set) × P(T-set) → P(T-set)
independent_types(O-rel, T-set) = {X ∈ T-set | ∃z ∈ ext(X) ¬∃y ∈ O-set: <y,z>

∈ O-rel}

Let us take an example, where the O-set1 is {a1, a2, b1, b2, b3, c1, c2, d1, d2,

d3, d4, e1, e2, e3, f1}. Objects a1 and a2 are type A, b1, b2, b3 are type B, c1 and c2

are type C, d1, d2, d3 and d4 are type D, e1, e2 and e3 are type E and f1 is type F.

Let object system O-rel1 be the following binary relation {<a1,b1>, <a1,c1>,

<b1,d1>, <b1,e1>, <b1,f1>, <a2,b2>, <a2,c2>, <b2,d2>, <b2,e2>, <b3,d3>,

<b3,e3>}. The object types C, E and F are weak ones, because the objects of these

do not appear without the construct in the object system. The types A, B and D are

independent ones, because there are independent objects that inhere in the extensions

of these. The type A has two necessary type-components B and C, because for every

object of type A there is an object of the types B and C. Analogously, the type B has

necessary type-components D and F. Moreover, B has a possible type-component F,

because b1 has the component f1, but b2 and b3 have no components of the type F.

Now our type structure T-rel1 contains necessary component relationships <A,B>,

<A,C>, <C,D>, <C,E> that the function necessary_relations yields and a possible

component relationship <C,F> that the function possible_relations yields. As a

whole, the type hierarchy is {<A,B>, <A,C>, <C,D>, <C,E>, <C,F>}.

10

Figure 1. Conceptualisation from the object system O-rel1to the type system T-rel1.

In graphical representation in figure 1 a lower level object or type is a component of

the upper level ones. Independent type is presented by a rectangle and a weak type is

presented by a double-line rectangle. The possible component relation between types

is described by a dotted line.

For the design system, we need of course a method to check whether an arbitrary

object structure satisfies the type model at hand. Here we present only the function

that yields true-value if the given object structure satisfy previous model. In ’design

by example’ method false-value means that we have to change our type system for

demand that the new object structure gives. For detailed consideration we would

need more detailed information about what these parts of structures are that do not

comply with each other. Because of the vast number of possible situations, it is not

possible to take these into consideration in this context.

The principles of testing are derived from our definitions. We consider the

composed object a (type A) and its component structure. The structure of a is legal if

the following terms are met:

1. The object type (= A) of a has to be an independent type.

2. For all the immediate object-components of a there has to be a type that is an

immediate type-component of A.

3. If A has a necessary type-component B then there has to be an object that is

of the type B and is an immediate object-component of a.

4. All the immediate and indirect object-components of a have to partially

satisfy points 2 and 3 such that the current object is instance of a and its type

a2a1

c1b1

e2d1 e1

b2 c2

f1 d2

b3

d4

A

e3d3

CB

FED

Weak Type

Independent type
Necessary
component
relationship

Possible
component
relationships

11

is instance of A.

In formal representation the function legal_check agrees with six arguments. The

object a is the composed object that we want to insert into our system and A is its

type. O-rel’ is the union of the old object structure O-rel and the structure of the

object a. T-rel is the type system and TN-rel is the relation of necessary type-

component relationships based on the previous object system. Similarly, TI-set is the

set of independent types in the existent type system. To simplify the presentation of

the function and its signature, we assume that T-rel, TN-rel and TI-set are given

implicitly.

Operation 5:

legal_check: O-set’ × T-set × P(O-set’ × O-set’) → {true, false}
legal_check (a, A, O-rel’) =

true, if A ∈ TI-set ∧ structure_check(a, A, O-rel’)
false, otherwise

where
structure_check(a, A, O-rel’) =

structure_check(x, B, O-rel’),
 if ∃B ∈ {Y | <A,Y> ∈ T-rel} ∧ ∃x ∈ {z | <a,z> ∈ O-rel’}: x ∈ ext(B)
true, if ¬∃<a,b> ∈ O-rel’ ∧ ¬∃<A,B> ∈ TN-rel
false, otherwise

To enhance the running example we insert into the system the object b5 that has

immediate object-components d1, d5 and e5, so O-rel1’ is O-rel1 ∪ {<b5,d1>,

<b5,d5>, <b5,e5>}. The current object set O-set1’ is now {b5, d5, e5} ∪ O-set1. Let

object b5 be of the type B, d5 of the type D and e5 of the type E. In this case the

function legal_check(b5, B, O-rel1’) yields true, because all the conditions is

satisfied. Note that the legal check operation accepts this example, although the

composed object has more than one component being of the same type, provided

they partially satisfy the conditions.

The form of operation 5 enables us to apply it independently from the modeling

method we use. In other words, if we have modelled by conceptual approach, we can

check whether the type structure corresponds to the instance level. We can just as

well test whether the construct satisfies the demands we have given to the type

system.

{

{

12

5. Discussion

We have here presented and defined the basic primitives that are needed to describe

component relationships among object types. By making a difference whether the

type is a weak or an independent one and whether the component relation among

object types is a possible or a necessary one, we can consider two kinds of

approaches within the same system. Firstly, a component can depend on its

constructs, and secondly, the composed object can be dependent on its components.

We have presented how the component relation among object types can be

understood and we have also formally presented the functions by which we can

generate the structure of types on the basis of single object structures. By using the

modeling method we have presented, a designer can test and evaluate the model

under the designing process.

Although some important particulars are not presented here, such as disjoitnes,

number value restrictions, and updating questions, the basic primitives, we have

defined give a framework for presenting also those in an exact and systematic

manner. Furthermore, our definitions give a general framework for the analysis of

different indirect connections among objects and object types. We can for example

generate the common components of two objects or object types and we can ask

whether two components are contained the in same construct. With these primitives,

we can analyze both object structures and object type hierarchies.

From the modeling perspective, the type structure gives a general framework for

a structure of objects. The system we have presented implicitly gives the rules for

object structures and for updating of component system. These rules are based either

on description of object types or on description of relationships among object types.

If an object of a weak type is inserted or deleted then it is necessary that we also

insert or delete some composed object that contains the inserted/deleted object.

Moreover, if one inserts an object then one also has to insert its necessary

components.

13

References
[Abiteboul and Hull, 1987] Serge Abiteboul and Richard Hull, IFO: A formal

semantic database model, ACM Transaction on database systems. Vol. 12, No.
4, 1987. 525-565

[Artale et al., 1996] Alessandro Artale, Enrico Franconi, Nicola Guarino and Luca
Pazzi, Part-Whole relations in object-centered systems: An overview, Data
and knowledge engineering, Vol. 20, No 3, 1996. 347-383

 [Artale, Franconi and Guarino, 1996] Alessandro Artale, Enrico Franconi and
Nicola Guarino, Open problems for Part-Whole relations. International
Workshop on Description Logics, DL-96. Boston MA, November 1996.

[Borgida et al, 1989] Alexander Borgida, Ronald J. Brachman, Deborah L.
McGuinness and Lori Alperin Resnick, Classic: A structural data model for
objects, ACM Sigmod record. Vol. 18, No. 2, 1989. 58-67

[Borgida, 1995] Alexander Borgida, Description logics in data management, IEEE
Transactions on knowledge and data engineering. Vol. 7, No. 5, 1995. 671-
682

[Brachman and Levesque, 1984] Ronald J. Brachman and H. Levesque, The
tractability of subsumption in frame-based description languages, AAAI-84,
1984. 34-37

[Cluet, 1998] Sophie Cluet, Designing OQL: Allowing objects to be queried,
Information systems. Vol. 23, No. 5, 1998. 279-305

[Chen, 1976] Peter Chen, The Entity-Relationship model -toward a unified view of
data, ACM Transactions on database systems, Vol. 1 No. 1, 1976. 9-36

[Coad and Yourdon, 1991] Peter Coad and Edward Yourdon, Object-Oriented
Analysis. Second edition, Prentice Hall (Yourdon Press), 1991.

[Harmon and Watson, 1997] Paul Harmon and Mark Watson, Understanding UML:
The Developer’s Guide. Morgan Kaufmann, 1997.

[Hua and Tripathy, 1994] Kien A. Hua, Chinmoy Tripathy, Object Skeletons: An
Efficient Navigation Structure for Object-Oriented Database Systems, IEEE:
ICDE. 1994. 508-517

[Hull and King, 1987] R. Hull and R. King, Semantic database modeling: Survey,
applications and research issues, ACM Computing surveys. Vol. 19 No. 3,
1987. 201-260

[Kantola et al., 1992] Martti Kantola, Heikki Mannila, Kari-Jouko Räihä and Harri
Siirtola, Discovering functional and inclusion dependencies in relational
databases, International journal of intelligent systems. Vol. 7, 1992. 591-607

[Koskimies and Mössenböck, 1995] Kai Koskimies and H. Mössenböck, Designing
a framework by stepwise generalizaton, Proc. of 5th European Software
Engineering Conference, Lecture Notes in Computer Science 989. 1995. 479-
498.

[Lambrix, 1996] Patrick Lambrix, Part-Whole Reasoning in Description Logics.
Doctoral Dissertation, Department of Computer and Information Science,
Linköping University, Sweden, 1996.

[Lesniewski, 1984] Lesniewski’s Systems: Ontology and Mereology. eds. by
Srzednicki and Rickey, Nijhoff International Philosophy Series, Martinus
Nijhoff Publishers, Poland, 1984.

[Mannila and Räihä, 1986] Heikki Mannila and Kari-Jouko Räihä. Design by
example: An application of Armstrong relations. Journal of computer and
system sciences, Vol. 33, No. 2, 1986. 126-141

14

[Niemi and Järvelin, 1992] Timo Niemi and Kalervo Järvelin, Operation-oriented
query language approach for recursive queries - Part 1: Functional definition,
Information systems. Vol. 17 No. 1, 1992. 49-75

[Padgham and Lambrix, 1994] Lin Padgham and Patrick Lambrix, A framework for
part-of hierarchies in terminological logics, Proc. of the 4th International
Conference on Principles of Knowledge Representation and Reasoning, KR-
94. 1994. 485-496

[Rumbaugh et al., 1991] James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy and William Lorensen, Object-Oriented Modeling and Design.
Prentice Hall, 1991.

[Sattler, 1995] Ulrike Sattler, A concept language for an engineering application
with Part-Whole relations, Proceedings of the International Workshop on
Description Logics - DL-95, Roma, Italy, 1995. 119-123

[Sattler, 1996] Ulrike Sattler, A concept language extended with different kinds of
transitive roles. Lecture Notes in Artificial Intelligence1137. 1996.

[Simons and Dement, 1996] Peter Simons and Charles Dement, Aspects of
merolology of artifacts, In Roberto Poli and Peter Simons (eds.), Formal
Ontology. Kluwer Academic Publishers, 1996. 255-276

[Smith and Smith, 1977] J. M. Smith and D. C. Smith, Database abstraction:
Aggregation and generalization, ACM Transaction on database systems. Vol.
2, No. 2, 1977. 105-133

[Smith, 1996] Barry Smith, Mereotopology: A theory of parts and boundaries, Data
and knowledge engineering Vol. 20, No 3, 1996. 287-303

[Spaccapietra and Parent, 1992] Stefano Spaccapietra and Christine Parent, ERC+:
An object based entity relationship approach, in Loucopoulos and Zicari
(Eds.), Conceptual Modelling, Database and Case: An integrated View of
Information Systems Development. John Wiley, 1992.

[Varzi, 1996] Achille Varzi, Parts, wholes, and part-whole relations: The prospects
of mereotopology, Data and knowledge engineering. Vol. 20, No 3, 1996. 259-
286

