
FUNCTIONAL REPRESENTATION OF KAUPPI’S CONCEPT
OPERATIONS AND CONCEPT ASSOCIATIONS

Marko Junkkari and Marko Niinimäki

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF TAMPERE

REPORT A-1998-12

2

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A
A-1998-12, NOVEMBER 1998

FUNCTIONAL REPRESENTATION OF KAUPPI’S
CONCEPT OPERATIONS AND CONCEPT
ASSOCIATIONS

Marko Junkkari and Marko Niinimäki

University of Tampere
Department of Computer Science
P.O. Box 607
FIN-33101 Tampere, Finland

ISBN 951-44-4473-6
ISSN 0783-6910

Functional representation of Kauppi’s concept

operations and concept associations

Marko Junkkari

Marko Niinimäki

University of Tampere

Department of Computer Science

November 25th, 1998

Abstract. In conceptual modelling we need exact and systematic methods
and equipment to find a relevant and an accurate model of the Universe of
Discourse. To manage concepts we need relations and operations that
associate them. In this paper, we present the covering set of associate
relations and concept operations. By using these we can search concepts
that are in some way in association with one or several concepts in a
concept system. The main associations with two or several concepts are
compatibility and comparability.

The operations and relations that we present here are based on Kauppi’s
concept theory. There is only one two-placed basic relation in Kauppi’s
theory, the relation of intensional containment. We use set theory as the
meta-language for concept theory, since set theory is an established and
well-known manner for formal representation in computer science. Using
set theory, we build functions, some of which utilise paths in sets of
concepts. By using this approach we also create a system for an explicit
representation of Kauppi’s theory.

2

1. Introduction

Concepts are usually considered as results of generalisation from sets of individuals or

from other concepts [see Smith and Smith, 1977]. In this way it is natural to take the

subsumption relation [Woods, 1991] to be the main relation for presenting containment

among concepts. According to this approach, the containment among concepts are based

on inclusion of individuals’ sets, and the conception of concepts is extensional. This

conception is limited, because if there exists no extension of a concept, there is no

concept at all. Contrary to this conception, we understand concepts to be discrete

knowledge units that subsist relatively independently [see also: Sowa, 1984].

Raili Kauppi was a philosopher, who researched Leibniz' Logic. Kauppi's principal

work was the intensional concept theory [Kauppi, 1967]. Unlike many others, Kauppi

does not define the intension of a concept as a set of attributes. Instead, she takes an

undefined relation, intensional containment, on which the intension of concepts is based.

It is said that intensional containment covers many relationships between concepts, for

example ”is-a”, ”has” and ”contains” [Kangassalo, 1996].

Our contribution here is to describe a large part of Kauppi’s theory and form an

abstract implementation of it. For its representation we use standard set theory and our

formalism is based on Niemi and Järvelin's [1992] paper. Järvelin and Niemi [1993]

have presented that this kind of an approach is suitable for management of relationships,

which are very close to the well-known is-a-relation.

There are only two ontological primitives in Kauppi's system: concept and non-

logical intensional containment relation that is a binary relation among concepts. If

concept a contains concept b intensionally, we can also say that b is a characteristic of

concept a.

In the following version of concept theory there are three axioms to start our system

with. We consider that the relation of intensional containment is reflexive, transitive and

antisymmetrical. In our system, the reflexivity and transitivity of the relation are

presented in an implicit way. In other words we consider only immediate containment

[see Junkkari and Niinimäki, 1998]. For example, if concept a contains intensionally

concept b and again b contains intensionally c, we present explicitly only these relations,

but not the one that concept a contains intensionally concept c (transitively).

The other axioms of Kauppi's concept theory determine more the structure of the

concept system. We do not assume all those axioms, because we want to get a more

3

opulent structure in the set of concepts. Some of these axioms, as well as functions to

check the legality of a concept system are presented earlier in [Junkkari and Niinimäki,

1998]. Here and there, we consider only finite concept systems. Here, we also present

some expansions to the concept theory, namely that the result of the functions can be a

set of traced concepts instead of a unique concept. According to our approach, we get

sensible results of the operations, although the structure of the concept system, at hand,

does not comply with such a strict axiomatization as in the original theory.

In this paper, we understand that a concept system is a set of concept pairs <a,b>

such that concept a immediately contains concept b intensionally. This set is also our

basic relation I-rel. By using this relation, we can form directed paths from one concept

to another. There are two notable sets of concepts in a concept system, specie and

genuses. If a concept inheres in the set specie, this concept can only be a starting point in

any directed path of the concept system. Respectively, if a concept inheres in the set

genuses it can be only the end point in any directed path.

Kauppi often writes about the greatest (Ger.: grösste) or the least (Ger.: kleinste)

concept in a collection of concepts. The greatest concept means the concept, which

contains intensionally all the other concepts in the collection that is created using some

relevant principles. Because our approach is set-oriented, we call a maximal concept the

concept that is not contained in any other concept as itself in a given set of concepts.

Contrary to Kauppi’s system, there can be several maximal concepts in a concept set.

Analogously, we say that a concept is minimal (least), if there is not any concept that

contains intensionally this concept in a given set. The sets of minimal concepts and

maximal concepts have a significant role in our representation.

There are eight association relations between two concepts. We say that the concepts

a and b are compatible, if and only if there is a concept c that contains both a and b

intensionally. If c is contained in both the concepts a and b, we say that concepts are

comparable. The opposites of these are incompatible and incomparable. By combining

these four relations we get four more association relations that are homogen-

compatibility, heterogen-compatibility, opposition and isolation. We also define the

functions that return the set of concepts, which are in a certain association with concept

a.

When we consider the relationships between one or two concepts and their

associations to whole concept system, we talk about concept operations. These are

4

intensional product, intensional sum, intensional negation, intensional reciprocal,

intensional quotient and intensional difference.

Intensional product and intensional sum are three-placed relations in the concept

system. The third member of the relation is called the result of the operation. Intensional

product applies to common characteristics and intensional sum applies to concepts,

which contain both the operand concepts intensionally.

The principle of concept operations is to restrict the set of concept using some

relevant principles, as containment relation and association relations, and consider

maximal or minimal concepts under the restrictions. In our consideration we first form

the ”restricted” set of concepts and then we find the maximal or minimal concepts in this

set. In a concept system, if there is a concept to correspond the result of the concept

operation in the sense of Kauppi, our functions return the set where there is exactly one

concept.

By using functions and set theory as tools of representation, we present in an explicit

and well-known manner the formal concept theory, which we see to have potential to

manage knowledge and to describe the structure of knowledge. In this paper, we

generally consider concept theory in a very formal level and without any inherent

ontological or semantic attachments.

In section 2, we consider the position of this paper in research of computer science.

In section 3, we present our notations and in section 4 we introduce the basics of our set-

oriented approach. Simple intensional relations are introduced in section 5 and the

functions of association relations are presented in section 6. Concept operations are

introduced in sections 7-9. Kauppi’s original definitions of the same operations are

presented in the appendix.

2. Motivation

The representation of the structure of information and knowledge has become important

in many areas in computer science. For the purposes of the representation, we need to

find relevant information and make a structural model of it [Kangassalo, 1993].

Consequently, we need conceptual and logical methods of modelling. A concept theory

forms a firm basis for these methods and intensionally oriented conceptual modelling.

The effort for finding relevant information and representing its structure is connected

5

with AI (artificial intelligence), too. For example in DL (description logics) [see e.g.

Borgida et al, 1989; Borgida, 1995] the knowledge structure is generated by

classification of individuals and forming is-a -relationships and roles between class

concepts. In DL, the part-whole relations have been a recent object of interest and

dispute [Lambrix, 1996; Artale, Franconi and Guarino, 1996; Artale, Franconi, Guarino

and Pazzi, 1996]. On the basis of the concept theory, we propose a system that can

embed other partial order relation like component relation that is one kind of a part-

whole relation. According to Kangassalo [1996] intensional containment can present the

component relation, too.

In DL and in semantic networks [see e.g. Brachman and Schmolze, 1985], one

primary portion of research has been to find a framework for representation of

knowledge. A recent contribution to knowledge representation has been formal ontology

and different ontological systems. An ontology makes the basis for explicit presentation

of knowledge. In general an ontology is a meta-level description of knowledge

representation [Guarino, 1997].

The relationships between Kauppi’s [1967] concept theory and ontological issues can

be described as follows. On one hand, we consider that concepts themselves are discrete

units of the knowledge we try to describe [Sowa, 1984]. On the other hand, Kauppi’s

theory itself is an ontological system with two ontological primitives: concepts and the

relation of intensional containment. This does not mean that for example individuals,

properties, attributes, relations and so on are left outside the theory. On the contrary, on

the ontological point of view this can be understood so that these are included in the

theory implicitly. We see this so that an object that is presented by a concept in Kauppi’s

theory can appear as a class concept, an attribute, a relation and so on in some other

ontological system.

Kauppi designed a concept calculus with a substantial set of operations and

association relations in a collection of concepts. We can compare Kauppi’s calculus with

DL, if we equate the relation of intensional containment with the is-a relation. Then, for

example, the operations of intensional sum and intensional product are counterparts for

the operations AND and OR in DL. Using the association relations, one can study

various relationships (like comparability and compatibility) between concepts: if two

concepts are compatible there exists a concept that is a specialisation of both the

concepts. To our knowledge, an approach involving concept associations has not been

6

applied in DL.

Kauppi’s concept theory can be seen as a minimal covering ontology, wherewith it is

possible to present the structure of knowledge. It is clear that a system that follows an

ontology of this kind is not practical as such. It requires further study to find the parts of

the theory that are applicable in knowledge representation. Our contribution in this paper

is that we have presented in an explicit and detailed way the abstract implementation of a

covering set of concept operations and association relations of concept theory.

3. Basic notations

Our formalism is based on the formalism that Niemi and Järvelin [1992] use.

1) A set is a collection of elements.

2) The power set of the set S includes all subsets of S as elements and it is denoted

by P(S). For example if S = {a, b, c}, then P(S) = {{}, {a}, {b}, {c}, {a, b}, {a,

c}, {b, c}, {a, b, c}}.

3) A finite n-tuple is an organized n-place queue of elements and it is denoted

between angle brackets, for example <a,b,c>. A 2-place tuple is also called an

ordered pair. The empty tuple is denoted by <>.

4) Binary relation is a set of ordered pairs. If a relation R is subset of Cartesian

product S × S, we say that relation is on the set S. If an ordered pair <a,b>

accomplish the relation R, this denoted by <a,b> ∈ R. In an ordered pair, the

first member is called predecessor and the second member is called successor.

5) The tuple set of a set S is denoted by T(S). A tuple is an element of T(S) if all

elements of the tuple are different and they are members in the set S. Tuple set

T(S) is composed of all permutations of the power set P(S) and present these as

tuples. For example, if S = {a , b, c} then the T(S) is {<>, <a>, , <c>, <a,b>,

<b,a>, <a,c>, <c,a>, <b,c>, <c,b>, <a,b,c>, <a,c,b>, <b,a,c>, <b,c,a>, <c,a,b>,

<c,b,a>}

6) The signature of a function f is denoted by f: S1 → S2, where S1 defines a set of

values to which the function can be applied and S2 defines the set of values,

which the result of the function inheres in.

7

4. Concept system and the primary functions

C-set is the finite set of concepts related to a specific concept system. As an example, we

consider the set C-set1 = {G, gadget, radio, clock, clock radio}, where G is a so-called

general concept that is contained intensionally in every concept. Except in C-set1, we do

not assume the existence of a single general concept in a set of concepts.

In each concept system, there is an intensional relation I-rel on the set C-set. This

relation is a binary relation that corresponds to immediate containment among two

concepts [see: Junkkari and Niinimäki 1998]. I-rel is a subset of the Cartesian product C-

set × C-set. The interpretation of I-rel is: if <a,b> ∈ I-rel, concept a immediately contains

the concept b intensionally.

As an example, the relation I-rel1 on C-set1 is the following binary relation: I-rel1 =

{<clock radio, radio>, <clock radio, clock>, <radio, gadget>, <clock, gadget>, <gadget,

G>}. This is presented in the figure 1, whose illustration method is based on Concept D

[Kangassalo, 1993], where an upper level concept contains lower level concepts

intensionally.

clock radio

clock radio

gadget

G

Figure 1. I-rel1

In general, the I-rel alone does not provide sufficient information about the concept

system. Suppose, for example, that there are only two concepts, c1 and c2, and neither of

them contains the other. In this case, I-rel would be an empty set. Yet, this kind of

concept system is different from a concept system that has no concepts at all. Therefore,

we define the concept system to consist of both a C-set and an I-rel. We assume that a C-

set is associated with each I-rel. We compute transitive and reflexive relationships using

I-rel, if we need them. This can be presented for example by closures [Junkkari and

Niinimäki, 1998], but here we use a more explicit method based on paths. A simple

directed path (or a path for short) is presented as a tuple of concepts <a1,a2,..,an>, where

for every i ∈ {1, …, n} holds that <ai,ai+1> ∈ I-rel.

8

The function path_set generates all paths from concept a to concept b in the given

concept system I-rel. The function takes three arguments: two concepts, a and b, and a

two place relation I-rel. Based on the ordered pairs which are included in the I-rel, we

construct all the paths from a to b (see operation 151 in [Niemi and Järvelin, 1992]).

path_set: C-set × C-set × P(C-set × C-set) → P(T(C-set))

path_set(a,b,I-rel) =







≠∈∈∀
∧∧∈

b=a if >},a{<
ba if rel},-I >a,a< :1}-n .., {1, i

 b =a a = a :set)-T(C >a .., ,a< | >a .., ,a{<
1+ii

n1n1n1

Now in the example path_set(clock radio,G,I-rel1) is the set {<clock radio, clock,

gadget, G>, <clock radio, radio, gadget, G>}.

We define two auxiliary functions, maximal_set and minimal_set, for further

purposes for finding intensionally maximal and intensionally minimal concepts from a

given subset of all the concepts in a concept system. Given a set of concepts C-set’ (⊆ C-

set), an intensionally maximal concept is such that in C-set’ there is no concept that

intensionally contains it. Respectively, an intensionally minimal concept is such that in

C-set’ there is no concept that is intensionally contained in it. The defined functions yield

the set of maximal concepts and minimal concepts from given concept set C-set’:

maximal_set: P(C-set) × P(C-set × C-set) → P(C-set)

maximal_set(C-set’,I-rel) = {x ∈ C-set’| ¬∃y ∈ C-set’: <y,x> ∈ I-rel}

minimal_set: P(C-set) × P(C-set × C-set) → P(C-set)

minimal_set(C-set’,I-rel) = {x ∈ C-set’| ¬∃y ∈ C-set’: <x,y> ∈ I-rel}

In figure 1, maximal_set({clock, radio, gadget},I-rel1) returns the set {clock, radio},

whereas minimal_set({clock, radio, gadget}, I-rel1) returns {gadget}.

1Niemi and Järvelin have taken the relation base as an argument, too. We have altered the operation

so that if a and b are identical, the function returns {<a>}.

9

5. Elementary relations

If concept a contains intensionally concept b, there is a path form a to b. The Boolean

function contains(a,b,I-rel) returns true if there is at least one path from a to b.

contains: C-set × C-set × P(C-set × C-set) → {false,true}

contains(a,b,I-rel) =



 ≠

otherwise false,

{} rel)-Ib,(a, if true, path_set

The function is_contained(a,b,I-rel) is concerned with the inverse relation of

intensional containment. The function returns true, if and only if the concept a is

intensionally contained in the concept b.

is_contained: C-set × C-set × P(C-set × C-set) → {false,true}

is_contained(a,b,I-rel) =

true, if (b,a,C - set, I - rel)

false, otherwise

contains



We get the set of concepts, which are contained intensionally in the concept a by

using the function contains_set(a,I-rel) in the given relation I-rel.

contains_set: C-set × P(C-set × C-set) → P(C-set)

contains_set(a,I-rel) =

{x ∈ C-set | contains(a,x,I-rel)}

For example contains_set(clock,I-rel1) yields the set{G, gadget, clock}.

Respectively the function is_contained_set(a,I-rel) returns all concepts, whose

characteristic concept a is, i.e. the concepts that a is contained in.

is_contained_set: C-set × P(C-set × C-set) → P(C-set)

is_contained_set(a,I-rel) =

{x ∈ C-set | contains(x,a ,I-rel)}

10

In the example is_contained_set(clock,I-rel1) yields {clock, clock radio}.

In any non-empty concept system, there is at least one concept, which does not have

any other characteristic as itself, and at least one concept, which is not contained in any

other concept. Like in [Junkkari and Niinimäki, 1998] the function genuses returns the

set of the minimal concepts from the concept system i.e. all such concepts, which do not

have any successors in the concept relation I-rel.

genuses: P(C-set × C-set) → P(C-set)

genuses(I-rel) = minimal_set(C-set,I-rel)

Respectively, the function specie computes the set of the maximal concepts from

concepts system i.e. all concepts that do not have any predecessors in I-rel.

specie: P(C-set × C-set) → P(C-set)

specie(I-rel) = maximal_set(C-set,I-rel)

Clearly, in the example genuses(I-rel1) = {G} and specie(I-rel1) = {clock radio}.

6. Association relations

We can associate two concepts a and b, among the third concept c in two ways. Either c

contains intensionally both a and b or c is contained in both the concepts a and b. By

constituting converses of these situations and by composing all sensible combinations,

we get eight Boolean functions altogether. Respectively, we get eight functions that

return the sets of concepts, which are in a certain association with concept a.

We say that the concepts a and b are compatible, if and only if there exists a concept

which contains both the concepts a and b intensionally. This also means that there is at

least one path from a concept x to the concept a and at least one path from x to b. It is

easy to see that in I-rel1 all the concepts are compatible with each other.

compatible: C-set × C-set × P(C-set × C-set) → {false,true}

compatible(a,b,I-rel) =

true,if x: x C - set (x,a,I - rel) (x, b,I - rel)

false, otherwise

∃ ∈ ∧ ∧



contains contains

11

We say that two concepts a and b are incompatible, if and only if they are not

compatible.

incompatible: C-set × C-set × P(C-set × C-set) → {false,true}

incompatible(a,b,I-rel) =



 ¬

otherwise false,

rel)-I b,(a, if true, compatible

By using the function compatible we form the set of those concepts, which are

compatible with concept a.

compatible_set: C-set × P(C-set × C-set) → P(C-set)

compatible_set (a,I-rel) =

{x ∈ C-set | compatible(a,x,I-rel)}

Respectively, we can form the set of concepts incompatible with concept a.

incompatible_set: C-set × P(C-set × C-set) → P(C-set)

incompatible_set(a,I-rel) =

{x ∈ C-set | incompatible(a,x,I-rel)}

In general, any C-set is identical with the union of compatible concepts and

incompatible concepts of the given concept a. So we could have defined them one by

another.

Another basic associate relation is comparability. We say that two concepts a and b

are comparable, if and only if there is a concept, which is contained intensionally in both

the concepts a and b. In I-rel1 every two concepts are comparable with each other.

comparable: C-set × C-set × P(C-set × C-set) → {false,true}

comparable(a,b,I-rel) =



 ∧∧∈∃

otherwise false,

rel)-Ix,(b, rel)-Ix,(a, set -C x :x iftrue, containscontains

12

The concepts are incomparable, if and only if they are not comparable.

incomparable: C-set × C-set × P(C-set × C-set) → {false,true}

incomparable(a,b,I-rel) =



 ¬

otherwise false,

rel)-Ib,(a, iftrue, comparable

The comparable_set(a,I-rel) contains the concepts, which are comparable with the

concept a.

comparable_set: C-set × P(C-set × C-set) → P(C-set)

comparable_set(a,I-rel) =

{x ∈ C-set | comparable(a,x,I-rel)}

And respectively the function comparable_set(a,I-rel) returns the set of concepts that are

incomparable with concept a.

incomparable_set: C-set × P(C-set × C-set) → P(C-set)

incomparable_set(a,I-rel) =

{x ∈ C-set | incomparable(a,x,I-rel)}

It holds that C-set is identical with the union of comparable_set(a,I-rel) and

incomparable_set(a,I-rel) for any concept a.

By combination of compatible and comparable concepts, we get homogen-

compatible concepts. The function homogen-compatible(a,b,I-rel) returns true, if and

only if a and b are compatible and comparable. The function homogen-

compatible_set(a,I-rel) produces the set of concepts, which are homogen-compatible with

concept a.

homogen-compatible: C-set × C-set × P(C-set × C-set) → {false,true}

homogen-compatible(a,b,I-rel) =

13

true,if (a,b, I - rel) (a, b,I - rel)

false, otherwise

compatible comparable∧



homogen-compatible_set: C-set × P(C-set × C-set) → P(C-set)

homogen-compatible_set(a,I-rel) =

{x ∈ C-set | homogen-compatible(a,x,I-rel)}

The concepts a and b are heterogen-compatible if they are incomparable and

compatible. The function heterogen-compatible_set(a,I-rel) returns the sets of concepts,

which are heterogen-compatible with concept a.

heterogen-compatible: C-set × C-set × P(C-set × C-set) → {false,true}

heterogen-compatible(a,b,I-rel) =

true,if (a,b, I - rel) (a,b, I - rel)

false, otherwise

compatible incomparable∧



heterogen-compatible_set: C-set × P(C-set × C-set) → P(C-set)

heterogen-compatible_set(a,I-rel) =

{x ∈ C-set | heterogen-compatible(a,x,I-rel)}

We say that two concepts are oppositions (Gegensatz) if they are comparable and

incompatible. The function opposition_set(a,I-rel) returns the sets of concepts that are

opposed to concept a.

opposition: C-set × C-set × P(C-set × C-set) → {false,true}

opposition(a,b,I-rel) =

true,if (a, b,I - rel) (a,b, I - rel)

false, otherwise

incompatible comparable∧



opposition_set: C-set × P(C-set × C-set) → P(C-set)

opposition_set(a,I-rel) =

{x ∈ C-set | opposition(a,x,I-rel)}

14

The last associate relation is isolation (isoliert). Two concepts a and b are isolated, if

they are incomparable and incompatible. The set functions isolated_set(a,I-rel) returns

the set of concepts, which are isolated with a.

isolated: C-set × C-set × P(C-set × C-set) → {false,true}

isolated(a,b,I-rel) =

true,if (a, b,I - rel) (a,b, I - rel)

false, otherwise

incompatible incomparable∧



isolated_set: C-set × P(C-set × C-set) → P(C-set)

isolated_set(a,I-rel) =

{x ∈ C-set | isolated(a,x,I-rel)}

Let us take an example. I-rel2 = {<c1,c2>, <c1,c8>, <c2,c6>, <c3,c4>, <c3,c5>,

<c4,c6>, <c4,c7>, <c5,c7>, <c5,c8>} is a relation on the concept set {c1, c2, c3, c4, c5,

c6, c7, c8} and we consider association relations under it. There are two members in the

set specie(I-rel2), which are c1 and c3. Respectively, the function genuses(I-rel2) returns

the set {c6, c7, c8}.

c1

c2

c3

c4 c5

c6 c7 c8

Figure 2. I-rel2

Let us take concept c4 as object for more circumstantial study. First there are three

characteristics for c4 and c4 is a characteristic for two concepts. We get the sets of these

concepts by using function contains_set and the function is_contained_set.

contains_set(c4,I-rel2) = {c4, c6, c7}

is_contained_set(c4,I-rel2) = {c3, c4}

15

There are six concepts that have a common characteristic with the concept c4 and

one concept that has no common characteristic with concept c4. The sets of concepts,

which are comparable or incomparable with concept c4 are given using the functions

comparable_set(c4,I-rel2) and incomparable_set(c4,I-rel2):

compatible_set (c4,I-rel2) = {c3, c4, c5, c6, c7, c8}

incompatible_set(c4,I-rel2) = {c1, c2}

comparable_set(c4,I-rel2) = {c1, c2, c3, c4, c5, c6, c7}

incomparable_set(c4,I-rel2) = {c8}

The rest of the functions return the following sets:

homogen-compatible_set(c4,I-rel2) = {c3, c4, c5, c6, c7}

heterogen-compatible_set(c4,I-rel2) = {c8}

opposition_set(c4,I-rel2) = {c1, c2}

isolated_set(c4,I-rel2) = {}

The function isolated_set(c4,I-rel2) yields the empty set. If the system is not

connected in graph theory meaning, there have to be isolated concepts. There are some

connected structures that are able to produce isolation between concepts, too.

7. Intensional product and sum

There are several concept operations in Kauppi’s concept theory. First we consider

intensional sum and intensional product.

According to Kauppi’s theory, the intensional product is an unambiguous concept.

The theory says that concept x is equivalent with the intensional product of the concepts

a and b, if and only if x has every common characteristic of a and b, but not any other

characteristic except itself. If we assume, like Kauppi did, that there is exactly one

intensional product for any comparable pair of concepts in the concept system, we rule

out some concept systems that are totally appropriate in everyday modelling. Here, we

define intensional product in a more relaxed manner so that concept x inheres in the set

of product concepts of a and b if the following condition holds: If x contains concept y

16

intensionally, consequently a and b contain y intensionally. To formulate the function we

use functions contains_set and maximal_set. The concept x satisfies the condition of

intensional product if

1. x is a characteristic for both operand concepts a and b,

2. within these characteristics, x is among the maximal concepts.

prod_set: C-set × C-set × P(C-set × C-set) → P(C-set)

prod_set (a,b,I-rel) =

maximal_set(contains_set(a,I-rel) ∩ contains_set(b,I-rel),I-rel)

In the case of I-rel1 intensional product between any two concepts is simple. For

example, the function prod_set(radio,clock,I-rel1) returns the set, whose single member

is gadget. By following the function prod_set(radio,clock,I-rel1), the intersection of

radio’s and clock’s characteristics is {gadget, G}. The maximal of these is gadget.

Let us take a more complicated situation. The relation I-rel3 = {<c1,c3>, <c1,c4>,

<c2,c3>, <c2,c4>, <c4,c5>, <c3,c5>} is the relation on the set C-set3 = {c1, c2, c3, c4,

c5}. Now the function prod_set(c1,c2,I-rel3) returns the set {c3, c4}.Here the common

characteristics of the concepts c1 and c2 are c3, c4 and c5. Among these, c3 and c4 are

the maximal ones.

In our last example here we consider a concept system that has a structure like in the

figure 3 (I-rel4 = {<c1,c2>, <c1,c3>, <c2,c4>, <c3,c4>, <c4,c5>, <c4,c6>, <c5,c7>,

<c6,c7>}). Next we consider the intensional product between concepts c2 and c3 in the

relation I-rel4. The intersection of the sets of characteristics (contains_sets) for c2 and c3

is {c4, c5, c6, c7}. The function prod_set(c2,c3,I-rel4) returns the set {c4}.

c1 c2

c3 c4

c5

c1

c2 c3

c4

c5 c6

c7

Figure 3. I-rel3 and I-rel4

17

Intensional sum is considered analogously to intensional product. The theory

[Kauppi, 1967] says that concept c is equivalent with intensional sum of the concept a

and b, if and only if for every x it holds: c contains a intensionally, if and only if x

contains a and b intensionally. Like with intensional product, we define the function,

which is more relaxed than the original definition. So a concept x inheres in that set the

function sum_set(a,b,I-rel) returns, if:

1. x is among the concepts that contain both operand concepts a and b

intensionally,

2. x is among the minimal of these.

sum_set: C-set × C-set × P(C-set × C-set) → P(C-set)

sum_set (a,b,I-rel) =

minimal_set(is_contained_set(a,I-rel) ∩ is_contained_set(b,I-rel),I-rel)

The function sum_set works in the same way as the prod_set, but inversely. For

example sum_set(clock,radio,I-rel1) produces the set {clock radio}. Respectively

sum_set(c3,c4,I-rel3) returns the set {c1, c2}. In the last example sum_set(c5,c6,I-rel4)

returns {c4}.

8. Intensional negation and reciprocal

The definition forms of intensional negation and intensional reciprocal correspond to

each other. Intensional negation of concept a is the maximal common characteristic for

incompatible concepts of a. Intensional reciprocal of concept a is the minimal concept,

which contains intensionally all that concepts which are incomparable with a.

According to Kauppi’s theory the intensional negation -a of concept a is a concept,

which is

• incompatible with a and

• for every x: if a concept x is incompatible with a, then -a is one of the

characteristics of x.

If there are not any incompatible concepts with concept b, there cannot be the

intensional negation of concept b. In Kauppi's theory, there is an axiom which says that if

there exists an incompatible concept with b, there must also exist the intensional

18

negation of the concept b. Therefore, the structure of the concept system is very dense.

On account of this, we consider intensional negation in a more spacious way. That is, we

consider the negation set instead of a single negation.

In our approach the negation of concept is understood as follows: If a concept b is

incompatible with concept a and b has not any such characteristic (except itself) that is

incomparable with concept a, then concept b inheres in the neg_set(a,I-rel). In the

definition of the function, we first consider the set concepts that are incompatible with

the concept a and secondly we choose the minimal concepts from this set.

neg_set: C-set × P(C-set × C-set) → P(C-set)

neg_set(a,I-rel) =

minimal_set(incompatible_set(a,I-rel),I-rel)

It is worth noticing here that if there is exactly one concept in the neg_set(a,I-rel),

then this concept corresponds to Kauppi’s meaning of intensional negation. Let us take

new a relation I-rel5 = {<c1,c4>, <c1,c5>, <c2,c4>, <c2,c6>, <c3,c5>, <c3,c6>, <c4,c7>,

<c5,c7>, <c6,c7>} on the concept set {c1, c2, c3, c4, c5, c6, c7}. Now the function

results in the different cases are following: neg_set(c1,I-rel5) = {c6}, neg_set(c2,I-rel5) =

{c5}, neg_set(c3,I-rel5) = {c4}, neg_set(c4,I-rel5) = {c3}, neg_set(c5,I-rel5) = {c2},

neg_set(c6,I-rel5) = {c1} and neg_set(c7,I-rel5) = {}. In this example, if the negation of

a concept exists, the concept is equivalent with its negation’s negation.

c1 c2 c3

c4 c5 c6

c1 c2

c3 c4

c6

c5

c7

Figure 4. I-rel5 and I-rel6.

In the relation I-rel5 every negation set corresponds to Kauppi’s definition for

intensional negation, because there is maximally one concept in each negation set. The

function neg_set(c7,I-rel5) is an empty set, because c7 is compatible with every concept.

Let us modify the situation. In I-rel6 = {<c1,c3>, <c2,c3>, <c2,c4>, <c2,c5>, <c3,c6>,

19

<c4,c6>}, there is not any unequivocal intensional negation for every concept. The

concepts c3 and c6 are compatible with every concept. The function neg_set(_,I-rel6)

with one of the arguments c2, c4 or c5 returns the set {c1}. On the other hand,

neg_set(c1,I-rel6) produces the set {c4, c5}. In I-rel6 there are no such concepts which

would be equivalent with negation’s negation of the concept.

The formulation of intensional reciprocal corresponds with intensional negation.

Intensional reciprocal of concept a is the least such concept that contains intensionally all

such concepts that are incomparable with concept a.

Like with intensional negation we define analogously the function that produces the

set of concepts x, so that x is among the maximal concept incomparable with a.

reciprocal_set: C-set × P(C-set × C-set) → P(C-set)

reciprocal_set (a,I-rel) =

maximal_set(incomparable_set(a,I-rel),I-rel)

In the I-rel5, there is not any reciprocal to any concept, because all the concepts are

comparable with each other. Instead, the function reciprocal_set(_,I-rel6) with one of the

arguments c1, c3, c4 or c6 produce the set {c5}. Respectively reciprocal_set(c5,I-rel6)

returns the set {c1, c4}.

9. Intensional quotient and difference

According to Kauppi’s theory, the intensional quotient from concept a to concept b is the

concept that is a characteristic for every such concept that contains concept a

intensionally and is incompatible with b.

As earlier in this paper, we define the function that produces the set of concepts,

which have the most essential lineaments of the original definition. If a concept x (≠a)

inheres in this set that the function quo_set(a,b,I-rel) produces, it must hold:

1. x contains a intensionally

2. x is incompatible with b

3. x is among the minimal in the set of concepts that satisfy points 1 and 2.

20

If concept a satisfies the point 2, then the function yields {a}.

quo_set: C-set × C-set × P(C-set × C-set) → P(C-set)

quo_set(a,b,I-rel) = minimal_set(S,I-rel)

where S = is_contained_set(a,I-rel) ∩ incompatible_set(b,I-rel)

Intensional difference from concept a to concept b is the concept that contains

intensionally all those concepts that are characteristics for concept a and are

incomparable with b.

We define the function diff_set that produces the set of concepts, which satisfy the

following conditions. A concept x (≠a) inheres in the set diff_set(a,b,I-rel) if:

1. a contains x intensionally

2. x is incomparable with b

3. x is among the maximal in the intersection of sets that points 1 and 2 indicate.

If concept a satisfies the point 2., the function yields the set {a}.

diff_set: C-set × C-set × P(C-set × C-set) → P(C-set)

diff_set(a,b,I-rel) = maximal_set(S,I-rel)

where S = contains_set(a,I-rel) ∩ incomparable_set(b,I-rel)

In the example I-rel7 = {<c1,c3>, <c1,c4>, <c2,c4>}, some non-empty quo_set sets

can be produced. The functions quo_set(c2,c1,I-rel7) and quo_set(c2,c3,I-rel7) return the

set {c2}. The functions quo_set(c1,c2,I-rel7) and quo_set(c3,c2,I-rel7) return the set

{c1}.

c1 c2

c3 c4

Figure 5. I-rel7

21

Respectively as above, the function diff_set(c2,c3,I-rel7) returns the set {c2} and

diff_set(c4,c3,I-rel7) returns {c4}. The functions diff_set(c3,c2,I-rel7) and

diff_set(c3,c4,I-rel7) return the set {c3}.

10. Summary

In this paper, we have considered association relations and concept operations of

Kauppi’s concept theory and presented an abstract implementation of it. Our meta-

language here was set theory, which is an established and well-known presentation

language.

By using the basic relation, intensional containment, we can make association of two

concepts a and b among a third concept c. If c contains both a and b intensionally, we say

that the concepts are compatible. If c is contained in both the concepts a and b, we say

that concepts are comparable. By constituting these and the converse of these situations

and by composing all sensible combinations, we get eight Boolean functions altogether.

Respectively, we get eight functions, which return the sets of concepts, which are in a

certain association with a given concept.

If we consider the relationships between one or two concepts and their associations

to the whole concept system, we talk about concept operations.

Intensional product and sum are relations among three concepts. Intensional product

applies to common characteristics and intensional sum applies to concepts that contain

both the operand concepts intensionally.

Intensional negation and reciprocal apply to concepts that have a strong divergence

from the operand concept. Intensional negation makes reference to those concepts that

are incompatible with the operand concept and, respectively, intensional reciprocal refers

to those concept, which are incomparable with the operand concept.

Unlike intensional sum and product, intensional difference and quotient are not

symmetric relations. In other words, intensional difference or quotient from a to b is not

the same as the difference or quotient from b to a. By using the intensional difference

from a to b is it possible to derive the concepts, which contain intensionally concept a,

but are incomparable with concept b. Intensional quotient, from a to b applies to those

concepts that contain concept a intensionally, but are incompatible with concept b.

22

We have extended the concept theory in two ways. On one hand we have presented

operations that return sets of those concepts that are in a considered association with the

given concept. On the other hand, we have represented a more spacious interpretation for

concept operations. Our functions do not return a single concept, but the set of concepts

that satisfy the most essential conditions. Therefore the functions provide a non-empty

result, though there is not a unique concept that satisfied the original definition.

However, in our view, by using the functions that we have presented it is possible to

check also if the structure of a concept system complies with some axiomatic system.

By using a set-oriented approach we have presented in an explicit and well-known

manner the formal concept theory, which we see to have potential to manage knowledge

and describe the structure of knowledge.

23

References

[Artale, Franconi and Guarino, 1996] Alessandro Artale, Enrico Franconi and Nicola

Guarino, Open problems for part-whole relations, Proceeding of International

Workshop on Description Logics. Boston MA, November 1996.

[Artale, Franconi, Guarino and Pazzi, 1996] Alessandro Artale, Enrico Franconi, Nicola

Guarino and Luca Pazzi, Part-whole relations in object-centered systems: An

overview, Data and knowledge engineering, Vol. 20, No. 3, North-Holland,

Elsevier, 1996.

[Borgida et al, 1989] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness

and Lori Alperin Resnick, Classic: A structural data model for objects, ACM

Sigmod record. Vol. 18, No. 2, 1989. pp. 58-67

[Borgida, 1995] Alexander Borgida, Description logics in data management, IEEE

Transactions on knowledge and data engineering. Vol. 7, No. 1, 1995. pp. 671-682

[Brachman and Schmolze, 1985] Ronald J. Brachman and J. Schmolze, An overview of

the KL-ONE knowledge representation system, Cognitive science. Vol. 9 No. 2,

1985. pp. 171-216

[Guarino, 1997] Nicola Guarino, Understanding, building and using ontologies, A

Commentary to "Using Explicit Ontologies in KBS Development", by van Heijst,

Schreiber, and Wielinga, International journal of human and computer studies.

Vol. 46, No. 2/3, 1997. pp. 293-310

[Junkkari and Niinimäki, 1998] Marko Junkkari and Marko Niinimäki, An algebraic

approach to Kauppi’s concept theory, Proceedings of the 8th European-Japanese

Conference on Information Modelling and Knowledge Bases. May 26-29, Finland,

1998. pp. 115-130

[Järvelin and Niemi, 1993] Kalervo Järvelin and Timo Niemi, Deductive information

retrieval based on classifications, Journal of the American society for information

science. Vol. 44, Number 10, New York, 1993.

[Kangassalo, 1993] Hannu Kangassalo, COMIC: A system and methodology for

conceptual modelling and information construction, Data and knowledge

engineering 9. Elsevier Science Publishers, North-Holland, 1993. pp. 287-319

24

[Kangassalo, 1996] Hannu Kangassalo, Conceptual description for information

modelling based on intensional containment relation, in Franz Baader, Martin

Buchheit, Manfred A. Jeusfeld, Werner Nutt (Eds.): Knowledge Representation

Meets Databases, Proceedings of the 3rd Workshop KRDB’96, Budapest, Hungary,

August 13, 1996.

[Kauppi, 1967] Raili Kauppi, Einführung in die Theorie der Begriffssysteme. Acta

Universitatis Tamperensis, Ser. A, Vol. 15, Tampereen yliopisto, Tampere, 1967.

[Lambrix, 1996] Patrick Lambrix, Part-Whole Reasoning in Description Logics,

Linköping Studies in Science and Technology, Dissertation No. 448, Linköping,

1996.

[Niemi and Järvelin, 1992] Timo Niemi and Kalervo Järvelin, Operation-oriented query

language approach for recursive queries - Part 1: Functional definition, Information

systems. Vol. 17 No. 1, Pergamon Press plc, 1992. pp. 49-75

[Smith and Smith, 1977] J. M. Smith and D. C. Smith, Database abstraction:

Aggregation and generalization, ACM Transactions on database systems. Vol. 2,

No. 2, 1977. pp. 105-133

[Sowa, 1984] John F. Sowa, Conceptual Structures. Addison Wesley, 1984.

[Woods, 1991] W. A. Woods, Understanding subsumption and taxonomy: A framework

for progress, in J. F. Sowa (ed.), Principles of Semantic Networks. Morgan

Kaufman Publishers, San Mateo, California, 1991. pp. 45-94

25

Appendix: The definitions and operations of this paper as presented by Kauppi

Comparable: DfH ”a H b” =df ”(∃x)(a ≥ x & b ≥ x)”
Incomparable: Df ”a b” =df ”~(∃x)(a ≥ x & b ≥ x)”
Compatible: Df ”a b” =df ”(∃x)(x ≥ a & x ≥ b)”
Incompatible: DfY ”a Y b” =df ”~(∃x)(x ≥ a & x ≥ b)”
Homogen-compatible: Df ”a b” =df ”a H b & a b & ~ a ≥ b & ~ b ≥ a”
Heterogen-compatible: Df ”a b” =df ”a b & a b”
Opposite: Df ”a b” =df ”a H b & a Y b”
Isolated: Df ”a b” =df ”a b & a Y b”
Sum: Df⊕ ”c = a ⊕ b” =df ”(x)(x ≥ c ↔ x ≥ a & x ≥ b)”
Product: Df⊗ ”c = a ⊗ b” =df ”(x)(c ≥ x ↔ a ≥ x & b ≥ x)”
Negation: Df_ ”b = a ” =df ”(x)(x ≥ b ↔ x Y a)”
Difference: Df ”c = a b” =df ”(x)(c ≥ x ↔ a ≥ x & b x)”
Quotient: Df ”c = a b” =df ”(x)(x ≥ c ↔ x ≥ a & x Y b)”
Reciprocal: DfR ”b = a” =df ”(x)(b ≥ x ↔ a x)”

Notes:

• There is a printing error in [Kauppi, 1967, p. 44] in the definition of opposite.

• Logical notions are following: logical negation (~), logical conjunction (&),

universal quantifier ((x) means (∀x)) .

• The symbol ”≥” is used here instead of Kauppi’s ”>”.

• Kauppi defines the reciprocal only in calculus BK*, where greek symbols are

used for concept. Here, they are represented in latin letters.

• Please observe the difference between the definition of homogen-compatible in

Kauppi’s work and in this paper.

