ON INFERRING LINEAR SINGLE-TREE
LANGUAGES

ERKKI MAKINEN

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF TAMPERE

REPORT A-1998-11

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A

A-1998-11, NOVEMBER 1998

ON INFERRING LINEAR SINGLE-TREE
LANGUAGES

ERKKI MAKINEN

University of Tampere
Department of Computer Science
P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4463-9
ISSN 0783-6910

On inferring linear single-tree languages

Erkki Méakinen

Department of Computer Science, University of Tampere, P.O. Boz 607,
FIN-33101 Tampere, Finland

Abstract

We consider the inferability of linear single-tree languages. We are able to show
that if the terminal productions of the corresponding grammars obey a simple re-
striction, then the languages generated are inferable from positive samples only.
Moreover, we solve an open problem posed by Greibach, Shi, and Simonson con-
cerning the unambiguity of certain ultralinear STG’s.

Keywords: context-free language, linear single-tree language, grammatical
inference, identification in the limit.

1 Introduction

A context-free grammar is a single-tree grammar (STG) if every nonterminal
symbol has at most one production whose right hand side contains nonterminal
symbols [3]. In a linear grammar the right hand side of every production
contains at most one nonterminal symbol. In this paper we consider linear
STG’s and the languages generated by these grammars, 1.e. linear single tree
languages (LSTL’s). Greibach et al. [3] have shown that LSTL’s are always
deterministic and bounded. We show here that if the terminal productions of
a linear STG obey a simple additional restriction then the LSTL generated
is inferable from positive samples only. Moreover, we solve an open problem
posed by Greibach, Shi, and Simonson concerning the unambiguity of certain
ultralinear STG’s.

We assume a familiarity with the basics of formal language theory and gram-
matical inference as given e.g. in [4] and [1], respectively. As inference criterion
we use “identification in the limit” [2,1]. If not otherwise stated, we follow the

! E-mail: em@cs.uta.fi. Work supported by the Academy of Finland (Project
35025).

notations and definitions of [4]. The empty word is denoted by A, and the
length of a word a by lg(a).

A production of the form A — w, where w is a terminal string, is said to be
terminating. A continuing production has the form A — vBw, where v and
w are terminal strings and B is a nonterminal. A production with A on the
left hand side is said to an A — production.

2 The inference algorithm

Regular languages cannot be inferred from positive samples only [2]. This neg-
ative result has initiated a search for subclasses of regular languages having the
desired inference property. Moreover, several non-regular classes of languages
inferable from positive samples only have been found, see e.g. [5,6].

We make an additional restriction to the form of the terminal productions in
linear STG’s: we insist that in each terminal production A — w, the right
hand side w consists of a unique terminal symbol. Hence, if A — a and B — «a
are productions, then A = B. This restriction does not affect to linear STGs’
capacity to produce non-regular languages.

Consider a linear STG G and two words w; and wy in L(G) with lg(w) >
[g(ws). The derivations producing w; and wy have the forms

S=> o= ay... = ap = Qe = ... =, = Wy

S=01=0...= Bn = ws.

Because G is a STG, we have a; = f;, for i =1,...,m — 1.
Suppose that the nonterminal in «,,_; and 3,,_1 is A. Then we have
wr = w’vlw"

and

Wy = U)/Uzw”,
where A =% v; is a derivation and A — v, is a production. We say that
(w',w") is the longest common pair of wy and ws.

Counsider a set () of words of words of length two or more from a known LSTL.
The longest common pair of) is determined by the two shortest words (ties
are broken arbitrarily) in @) as above. The longest common pair of a set @)
is denoted by lep(Q). Since the words considered are from a LSTL, lep(Q)

consists of a common prefix and a common suffix of all the words in ().

Given a set) of sample words from an unknown LSTL, we must have a method
for “parsing” the sample words, i.e. for finding out the longest common pairs.

Suppose all the words in @) are of length two or more, and let w; and w, be
the two shortest words in () with lengths p and ¢, p < g, respectively.

In the worst case, there are p possibilities to locate the symbol produced by
a terminal production in the shortest word wj. In the second step, the found
longest common pair is erased from the words in (), and there are at most
q— p— 2 possibilities to locate the symbol produced by a terminal production,
and so on. It follows that it is always possible to find the longest common
pairs for all sets of words obtained by repeatedly erasing the longest common
pairs found. The longest common pairs so found for an unknown language are
not necessarily unique. (Consider e.g. a set of words over an unary alphabet.)
However, any parsing of the set of samples makes it possible to construct a
linear STG as in our algorithm below. In what follows, we use the notation
lep(Q) also for longest common pairs obtained by the above “parsing” method
for a set () from an unknown language.

Each word in () is produced by a derivation starting with the only S-production.
(S is the start symbol.) In our inference algorithm we conjecture that this pro-
duction has the form S — x1A1y;, where lep(Q) = (@1, y1). Next, we erase
the prefix x; and the suffix y; from the words in) and obtain a new set)/
of words (of length two or more). The only continuing A;-production has the
form Ay — x9A2y2, where lep(Q') = (22, y2), and so on.

If the original set of samples contains words of length one, say the word a, we
take the terminating production S — « to the resulting grammar. Similarly,
in any step of the algorithm, a word of length one, say b, in a ()-set implies a
terminating production of the form A; — b.

Since we suppose that terminating productions are unique, finding a termi-
nating production may cause a merging process. As an example, consider a
sample {aacd, aadedb, aade fgdb}. We first obtain the productions S — aaAb
and A; — c¢. In the next step, we obtain the productions A; — dAsd and
Ay — ¢. Since we have terminating productions A; — ¢ and A; — ¢, we must

have A; = A,.

Erasing the prefixes and suffixes from the words in ()-sets may eventually
lead to a situation where there is exactly one word (of length two or more)
left in the set. In the above example, this final word (after erasing the pairs
(aa,b) and (d,d)) is efg. In order to avoid erroneous merging, our algorithm
conjectures the production A; — efg. It follows that some of the conjectures
outputted by our algorithm are not necessarily linear STG’s in the strict sense
defined in this paper. This, however, does not effect to the correctness of the
algorithm. As soon as there are enough “short” samples, the algorithm finds

out the correct structure of the grammar, and it does not matter what we do to
the longest sample. Notice that no problem appears when the longest sample is
not unique. Two samples of equal length always determines the correct ending
of the corresponding derivations in linear STG’s, since they differ on a single
symbol only.

Consider now the situation where a new sample word w is received. If the
length of w is “new” in @ (w is the first word in the sample of length lg(w)
and lg(w) > 1), it will refine the conjecture, since one of the longest common
pairs is changed.

The algorithm can now be given as follows.

Algorithm 1 (LST)

Input: A set QQ of sample words, | Q |> 1.
Output: A linear STG G = (V,X, P, S).

begin
1:=10;
P :=0;

parse () to a obtain a sequence of longest common pairs;
while | |> 1 begin
take A; — x;A;i11yi, where lep(Q) = (x4, y:), to P;
erase the prefix x; and the suffix y; from the words in Q);
remove the words of length one from Q;
tf a is removed from ()
then take A; — a to P;
tf Ai > a and Aj - a, 3 <1, are in P
then merge A; and A;;
=1+ 1;
end; { while }
tf w is the only word in Q)
then take A;_; — w to P;
the set of terminals V '\ ¥ and the set of terminals ¥ consist of
those symbols appearing in P;
S = Ay,
end; { LST }

Let G = (V,X,P,S) be a linear SGT having n nonterminals. If the input

sample () contains the subset
Q. ={w|S="wk<n?}

(where k stands for the number of derivation steps applied), then different
sequences of longest common pairs are possible only when they imply the same
conjecture. Moreover, (), C () implies that all the recursive subderivations are

found, and avoiding merges with the longest samples does not effect to the
outputted conjecture. Hence, we have the following theorem.

Theorem 1 LSTL’s (as defined in this paper) are inferable from positive sam-
ples only.

3 On a problem posed by Greibach, Shi, and Simonson

A k-ultralinear grammar is one where every sentential form contains at most k
nonterminals. A k-linear languages are those generated by k-linear grammars.
Greibach et al. [3] have proved that there is a 4-ultralinear STG that generates
an inherently ambiguous language. Moreover, they conjectured that all 3-
ultralinear STG’s generate unambiguous languages. We are able to show that
this conjecture does not hold true. Namely, consider the following 3-ultralinear

STG:
S —+ ABC

A— aAb| A
B —aB | A
C —0bCal A

The language generated is {a*b*a™b"a" | k,m,n > 0}. The words of the form
aPbPaP, p > 0, have more than one derivation, i.e. the grammar is ambiguous.
This example refutes the conjecture of Greibach et al. [3].

References

[1] D. Angluin and C.H. Smith, Inductive inference: theory and methods. ACM
Comput. Surv. 15 (1983), 237-269.

[2] E.M. Gold, Language identification in the limit. Inform. Contr. 10 (1967), 447
474.

[3] S. Greibach, W. Shi, and S. Simonson, Single tree grammars. In: J. Ullman (ed.),
Theoretical Studies in Computer Science, Academic Press, 1992, 73-99.

[4] M.A. Harrison, Introduction to Formal Language Theory. Addison-Wesley, 1978.

[5] T. Koshiba, E. Mikinen, and Y. Takada, Learning deterministic even linear
languages from positive examples. Theoret. Comput. Sci. 185 (1997), 63-79.

[6] T. Yokomori, Polynomial time learning of very simple grammars from positive
data. Proc. fth Workshop on Computational Learning Theory (1991), 213-227.

