
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

INFERRING REGULAR LANGUAGES

BY MERGING NONTERMINALS

Erkki M�akinen

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF TAMPERE

REPORT A-1997-6

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1997-6, MAY 1997

INFERRING REGULAR LANGUAGES

BY MERGING NONTERMINALS

Erkki M�akinen

University of Tampere

Department of Computer Science

P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4170-2

ISSN 0783-6910

Inferring regular languages by merging nonterminals

Erkki M�akinen

Department of Computer Science, University of Tampere, P.O. Box 607,

FIN-33101 Tampere, Finland

Abstract

Several subclasses of regular languages are known to be inferable from positive
data only. This paper surveys classes of languages originating from the class of
reversible languages. We de�ne the classes by using a uniform grammatical notation.

Keywords: regular language, grammatical inference, identi�cation in the limit,
merging.

1 Introduction

Gold [9] has shown that regular languages cannot be inferred from positive
data only. This negative result has initiated a search for subclasses of regular
languages having the desirable inference property. From the viewpoint of the
present paper, the class of k-reversible languages introduced by Angluin [3]
was the �rst interesting subclass of regular languages proved to be inferable
from positive data only. Later, several other such subclasses have been found.

The purpose of this paper is to survey certain subclasses of regular languages
infereable from posivite data. We restrict ourselves to classes of languages
whose de�nition resembles that of k-reversible languages. These classes in-
clude at least the following: k-contextual languages [15], Szilard languages
of regular grammars [12], strictly regular languages [18,20], (k; h)-contextual
languages [1], code regular languages [6], and uniquely terminating regular
languages [14]. On the other hand, we exclude such notable classes of lan-
guages as regular pattern languages [2] and paranthesis languages [5] since we
consider them to be outside the \family of language classes" originating from
reversible languages.

Some of the language classes of our interest have been originally de�ned by
using automata concepts and some others by using grammar concepts. Our
main idea is to de�ne all the classes of languages considered here in a uniform

manner. We have chosen to use grammatical de�nitions. This should not cause
any confusion, since the correspondence between regular grammars and �nite
automata is obvious (although a care must take when �xing some special
features). We hope that the uniform treatment of the classes of language will
make it easier to �nd new relationships between them.

2 Preliminaries

We assume a familiarity with the basics of formal language theory and gram-
matical inference as given e.g. in [10] and [4], respectively. If not otherwise
stated, we follow the notations and de�nitions given in these references.

We consider regular grammars only. Following [10], we denote regular gram-
mars as G = (V;�; P; S), where � is the set of terminals and V is the union of
� and the set N of nonterminals. As always, P and S are the set of produc-
tions and the start symbol, respectively. The length of a string w is denoted
by lg(w), and the left-quotient of L and w by TL(w) = fv j wv 2 Lg.

The productions having A in their left hand side are called A-productions. A
production of the form A! b, where b is a terminal, is said to be terminating;
otherwise a production is said to be continuing. A continuing production has
the form A! bB, where b is a terminal and B is a nonterminal. Other forms
of productions are not allowed.

Notice that for notational simplicity, we do not allow �-productions (produc-
tions with the empty string � in the right hand side). Similarly, since the
start symbol in a grammar is unique, we read the earlier de�nitions given in
automata formalism as if the set of initial states were always a singleton set.

In the grammatical inference literature it is a common practice that the �nal
states of �nite automata can have outgoing transitions. If �(q; a) = qf is a
transition to a �nal state qf having outgoing transitions, then the correspond-
ing regular grammar must contain both the terminating production Aq ! a

and the continuing production Aq ! aAqf where Aq and Aqf are the nonter-
minals corresponding to the states q and qf , respectively. This follows from
our earlier decision not to allow �-productions.

A �nite automaton is said to be deterministic if, for each state, the leaving
transitions have unique labels. Similarly, a regular grammar is usually consid-
ered to be deterministic if, for each nonterminal A, the right hand sides of all
A-productions begin with unique terminals. However, to keep the automata
and grammar notations consistent, we have to allow productions A! a and
A! aB in a deterministic regular grammar.

2

The basic operation in our inference algorithms is merging. If automata for-
malism is used, the inference algorithms merge states in �nite automata. Since
we use grammar notation, the inference algorithms to be described merge non-
terminals instead of states. Merging a pair A and B of nonterminals simply
means that all appearances of B are replaced by A's (the roles of A and B

are arbitrary). Suppose that we have productions C ! aA and C ! a. Then
A corresponds to a �nal state of the underlying �nite automaton. When A

and B are merged, it must be possible that also the derivation using B can
be terminated here. Hence, for each production D ! bB, we �rst replace B
by A, and further, we add a new production D ! b to the grammar (if it is
not already there).

As inference criterion we use \identi�cation in the limit" [9]. In our case the
conjectures outputted by the inference algorithms are regular grammars. After
obtaining the ith input word, an inference algorithm outputs a conjecture Gi.
Inference in the limit means that there is an algorithm outputting, for any
positive representation of the language L to be inferred and for su�ciently
large i, the correct grammar Gi generating L, and not changing the conjecture
after reading further input words.

In the grammatical inference literature the general treatment of a class of
languages can contain e.g. the following tasks:

{ prove that an inference algorithm exists
{ prove that the inference algorithm outputs the next conjecture in polynomial
time

{ prove that characteristic samples exist (a characteristic sample of a language
L is a positive sample S0 if L is the smallest language in the given class of
languages containing S0)

{ prove that the algorithms output the smallest language containing the sam-
ple in the desirable class of languages.

The whole repertory is proved for some classes of languages (see [3,20,1]). Our
purpose here is not to complete the list for other classes.

The e�ciency of an inference algorithm is measured by the time complexity
of outputting the next conjecture, and by the number of implicit errors of
prediction made. An inference algorithm is said to make an implicit error of
prediction at the ith step if the conjecture Gi fails to produce the (i + 1)th
input word [16].

3

3 Szilard languages of regular grammars

Instead of using the chronological order (and starting with the reversible lan-
guages), we start by introducing the most rudimentary of the present language
classes, the Szilard languages of regular grammars. This class of languages is
contained in all the classes to be introduced in the forthcoming sections, ex-
cept in the class of uniquely terminating regular languages to be discussed in
section 6.

Let G = (V;�; P; S) be a regular grammar whose productions are uniquely
labeled by the symbols of an alphabet C. If a production A! � is associated
with the label a we write a : A! �. If a sequence w of labeled productions is
applied in a derivation �)� , we write �)w . The Szilard language Sz(G)
of G is de�ned as (see [11])

Sz(G) = fw 2 C+ j S)w x; x 2 ��g:

The class of Szilard languages of regular grammars is denoted by SZ. Lan-
guages in SZ can be generated by regular grammars with unique terminals in
the right hand sides of the productions.

The inference algorithm for Szilard languages of regular grammars | and also
for the other classes of languages considered here | is simple: Apply merges
as long as the de�ning conditions of the class of languages in question are
violated. When no merges are possible, the desired language is obtained.

The inference algorithm for SZ makes use of the following properties of Szilard
languages:

(i) If a word in Sz(G) begins with a symbol a then the production producing
a has the start symbol S in its left hand side.

(ii) Each word in Sz(G) ends with a symbol produced by a terminating pro-
duction.

(iii) An appearance of a pair of consecutive symbols aiaj in a word in Sz(G)
implies that the corresponding nonterminals Ai and Aj and the produc-
tion Ai ! aiAj are used in the derivation.

Items (i) and (ii) above are common to all classes of languages considered
in this paper. Item (iii) is speci�c to SZ. Szilard languages have the special
feature that in (i) and (ii) the productions are unique.

We �rst suppose that the grammar to be inferred has the same number of
nonterminals as it has productions and that the left hand side of the produc-
tion having ai in its right hand side is the nonterminal Ai, i = 1; : : : ; n. The
algorithm merges all such pairs of nonterminals Ai and Aj for which we have

4

a common predecessor of ai and aj in the sample. Namely, all sentential forms
in regular grammars contain at most one nonterminal, and if we are able to
apply two di�erent productions immediately after the same production the
two applicable productions must have identical left hand sides.

Notice that we already know that all appearances of a certain terminal are
produced by the same production. The the most general assumption to start
with is then \the same number of nonterminals as productions". (The number
of terminals and prodcutions coincide.) In the other inference algorithms to
be discussed later in this paper we do not know whether all appearances of
a terminal are produced by the same production. It follows that we have
to start with weaker assumptions than \the same number of nonterminals as
productions". Usually, we have to start with the assumption \the same number
of nonterminals as appearances of terminals". The conditions for performing
a merge operation naturally depend on the speci�c features of the class of
languages in question, and they di�er from the condition (ii) above.

Given a �nite sample of positive data, the problem of �nding a language in SZ
compatible with the sample can be solved in time O(t), where t is the total
length of the words in the sample [12]. This follows essentially from the fact
that we can use the o�-line version of the well-known set union algorithm [7]
when maintaing the nonterminal sets manipulated by the merges. For details
concerning the set union algorithms, see [19].

Example 1 Consider a sample fa1a2a2a2a3; a1a2a4g from a Szilard language
of a regular grammar. We start with a regular grammar having the productions
A1 ! a1A2, A2 ! a2A2, A2 ! a2A3, and A3 ! a3 (by a1a2a2a2a3) and A1 !
a1A2, A2 ! a2A4, and A4 ! a4 (by a1a2a4). As a2 is a common predecessor
of a2 and a3 we must have A2 = A3. Moreover, a3 and a4 have a common
predecessor a2. After merging A2 = A3 = A4, we obtain the resulting grammar
with the productions A1 ! a1A2, A2 ! a2A2, A2 ! a3, and A2 ! a4, where
A1 is the start symbol.

Szilard languages of regular languages are polynomial-time inferable from pos-
itive data in a certain strong sense de�ned by [16]: Not only is it possible to
output the next conjecture in polynomial time on the total length of the in-
put words so far read, but also the number of implicit errors of prediction
made is polynomial on the size of the �nal \right" conjecture [13]. As far as
we know, SZ is the only non-trivial class of languages which is proved to be
polynomial-time inferable from positive data in Pitt's sense.

Yokomori [20] suggests weaker conditons for \polynomial-time inferability".
He allows the length of the longest input word so far read to be used as a
parameter for the polynomial that bounds the number of implicit errors of
prediction done.

5

4 Reversible and contextual languages

In this section we give de�nitions for reversible and contextual languages by
using grammar formalism. Notice that these classes are usually de�ned by
using automata notations.

Recall that a regular language is k-reversible, k � 0, if and only if whenever
u1vw and u2vw are in L and lg(v) = k, then TL(u1v) = TL(u2v) [3].

We give separate de�nitions for zero-reversible and k-reversible, k � 1, lan-
guages since it is possible to de�ne the previous class by referring only to the
productions of the grammar, while in the de�nition of the latter class we have
to use derivations.

De�nition 2 A regular grammar G = (V;�; P; S) is zero-reversible if the
following conditions hold:

(i) G is deterministic.
(ii) A! a and B ! a imply A = B.
(iii) A! aC and B ! aC imply A = B.

A regular language L is zero-reversible if there exists a zero-reversible regular
grammar generating L.

The class of zero-reversible languages is denoted by R(0).

The three items of De�nition 2 directly correspond to the following conditions
guaranteeing a �nite automaton A to be zero-reversible [3, p. 747]:

(i) A is deterministic,
(ii) A is reset-free,
(iii) A has at most one �nal state.

Recall that a �nite automaton is reset-free if and only if for no two distinct
states q1 and q2 do there exist an input symbol a and a state q such that
�(q1; a) = �(q2; a) = q. Notice, that reset-freeness and one �nal state together
indeed imply that two distinct nonterminals cannot have terminating produc-
tions with the same right hand side (cf. item (ii) of De�nition 2).

If A is a �nite automaton, then the reverse automaton Ar is obtained by
reversing the direction of each transition in A. A �nite automaton A is zero-
reversible if and only if A and Ar both are deterministic [3]. Similar result can
be easily proved in the grammar formalism. Instead of transitions, we now
reverse productions.

Let G = (V;�; P; S) be a regular grammar. The reverse grammar H =

6

(V;�; R; S) can be obtained as follows. If S ! aA is in P , then take A ! a

to R. Similarly, if A! aB or A! a is in P , then take B ! aA or S ! aA,
respectively, to R. It is straightforward to verify that G is zero-reversible if
and only if G and H both are deterministic.

The inference algorithm for R(0) is not quite as straightforward as the cor-
responding algorithm for SZ. Namely, two appearances of a terminal b in
sample words do not necessarily mean that they are produced by the same
continuing production. Indeed, when applying the item (ii) of De�nition 2 we
need the additional information that the productions applied have exactly the
same right hand sides before we can merge the corresponding left hand sides.

Example 3 Consider a sample fabbbc; acc; abcg from a zero-reversible lan-
guage. We start with the following productions:

A1 ! aA2; A2 ! bA3; A3 ! bA4; A4 ! bA5; A5 ! c;

A1 ! aA6; A6 ! cA7; A7 ! c;

and
A1 ! aA8; A8 ! bA9; A9 ! c:

Notice how we apply here the earlier remark that the �rst character of a sam-
ple is produced by a production with the start symbol (A1) in the left hand
side. Contrary to the case of Szlard languages, we have to make the initial
assumption \the same number of nonterminals as appearances of terminals".

By determinism, we have A2 = A6 = A8, and by the item (ii) of De�nition 4,
we have A5 = A7 = A9. This left us with the productions

A1 ! aA2; A2 ! bA3; A3 ! bA4; A4 ! bA5; A5 ! c;A2 ! cA5; A2 ! bA5:

Now we can apply the item (iii) of De�nition 4 to the productions A4 ! bA5

and A2 ! bA5 implying A4 = A2. Moreover, A2 ! bA3 and A2 ! bA5 imply
A3 = A5, and further, A2 ! bA3 and A3 ! bA3 imply A2 = A3.

The inference process ends up with the productions

A1 ! aA2; A2 ! bA2; A2 ! cA2; A2 ! c;

where A1 is the start symbol.

It follows that the time complexity for outputting the next conjecture is not
linear as in the case of SZ algorithm, but it has | at least in theory | a
small non-linear factor [3]. We cannot use the o�-line version of the set union
algorithm because some of the merge operations to be done are made possible
by earlier merges: we do not know all the merge operations to be done when
the merging process begins.

7

De�nition 4 A regular grammar G = (V;�; P; S) is k-reversible if it ful�ls
the following conditions:

(i) G is deterministic.
(ii) the derivations

A1) a1A2) : : :) a1 : : : ak�1Ak) a1 : : : akC

and
B1) a1B2) : : :) a1 : : : ak�1Bk) a1 : : : ak;

and the production Ak ! b imply the existence of Bk ! akC.
(iii) the derivations

A1) a1A2) : : :) a1 : : : akAk+1

and
B1) a1B2) : : :) a1 : : : akBk+1

and the productions Ak+1 ! bA and Bk+1 ! bA imply Ak+1 = Bk+1.

A regular language L is k-reversible if there exists a k-reversible regular gram-
mar generating L.

The class of k-reversible languages is denoted by R(k). We have R(k) �
R(k + 1) [3].

A �nite automaton A is deterministic with lookahead k if, for any distinct pair
of states q1 and q2, if q1 and q2 are both initial states or there is a state q such
that fq1; q2g � �(q; a), where a is a single input symbol of A, then there is no
string w such that lg(w) = k and both �(q1; w) and �(q2; w) are both de�ned
(non-null).

The conditions (i)-(iii) of De�nition 4 are justi�ed by the fact that a �nite
automaton A is k-reversible if and only if it is deterministic and the reverse
automaton Ar is deterministic with lookahead k [3, p. 749]. Muggleton [15,
Fig. 6.9] has described this condition graphically.

Notice, that the initial states of A are �nal states in Ar, and that we have to
apply the earlier remark concerning the situation where productions A! aB

and A! a imply that B corresponds to a �nal state.

The item (ii) of De�nition 4 corresponds to the case where, using the original
automata terminology, two �nal states are merged if identical strings of length
k lead to these states. However, merging two �nal states with no outgoing
transitions causes no changes in the grammatical case, since there are no
nonterminals correspondings to such �nal states. The item (ii) of De�nition 4
handles the situation where at least one of the �nal states to be merged has
an outgoing transition.

8

Example 5 Consider a sample fab; bb; aab; abbg from a 1-reversible language.
We start with the following productions:

A1 ! aA2; A2 ! b;

A1 ! bA3; A3 ! b;

A1 ! aA4; A4 ! aA5; A5 ! b;

and

A1 ! aA6; A6 ! bA7; A7 ! b:

By determinism, we have A2 = A4 = A6. We next apply the item (ii) of
De�niton 4. We have the derivations A2) bA7 and A3) b and the production
A2 ! b. These imply the existence of the production A3 ! bA7. Similarly, we
have to add the productions A5 ! bA7 and A7 ! bA7.

Now it is possible to apply the item (iii) of De�nition 4. The derivations
A) aA2 and A2) aA5 and the productions A2 ! bA7 and A5 ! bA7 imply
A2 = A5.

In a similar manner we �nd the merge A3 = A7. Since the nonterminals to
be merged have the productions A1 ! bA3, A3 ! bA7, and A3 ! b, the
nonterminal A7 corresponds to a �nal state. This means that we have to add
the production A1 ! b to the grammar. This left us with the productions
A1 ! b, A1 ! aA2, A1 ! bA3, A2 ! b, A2 ! aA2, A2 ! bA3, A3 ! aA3,
and A3 ! b, where A1 is the start symbol. Since no further merges can be
done, the inference process halts. This example is considered by Muggleton
[15, pp. 101 and 108] using the automata formalism.

Angluin [3] reports that the general algorithm for k-reversible languages runs
in timeO(kn3), where n is the sum of the lengths of the input strings. Muggel-
ton [15] has later shown that this algorithm can be implemented to run in time
O(n2).

Muggleton [15] argues that although reversible languages allow intuitively
meaninful inferences processes, checking conditions of De�nitions 2 and 4 is
too slow for practical purposes. Moreover, no conjecture can be produced for
a sample containing only one word. As a solution for these problems, he in-
troduced the class on k-contextual languages [15].

De�nition 6 A regular grammar G = (V;�; P; S) is k-contextual, k � 1, if
it ful�ls the following conditions:

(i) G is deterministic.
(ii) the derivations

A1) a1A2) : : :) a1 : : : ak�1Ak) a1 : : : akC

9

and
B1) a1B2) : : :) a1 : : : ak�1Bk) a1 : : : ak;

and the production Ak ! b imply the existence of Bk ! akC.
(iii) the derivations

A1) a1A2) : : :) a1 : : : akAk+1

and
B1) a1B2) : : :) a1 : : : akBk+1

imply Ak+1 = Bk+1.

A regular language L is k-contextual if there exists a k-contextual regular gram-
mar generating L.

The class of k-contextual languages is denoted by C(k).

Contrary to k-reversible languages, a pair of appearances of a substring of
length k in the k-contextual case always causes a merge operation. Item (ii)
of De�nition 6 handles the case where one of the states to be merged is a �nal
state with no outgoing transitions.

Now we can start the merging process with only one sample word. For example,
if ababd is a word in a 2-contextual language, we can start the inference process
with this single input word. We have the derivation

S) aA1) abA2) abaA3) ababA4) ababd;

and according to De�nition 6, we can merge A2 and A4. The inference process
goes on as in the case of k-reversible languages, with the minor di�erences in
the de�ning conditions given in De�nitions 4 and 6. Hence, we simply test the
grammar for conditions (i)-(iii), and merge nonterminals when the conditions
are violated.

Clearly, we have C(k) � R(k), k � 1.

In De�nition 6 we have excluded the case k = 0, since 0-contextuality does not
restrict the language in any meaninful way (cf. [15], Lemma 16.8). Moreover,
0-contextuality does have no natural interpretation in grammar formalism.

Ahonen [1] has generalized the idea of k-contextuality still further by consid-
ering classes of languages where the appearances of two subwords of length k

not only imply that the subsequent elements are the same as in k-contextual
languages, but that the subsequent elements are the same already after h,
h � k, characters.

De�nition 7 Let 1 � h � k. A regular grammar G = (V;�; P; S) is (k; h)-
contextual if it ful�ls the following conditions:

10

(i) G is deterministic.
(ii) the derivations

A1) a1A2) : : :) a1 : : : ahAh+1) : : :) a1 : : : ak�1Ak) a1 : : : akAk+1

and

B1) a1B2) : : :) a1 : : : ahBh+1) : : :) a1 : : : ak�1Bk) a1 : : : ak;

and the production Ak ! ak imply Ai = Bi, for each i, i = h; : : : ; k, and
the existence of the production Bk ! akAk+1.

(iii) the derivations

A1) a1A2) : : :) a1 : : : ahAh+1) : : :) a1 : : : akAk+1

and

B1) a1B2) : : :) a1 : : : ahBh+1) : : :) a1 : : : akBk+1

imply Ai+1 = Bi+1, for each i, i = h; : : : ; k.

A regular language L is (k; h)-contextual if there exists a k; h-contextual regular
grammar generating L.

The class of (k; h)-contextual languages is denoted by C(k; h).

When h = k, De�nition 7 reduces to De�nition 6. Hence, C(k; k) = C(k).
Similarly, it follows directly from the de�nitions that C(k; h) � R(k) and, if
h < k, C(k; h) � C(k; h + 1).

The inference algorithm for (k; h)-contextual languages is as the k-contextual
algorithm except that k � h+ 1 merges instead of a single merge are done by
items (ii) and (iii) of De�nition 5.

Consider a regular language L over an alphabet �. Let I and F be subsets of
�k�1, and let T be a subset of �k. Languages of the form (I��\��F)n��T��

are referred to as k-testable languages [8]. The classes of k-contextual and k-
testable languages coincide. The above de�nition of k-testable languages uses
a set a forbidden substrings (T). As shown in [1], it is also possible to de�ne
this class of languages by using allowed substrings only.

Ahonen [1] gives e�cient linear time inference algorithms based on the sub-
string representation both for k-contextual and (k; h)-contextual languages.

11

5 Strictly regular and code regular languages

The class of k-contextual languages is obtained by tightening the de�nition of
k-reversibility. Another way for de�ning new subclasses of regular languages
inferable from positive data is to relax the de�nition of SZ. A regular grammar
generating a language in SZ has unique terminals in the right hand sides of
its productions. If we replace unique terminals by unique strings with the
additional property that each such string begins with a di�erent character, we
come to the concept of strictly deterministic regular languages [20]. If the set
of the unique strings is a code (for codes and languages, see e.g. [17]) we have
a code regular language [6].

Yokomori [20] de�ned strictly deterministic languages by extending the nota-
tion of �nite automata such that arbitrary non-empty strings are allowed in
transitions. We could follow this line and allow arbitrary non-empty strings in
the productions: a continuing production would have the form A! wB and a
terminating production would have the formA! w, where w 2 �+. However,
we like to obey the earlier restrictions concerning the form of productions in
regular grammars. This leads us to the following de�nitions.

Let G = (V;�; P; S) be a regular grammar. A nonterminal A is single in G

if there is only one A-production in P . Otherwise, A is branching. The start
symbol S is always considered to be branching, irrespective of the number of
S-productions.

De�nition 8 A regular grammar G = (V;�; P; S) is strictly deteministic if,
for all branching nonterminals A and B, productions A ! a� and B ! a�,
�; � 2 (� [f�g), imply A = B.

A regular language is strictly deterministic if there exists a strictly determin-
istic regular grammar generating L.

The class of strictly deterministic regular languages is denoted by S. See [18]
for a slightly di�erent de�nition of strictly deterministic languages.

The uniqueness requirement of regular grammmars generating languages in
SZ does not hold here for productions A ! a�, where A is single and � 2
((V n�)[f�g). Such a may well appear in the right hand side of several other
productions with a single nonterminal in the left hand side and in at most one
production with a branching nonterminal in the left hand side.

Given a sample, the problem is to �nd the terminals produced by productions
with a branching production in the left hand side. This is a kind of parsing
problem which is possible to solve because of the uniqueness of the terminals
appearing in the corresponding right hand sides.

12

In order to \parse" the sample, we have to �nd the string segments of the
form w = a1 : : : ak de�ned by the derivations

A) a1A1) : : :) a1 : : : ak�1Ak�1) a1 : : : akB;

where A is branching, Ai, i = 1; : : : ; k � 1 are single, and B is branching or
B = �. The set of such strings w = a1 : : : ak in G is denoted by MG.

The inference algorithm for S essentially maintains the set of segments parsing
the current sample. When the segments are found, the inference algorithm
reduces to that used for SZ. Namely, if L is in S, there is a language K in SZ
such that h(K) = L, where h is a bijective homomorphism. If aw, w 2 ��, is
in MG, then we can set h(a) = aw.

Yokomori [20] has shown that it is possible to implement an inference algo-
rithm for S running on time O(j � j m), where j � j is the size of the alphabet
used and m is the length of the longest input word. He has also shown that
the same bound hold for the implicit errors of prediction made. Hence, strictly
deterministic languages are polynomial-time inferable in Yokomori's sense [20].

Example 9 Consider a sample fbcc; bcdabc; bcdcaag from a strictly determin-
istic language. The longest common pre�x bc of the sample word is one of the
string segment. There can be no other segments beginning with b. The word bcc
must consists of two segments; the only segment beginning with c is c itself.
The longest common pre�x of the subwords dabc and dcaa is d, which is the
segment beginning with d. Since c is already known to a segment, we deter-
mine the longest common pre�x of abc and aa, and �nd out the the segment
beginning with a is a itself.

The idea of strictly deterministic languages is generalized further by Emerald
et al. [6] as follows.

De�nition 10 A regular grammar G = (V;�; P; S) is code regular if the set
MG is a code.

The class of code regular languages is denoted by D. By de�nition, we have
S � D.

An e�cient inference algorithm is known to exist only when the code overMG

is both a pre�x code (no word in MG is a proper pre�x of another word in
MG) and a su�x code (no word in MG is a proper su�x of another word in
MG) [6]. The di�erence between the inference algorithms for S and D is in the
method for �nding the current segments.

13

6 Uniquely terminating regular languages

The last class of languages considered in this paper is called the class of
uniquely terminating regular languages. Notice carefully the di�erence be-
tween item (ii) of De�nition 2 and item (i) of the following de�nition.

De�nition 11 A regular grammar G = (V; S; P; S) is uniquely terminating if
the productions in P ful�l the following conditions for each nonterminal A in
G:

(i) A! aB and A! aC imply B = C.
(ii) A has a unique terminating production; i.e. each nonterminal has exactly

one terminating production. The terminals appearing in the right hand
sides of terminating productions are all di�erent.

A regular language L is said to be uniquely terminating if there is a uniquely
terminating grammar generating L.

The class of uniquely terminating regular languages is by U .

Notice that the right hand side b of a unique terminating production A ! b

may appear in the right hand side of any continuing production, but not in
the right hand side of any other terminating production.

Suppose we are given a set of sample words fw1; w2; :::; wng from a uniquely
terminating regular language. We can give the corresponding derivations in
the form

S) wi1Ai1) : : :) wi1 : : :wikAik) wi1 : : :wikwik+1;

where wi = wi1 : : :wikwik+1, for i = 1; :::; n, with the appropriate length k +
1. We can take the following steps when merging nonterminals Aij in the
inference algorithm:

(i) If two sample words have a common proper pre�x w, we know by the
item (i) of De�nition 11 that the common proper pre�x is produced by
using the same productions in both derivations. This means that we can
merge the corresponding nonterminals.

(ii) By the uniqueness of terminating productions (the item (ii) of De�nition
11), we can merge the last nonterminals of derivations producing words
which end with the same terminal. For example, if the sample contains
words b and cdbab, we know that the last nonterminal appearing in the
derivation of the longer sample word is the start symbol of the grammar
in question.

14

Since terminating productions are unique, SZ is not included in U . For ex-
ample, the language fab; acg cannot be in U . On the other hand, U contains
languages which are not in R(k), for any value of k [14].

7 Conclusions

We have surveyed several subclasses of regular languages inferable from posi-
tive data. We de�ned the classes in a uniform grammatical manner. We hope
that this uniform way of de�ning the classes help the further research to �nd
new subclasses of regular languages inferable from positive data and new re-
lationships between the known classes of languages.

References

[1] H. Ahonen, Generating grammars for structured documents using grammatical
inference methods, Ph. D. Thesis, Department of Computer Science, University
of Helsinki, Report A-1996-4, 1996.

[2] D. Angluin, Finding patterns common to a string, J. Comput. Syst. Sci. 21
(1980), 46{62.

[3] D. Angluin, Inference of reversible languages, J. ACM 29 (1982), 741{765.

[4] D. Angluin and C.H. Smith, Inductive inference: theory and methods, ACM
Comput. Surv. 15 (1983), 237{269.

[5] S. Crespi-Reghizzi, G. Guida, and D. Mandrioli, Noncounting context-free
languages, J. ACM 25 (1978), 571-580.

[6] J.D. Emerald, K.G. Subramanian and D.G. Thomas, Learning code regular and
code linear languages, in: Proceedings of ICGI-96, Lecture Notes in Arti�cial

Intelligence 1147 (1996), 211{221.

[7] H.N. Gabow and R.E. Tarjan, A linear-time algorithm for a special case of
disjoint set union, in: Proc. 15th ACM Symposium on Theory of Computing ,
(1983), 246{251.

[8] P. Garcia, E. Vidal and J. Oncina, Learning locally testable languages in the
strict sense, in: Proceedings of the First International Workshop on Algorithmic

Learning Theory (1990), 325{338.

[9] E.M. Gold, Language identi�cation in the limit, Inform. Contr. 10 (1967), 447{
474.

[10] M.A. Harrison, Introduction to Formal Language Theory , Addison-Wesley,
1978.

15

[11] E. M�akinen, On context-free derivations, Acta Univ. Tamper. Ser. A 198,
(1985).

[12] E. M�akinen, The grammatical inference problem for the Szilard languages of
linear grammars, Inf. Process. Lett. 36 (1990), 203{206.

[13] E. M�akinen, A family of languages which is polynomial-time learnable from
positive data in Pitt's sense, Int. J. Computer Math. 61 (1996), 175{179.

[14] E. M�akinen, Inferring uniquely terminating regular languages from positive
data, To appear in Inf. Process. Lett.

[15] S. Muggleton, Inductive Acquisition of Expert Knowledge, Addison-Wesley,
1990.

[16] L. Pitt, Inductive inference, DFAs, and computational complexity in:
Proceedings of 2nd Workshop on Analogical and Inductive Inference, Lecture

Notes in Arti�cial Intelligence 397 (1989), 18{44.

[17] A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, 1981.

[18] N. Tanida and T. Yokomori, Polynomial-time identi�cation of strictly regular
languages in the limit, IEICE Trans. Inf. & Syst. E75-D (1992), 125{132.

[19] R.E. Tarjan and J. van Leeuwen, Worst-case analysis of set union algorithms,
J. ACM 31 (1984), 245{281.

[20] T. Yokomori, On polynomial-time learnability in the limit of strictly regular
languages, Machine Learning 19 (1995), 153{179.

16

