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Abstract. We give efficient ranking and unranking algorithms for left Szilard

languages of context-free grammars. If O(n2) time and space preprocessing is allowed
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1. Introduction

Ranking and unranking are fundamental combinatorial algorithms. This paper concerns

ranking and unranking algorithms for context-free languages. It is known [2] that there

is a polynomial time ranking algorithm for a context-free language given by an

unambiguous context-free grammar. Our aim here is to sharpen this result in the case of

left Szilard languages, i.e. in the case of languages consisting of the leftmost

derivations of context-free grammars. We are able to show that if O(n2) time and space

preprocessing phase is allowed then a ranking operation can be performed in linear time

while unranking takes time O(n log n). Throughout the paper, we use the unit-cost

model for time and space. Hence, we suppose that it is possible to multiply arbitrary

integers in constant time and to store an arbitrary integer in one memory cell. All time

and space bounds are given as a function on the length of words in left Szilard

languages. The numbers of productions and nonterminals are always considered as

constants.
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There are two obvious applications of ranking and unranking algorithms for left Szilard

languages: random generation of words over a given context-free language and

compression of program files. Random generation of words over a context-free

language is used in testing parsers [5], or in more theoretically oriented applications

such as studying formulas in the propositional calculus or the degree of ambiguity of a

context-free grammar [5]. For recent results concerning random generation of words in

an ambiguous context-free grammar, see [9]. Applications of random generation of

words in computational biology are mentioned in [3]. For compression of program

files, see e.g. [1,7]. Parallel algorithms for ranking context-free languages are studied

in [6, 8].

2. Preliminaries

If not otherwise stated we follow the notations and definitions of [4]. Let  G =

(V,S ,P,S) be a context-free grammar (hereafter simply "a grammar") whose

productions are uniquely labelled by the symbols of an alphabet C. If a production

A®a is associated with the label r we write r:A®a. If a sequence r1 ... rn = w of

labelled productions is applied in a leftmost derivation b Þ* g, we write b Þw g. We

consider leftmost derivations only and omit the normal subscript of Þ indicating

leftmost derivation. The left Szilard language Szl(G) of G is defined as

Szl(G) = { w Î C* | S Þw w, w Î S* } [10-12].

If b is a string over V, then h(b) denotes the string obtained from b by deleting all

terminal symbols. The length of b is denoted by len(b). Given a context-free grammar

G, the grammar generating Szl(G) can be obtained by replacing each production

r:A®a in P by the production A®rh(a) [10]. The grammar obtained has the property

that each production has a unique terminal symbol in the beginning of its right hand

side. The grammar obtained is always unambiguous. We have a one-to-one

correspondence between productions in the original grammar G, the labels indicating

the productions, and the productions in the grammar generating Szl(G). In the sequel

we make use of these one-to-one correspondences and feel free to choose the structure

that suits best the present discussion.

For the sake of notational simplicity, we assume that context-free grammars are in

Chomsky normal form (CNF), so that all productions are of the form A®BC or A®a,

where A, B, and C are nonterminals, and a is a terminal. The productions having A in

their left hand side are called A-productions. We say that a production of the form A®a

is terminating; the other productions are continuing. Given a word w in Szl(G), the
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corresponding word in L(G) is obtained by applying a homomorphism which maps the

labels of continuing productions to the empty word and the labels of terminating

productions to the terminal appearing in the production. So, if  r:A®a is a production

we map r to a.

If G is in CNF then a word w in L(G) with len(w) = n and the corresponding word w

in Szl(G) with length(w) = m have 2n - 1 = m.

We consider the case where the length of words is fixed. This restriction does not affect

to the generality of our study, since we can always easily count the words whose length

is smaller than the current fixed length. Given a word w of length n in Szl(G), the

operation rank(w) returns the rank of w among the words  of length n in Szl(G). On the

other hand, unrank(x) returns the word w with len(w) = n in Szl(G) having rank x,

provided that such a word exists.

3. Preprocessing

We determine, for each nonterminal A, an order on the set of A-productions. It does

not matter whether we determine the order in the original grammar G, in the grammar

generating Szl(G), or in the set of labels C. For a terminating production r:A®a,

define pre(r) to be the number of terminating A-productions preceding r in the order of

productions.

The words of length n in Szl(G) are now ordered according to the shape of their

derivation trees and to the order of the productions as follows: on the upper level the

words are ordered according to their derivations trees such that those having smaller left

subtrees become first; words with derivation trees of the same shape are ordered

according to the order of the productions used. The same ordering rule is then

recursively used in the left and right subtrees. Notice that the order of derivations

imposed is not lexicographical. Ranking and unranking the words in Szl(G) according

to the lexicographical order seems to be much more complicated problem than the one

we tackle here.

In what follows we say that a production S®AB in derivation S Þ  AB Þ+ vw,

where v and w are terminal strings and A Þ+ v and B Þ+ w, is (i,j)-split if len(v) = i

and len(w) = j. For obvious reasons, (i,j)-split is not defined for terminating

productions.
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In order to be able to efficiently perform ranking and unranking operations, we need a

preprocessing phase. Let »A»n denote the number of derivations from A to a terminal

string of length n. For each production A®BC and for each length k, 0 < k £ n, we

calculate the products »B»i * »C»k-i, 0 < i < n. These numbers are cumulatively stored

in table Splitk,i,A such that for each production r:A®BC the entry Splitk,i,A[r]

contains the number of leftmost derivations producing a terminal string of length k and

beginning with a (i,j)-split A-production preceding r in the order of productions.

Moreover, we store in Splitk,A[i], for each k and i and for each nonterminal A, the

number of all derivations producing a terminal string of  length k and beginning with a

(s,t)-split production where s + t = k and 0 < s < i. So, Splitk,A[i] holds the number of

all derivations from A to a terminal string of length k with the property the left subtree

of the derivation tree produces a string of length at most s = i - 1 and the right subtree

produces a string of length at least t = k - i + 1.

The preprocessing described is clearly possible in O(n2) time and its results need O(n2)

space.

4. Ranking

We first consider how to determine the rank of a given word w having len(w) = n

among all words in Szl(G) of length n. We start by determining the splits used in the

derivation. (Recall that w is a leftmost derivation in G.) This is possible by storing the

characters of w (labels of productions) in a stack as long as further characters (labels of

terminating productions) later expose the splits applied. The following example clarifies

this process.

Example 1. Consider a grammar G with productions

o:S®AB

p:S®BB

r:A®AA

s:A®AB

t:B®BA

n:A®a

f:B®b,

and word osnfttfnn in Szl(G). The corresponding derivation is S Þ AB Þ ABB Þ

aBB Þ abB Þ abBA Þ abBAA Þ abbAA Þ abbaA Þ abbaa.

We first push an instance of productions o:S®AS and s:A®AB onto a stack. The

following two characters n and f indicate that terminating productions are applied to
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both nonterminals in the right hand side of the top element (A®AB) of the stack. This

shows that the top element is a (1,1)-split production. When a split is found, the

production is popped off from the stack. Popping a (i,j)-split production from the stack

indicates that the new top element is a (i+j,k)-split for some k. Reading the rest of the

word shows that the total sequence of splits is o(2,3)s(1,1)nft(2,1)t(1,1)fnn. $

The sequence of splits can be found in linear time. (Each character of the input word

causes at most one element to be once pushed and popped.)

When the sequence of splits is known, we can continue the ranking process by using

the precomputed Split tables. Example 2 continues the sample ranking started in

Example 1.

Example 2. We are looking for the rank of osnfttfnn among all words of length 9

in Szl(G). Figure 1 shows the Split tables needed in the present example. We obey the

order of productions given in Example 1, i.e. o < p and r < s (other order relations are

irrelevant).

Split 5,S

2
1

3
4

0
24
33
43

Split 3,B 1
2

0
2

Split 2,1,A 0
s 1
r

Figure 1. The Split tables consulted in Example 2.

The first character o corresponds to a (2,3)-split production. Entry Split5,S[2] = 24

gives the number of left derivations beginning with (1,4)-split productions. All these

derivations have a rank smaller than our sample word. Since o < p, there is no

continuing S-production preceding o in the order of productions. The second character

s corresponds to a (1,1)-split production. Since r < s, we consult table Split2,1,A.

Entry Split2,1,A[s] = 1 shows that there is one derivation from A to a terminal string of

length 2 before the subderivation in the sample word. This subderivation can be

continued with any of the subderivations from the sibling of A (which is B) to a

terminal string of length 3. There are three such derivations from B. So far, we have

found 24 + 3 derivations having rank smaller than that of our sample word.
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The next two characters (n and f) correspond to terminal productions. Both A and B

have only one terminal production and therefore terminal productions do not increase

the rank. Then we have a (2,1)-split production t:B®BA. Entry Split3,B[2] shows that

there are two derivations from B to a terminal word of length 3 beginning with a (1,2)-

split production. Further characters do not increase the rank. (There is only one

possibility to complete a derivation of length 9 from the sentential form abBAA

obtained by the prefix osnft.). Hence, there are 24 + 3 + 2 = 29 derivations of length

9 before our sample word and rank(osnfttfnn) = 30. $

We can now write the algorithm used in Examples 1 and 2 as follows:

Algorithm Ranking

Input: A grammar G and a word w, len(w) = n, in Szl(G).

Output: rank(w).

Method:

1. Find the sequence of splits used in the derivation corresponding to w;

2. rank ¬ 1;

3. for p ¬ 1 to n do

if the pth character in w corresponds to a continuing (i,j)-split production r:A®BC

then if A is in the root or in a right child in the derivation tree

then rank ¬ rank + Spliti+j,A[i] + Spliti+j,i,A[r]

else {A is in a left child in the derivation  tree and the (p-1)th character in w 

corresponds to a (s,t)-split production D®AE, where s = i + j}

rank ¬ rank + Spliti+j,A[i] + Spliti+j,i,A[r] * »E»t

else { r corresponds to a terminating production }

if A is in the root or in a right child in the derivation tree

then rank ¬ rank + pre(r)

else {A is in a left child in the derivation  tree and the (p-1)th 

character in w corresponds to a (s,t)-split production D®AE}

rank ¬ rank + pre(r) * »E»t;

As mentioned earlier, step 1 of the algorithm takes linear time. Step 3 contains a

constant number of condition tests, table look-ups and arithmetic operations per a

character of the input word. Hence, the above algorithm runs in linear time.

We can modify our ranking algorithm so that the preprocessing consists only of

calculating »A»k's for each k and A. The rest of the values can be then determined

during the run of the algorithm in time O(n2).
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Theorem 1. Ranking a left Szilard language is possible in linear time with O(n2) time

and space preprocessing or in time O(n2) with linear time and space preprocessing.

5. Unranking

As well as in ranking, the Split tables can be used also in unranking. Again, we start

with an example.

Example 3. We perform operation unrank(58) in the case of the grammar given in

Example 1 considering the words of length 9. First, we consult table Split5,S and look

for the greatest value not exceeding 58. The right entry is Split5,S[4] = 43. We next

consult table Split5,4,S. We are looking for the greatest entry not exceeding 58 - 43 =

15. The right entry is Split5,4,S[o] = 0. This tells us that we must start with o:S® AB.

Split 4,A

2
1

3

0
10
16

Split 4,2,A r
s

0
4

Split 5,4,S 0
p 30
o

Figure 2. The Split tables consulted in Example 3 (excluding Split5,S which is shown

in Figure 1.).

Because of entry Split4,A[2] = 10 we continue with a (2,2)-split production. From

Split4,2,A we look for the greatest entry not exceeding 15 - 10. (Notice that »B»1 = 1.)

The right entry is Split4,2,A[s] = 4. If we complete the derivation by always choosing

the first possible production, we end up with a word w in Szl(G) having 43 + 10 + 4 =

57 preceding derivations. Hence, its rank is 58. So, we complete the derivation to be

osrnntfnf. $

In the following algorithm we use the phrases "find the right split", "find the right

continuing production", and "find the right terminating production" in the sense

demonstrated in Example 3: we are looking for the greatest table entry not exceeding the

argument of the search. It must also be noticed that if the nonterminal in question is in a

left child in the derivation tree, we must multiply the argument by the number of

derivations to a terminal string of appropiate length from the nonterminal in the

corresponding right child. We must also take care of the special cases where a

cumulative table contains the same value in its two (or more) consecutive elements. We

must always choose the first one of these.
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Algorithm Unranking

Input: A grammar G, length n and an integer r.

Output: A word w such that rank(w) = r among words of length n in Szl(G) .

Method
1. rank ¬ r; p ¬ 0; current_length ¬ n; current_nonterminal ¬ S;

2. while rank > 1 do begin
p ¬ p + 1;

if current_length > 1 { we are looking for a continuing production }

then begin

find the right split (i,j) for current_nonterminal A and current_length k by 

consulting table Splitk,A;

rank ¬ rank - Splitk,A[i];

find the right continuing A-production r by consulting table Splitk,i,A;

if A is in the root or in a right child in the derivation tree

then rank ¬ rank - Spliti+j,i,A[r]

else {A is in a left child in the derivation tree and the (p-1)th character 

in w corresponds to a (s,t)-split production D®AE where s = i + j}

rank ¬ rank - Spliti+j,i,A[r] * »E»t

end { then }

else { current_length = 1 } begin
find the right terminating A-production r by studying the order of productions;

if A is in the root or in a right child in the derivation tree

then rank ¬ rank - pre(r)

else {A is in a left child in the derivation  tree and the (p-1)th

character in w corresponds to a (s,t)-split production D®AE}

rank ¬ rank + pre(r) * »E»t;

end { else }

augment the leftmost derivation found so far by applying r;

store the found splits with the current sentential form;

current_nonterminal ¬ the leftmost nonterminal in the current sentential form;

current_length ¬ the split value related to the new current_nonterminal;

end; {while}

3. if (p < n) and (rank = 1)

then complete the output word to be of length n by choosing the first possible 

productions (obeying the splits found);
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When consulting Splitk,A we do a binary search on k elements. In the worst case, the

splits are (1,n-1), (1,n-2), ..., and so on. This gives us time bound S
i=1

n
 log (i - 1) =

Q(n log n). Other parts of the algorithm can be performed in linear time.

Theorem 2. Unranking a left Szilard language is possible in timeO(n log n) with

O(n2) time and space preprocessing.

Given an unambiguous grammar G, the words in L(G) can be unranked by using the

algorithm above. Indeed, the one-to-one correspondence between words in L(G) and

the leftmost derivations (words in Szl(G)) allows us to use algorithm Unranking

without any changes. Unfortunately, the situation is not so simple with algorithm

Ranking because we have to parse the given word before we can determine its rank. In

general, parsing a word in G is a more difficult operation than ranking a word in

Szl(G). Hence, in the latter case, the time needed depends on the efficiency of parsing.
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