
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

SEARCHING NEURAL NETWORK

STRUCTURES WITH L SYSTEMS

AND GENETIC ALGORITHMS

Isto Aho, Harri Kemppainen, Kai Koskimies

Erkki M�akinen and Tapio Niemi

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF TAMPERE

REPORT A-1997-15



UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1997-15, DECEMBER 1997

SEARCHING NEURAL NETWORK STRUCTURES

WITH L SYSTEMS AND GENETIC ALGORITHMS

Isto Aho, Harri Kemppainen, Kai Koskimies

Erkki M�akinen and Tapio Niemi

University of Tampere

Department of Computer Science

P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4272-5

ISSN 0783-6910



Searching Neural Network Structures with L
Systems and Genetic Algorithms

Isto Aho, Harri Kemppainen,

Kai Koskimies, Erkki M�akinen and Tapio Niemi

ftyisah,koskimie,em,tapiog@cs.uta.�

cshake@uta.�

Department of Computer Science

University of Tampere

B.O. 607

FIN-33101 Tampere, Finland

Abstract

We present a new method for using genetic algorithms and L systems to

grow up e�cient neural network structures. Our L rules operate directly on

2-dimensional cell matrix. L rules are produced automatically by genetic algo-

rithm and they have \age" that controls the number of �ring times, i.e. times

we can apply each rule. We have modi�ed the conventional neural model so

that it is easy to present the knowledge by birth (axon weights) and the learn-

ing by experience (dendrite weights). A connection is shown to exist between

the axon weights and learning parameters used e.g. in back propagation. This

system enables us to �nd special structures that are very fast for both to train

and to operate comparing to conventional, layered methods.

Keywords genetic algorithms, Lindenmayer systems, back propagation, net-

work structure, xor problem

1. Introduction

We start by describing the biological motivation for our work. For further biological

background, see e.g. [9].

We �rst introduce a neuron (a neural cell) in the level of accuracy su�cient

for our purposes. A neuron can be divided into three main parts: the cell body,

the dendrites and the axon. The dendrites collect signals from other neurons, and

transmit them to the cell body. The cell body receives the signals from its dendrites,

and depending on the impulses received and on the internal structure of the cell body

itself, the body does or does not activate the axon. The internal structure of the

neuron is modeled by its activation function. The axon then transmits the possible

1



impulse to the dendrites of other neurons. The interaction between neurons takes

place on synaptic connections. This simply�ed model is used since the pioneering

work of McCulloch and Pitts [13], and popularized in the computer science literature

e.g. by Minsky [15].

The complex functions of a nervous system depend on the precise interconnec-

tions formed by thousands of cell types. The establisment of neuronal connections

can be considered to occur in six major stages [9](Chapter 57). First, a uniform

population of neural cells is induced. Second, these cells begin to diversify giving

rise to immature neurons. Third, immature neurons migrate to their �nal positions.

Fourth, neurons extend axons. Fifth, axons form synaptic connections. And sixth,

some of the synaptic contacts that are formed initially are modi�ed to generate the

mature pattern of neural connections.

In our model, the stages 1{3 are realized by applying a two dimensional general-

ization of the well-known rewriting formalism, Lindenmayer systems (or L systems,

for short). Our variant of L systems is introduced in Section 3. The current set of

L rules is applied resulting a set of neurons of di�erent types in a two dimensional

matrix. Hence, the process of applying the L rules includes also the stages 2 and

3. Next, the axons are extended. In living organisms the axon growth is guided by

various mechanisms including chemotropic molecules [9](Chapter 58). Our system

imitates chemotropic molecules as desribed in subsection 4.2. The synaptic connec-

tions and synaptic contacts of our system are formed such that the resulting network

is acyclic, because we restrict ourselves to back propagation networks.

The overall plan for building up the nervous system of a living organism is stored

in the genes. The direct counterpart of genes in our system is the L rules applied

when creating the network. Genes are a�ected by natural selection via crossovers and

mutations. Similarly, our arti�cial genes, the L rules, are a�ected by the operations

of genetic algorithms as described in subsection 2.3.

In addition to their inherent ability, living organisms can learn things. Learning

can be considered as changes in the e�ectiveness of synaptic transmission. Again,

this has a straightforward interpretation in our system: the weights of axon and

dendrite connections can be changed accordingly.

As a whole, our system can be considered as a cycle where natural selection (ge-

netic algorithm) and learning (back propagation) periods take turns, and hopefully,

the resulting network becomes smaller and easier to teach.

Each individual has some knowledge by birth - consider a spider spinning its

web. The ability to spin (or at least the ability to learn spinning easily) is coded

into the genes. Individuals of higher species also learn by experience and even by

thinking. The survival ability depends on the combination of these and is of crucial

importance for the species.

2



We have applied these biological facts for designing arti�cial neural networks.

The optimal structure of neural networks cannot be found easily. In normal cases

we know the inputs and results of a problem but we do not know which kind of struc-

ture we should use. These biological facts enable us to �nd out e�cient structures

automatically and e�ectively. The structure itself is not important - its usefulness

is the only thing we are interested in.

The human brain is modular: it is divided into two main blocks and these blocks

are further divided into smaller blocks. The blocks are specialized to perform dif-

ferent tasks. This solution works (often) well.

Genes contain the information needed to construct this modular structure. The

genetic information has to be coded in some meaningful way. In this paper we assume

that Lindenmayer systems (L systems) can be used to code this information.

Genes order the modularity of the brain and the overall structure of the modules

but they cannot set the precise states and placements of all the cells, because of the

amount of the information needed to build exact brain (f. ex. twins are not fully

similar). So the genetic information is coded somehow and we have assumed that

the L rules correspond to this coding in general. The growth is performed by the

application of the L rules.

The modular (structured) neural networks outperform the conventionally layered

networks in real work [3]. We gain the modularity by using L rules which are

obtained from genetic data. These L rules also initialize the cells that corresponds

to knowledge given by birth. When the neural network is ready the network is

taught. This process is \learning by experience."

While implementing our system we have learned that there already exist systems

with about the same motivation as ours. Such systems are introduced at least by

Boers and Kuiper [3], Gruau [5], Kitano [10], and Lucas [12]. However, our system

seems to have features not implemented in the earlier systems. Especially, we follow

the six stage development of a nervous system described above more closely than

the other authors, e.g. the growth of axons is not treated separately in any existing

system that we know. Moreover, we explicitely use learning through genes via axon

weights.

2. Preliminaries

2.1. L systems

L system is a rewriting formalism originally introduced to model the biological

growth of plants [11]. Alike normal (Chomsky type) formal grammars, L systems

operate on strings of characters. However, since L systems model developing organ-

3



isms, they rewrite strings in a parallel fashion.

We omit here the formal de�nition of L systems. An interested reader can consult

e.g. [18]. Instead, we next give a very informal description of L systems.

Suppose we are given an alphabet �. An 0L system G (where `0' stands for

`0-sided' or `0 context') consists of a string ! over �, the axiom, and a morphism

h de�ned on ��. The language L(G) generated by G contains the strings obtained

from ! by repeatedly applying h, i.e. L(G) = fhi(!) j i � 0g, where h0(!) = !.

Depending on the properties of h we obtain several di�erent subtypes of 0L systems

which are intensively studied in the literature [18].

Obviously, 0-sided L systems are too restricted for our purposes, since we want

to model organisms in which cells communicate and interact with each other. If

we still consider L systems operating on strings, we can use 1-sided or 2-sided L

systems [7, 11]. In these systems an interaction with neighbouring cells on one or

both sides of a given cell is possible. The neighbouring cells in question de�ne the

context in which a change is possible, or in mathematical terms, when we can apply

the morphism h. However, we want to use a more general platform for our L systems

than strings. A straightforward generalization is to use matrices instead of strings

[10]. This transformation implies some changes to our L system terminology.

Consider an n�n -matrix of characters. Here n can be any �xed natural number.

In the tests reported in this paper a typical value for n has been 40. The size of the

matrix depends on the number of parallel rewriting steps to be performed. In our

tests, we have used 10-15 parallel steps in 40 � 40 matrices. Instead of a speci�c

string, the axiom, we now start with some initial con�guration of the matrix. Instead

of morphism h we now speak about rules. The left hand side of a rule is a 3 � 3

matrix of characters. If the left hand side of a rule matches to a submatrix of the

main matrix, called the cell matrix in the sequel, we replace the submatrix with

the right hand side of the rule in question. Further details for our matrix based L

systems are given in Section 3.

2.2. Formal neural networks

In this subsection we introduce some neural computing models. The main archi-

tectures and learning strategies are presented. The back propagation networks are

handled in greater detail. For further details concerning these topics, the reader is

referred e.g. to [6, 8].

First we look at a single neuron. In general a neuron i has n inputs, whose total

weighted sum is called the internal activity level of i. The output of i is achieved

through the use of activation function, which can be step, linear or sigmoid (either

tanh or i=(i + ex)) function. The di�erent architectures are categorized by the

4



linear 

sigmoid

step

a) Conventional net b) Structural net with axons

Figure 1: The calculation models.

relations of many individual neurons.

Layered feedforward networks have their neurons organized into the layers. Fig-

ure 1 (a) can be considered as a two-layer network, where the layers are fully con-

nected, i.e. there is a connection from every neuron of layer one to every neuron of

layer two. If there are only two layers, they have to be the input and output layers

and the network is called a single-layer feedforward network. If there are more layers,

the network is called a multilayer feedforward network. The layers other than input

and output are called hidden layers. It has been shown that multilayer networks

with one hidden layer can simulate any function to a wanted accuracy, if there is an

approriate number of neurons in the hidden layer. (See [6].)

A layered feedforward network can be fully or partially connected. If it is partially

connected, then some connections between the layers are missing.

A recurrent network have at least one feedback loop in its structure. The recur-

rent networks may or may not have hidden neurons. By using unit-delay elements

in the recurrent networks, we obtain nonlinearly dynamically behaving networks.

Recurrence increases the learning capacity of a network.

The learning strategies can be divided roughly into two parts: supervised and

unsupervised learning. Supervised learning is a learning with a teacher which (who)

gives examples to the network (student) while in unsupervised learning the network

somehow determines itself what to do. Thus, self-organisation occurs in unsuper-

vised learning. Next we shortly discuss a few main learning strategies (models).

In error-correction learning the network gives an answer that can be compared to

the desired answer. According to the di�erence between answers, we can calculate

corrections to the weights.

In Hebbian learning two simultaneously activated neurons strengthen the connec-

tion between neurons and asynchronously activated neurons weaken the connection.

The synaptic e�ciency in connection is also increased, if the mechanism in synapse

5



is time-dependent, highly local and strongly interactive. Many neurons can be acti-

vated at the same time.

In competitive learning, however, only one neuron can be active at a time. Here,

a set of neurons responds di�erently to a given set of examples. The neurons learn

by competing for the right to respond for a subset of examples: they can be used as

feature detectors.

Boltzmann learning uses stochastic learning algorithm. The neurons have two

states, they are either on or o�. The neurons together constitute a Boltzmann

machine, for which we can form an energy function whose value depends on the

states and on the synaptic weights between neurons. By 
ipping the states we

change the value of the energy function and hopefully reach an equilibrium state.

In reinforcement learning we strengthen the tendency of system to produce satis-

factory state of a�airs and weaken the tendency to produce other states. In delayed

reinforcement the system is built so that it can interact with its environment and

learn to perform a task on the basis of the outcomes of its experience resulting from

interaction with the environment. Reinforcement learning strategy has also been

used in systems where the network learns to play games by playing against itself.

2.3. Genetic algorithms

The general principle underlying genetic algorithms is that of maintaining a popu-

lation of possible solutions, called chromosomes. In our system a population is a set

of L rules. The population undergoes an evolutionary process which imitates the

natural biological evolution. In each generation better chromosomes have greater

possibilities to reproduce, while worse chromosomes have greater possibilities to die

and to be replaced by new individuals. To distinguish between "good" and "bad"

chromosomes we need an evaluation function. In our system the evaluation function

depends on the size of the network produced and on the ability of the network to

learn quickly; our evaluation function is discussed in greater detail later on.

The general structure of a genetic algorithm is shown in Figure 2. There are

several parameters to be �xed. First, we have to decide how to represent the set of

possible solutions. In "pure" genetic algorithms only bit string representations were

allowed, but we allow any representation that makes e�cient computation possible.

Hence, in the terminology of [14] our system is an "evolution program". Second, we

have to choose an initial population. We use initial populations created by random

selection. Third, we have to design the genetic operations which alter the compo-

sition of o�spring during reproduction. The two basic genetic operations are the

mutation operation and the crossover operation. Mutation is a unary operation

which increases the variability of the population by making pointwise changes in

6



the representation of the individuals. Crossover combines the features of two par-

ents to form two new individuals by swapping corresponding segments of parents'

representations. Our system uses the standard genetic operations of galib [4].

(1) t := 0;

(2) create the initial population P0;

(3) evaluate the initial population;

(4) while not Termination-condition do

(5) t := t+ 1;

(6) select individuals to be reproduced;

(7) apply genetic operations to create the new population Pt;

(8) evaluate(Pt);

(9) od

Figure 2: Genetic algorithm.

In what follows, we suppose that the reader is familiar with the basics of genetic

algorithms and related topics as given e.g. in [14, 16].

3. L system directed growth of neural mass

As mentioned, we apply L rules in a matrix, called cell matrix, instead of a string.

This is inspired by the fact that the growth of the cell mass is guided by cells close

to each other. Each matrix entry may contain a character representing a cell of a

certain type. The left hand side of a L rule is an 3� 3 matrix (in a biological sense

these are neighbouring cells). It is matched against 3 � 3 submatrices of the cell

matrix. A successful match causes changes in the cell matrix; the changes depend

on the right hand side of the L rule in question. The right hand side is a cell

corresponding to the central cell as shown in Figure 3. Applying an L rule may

change the cell type (the character in the matrix entry), create new cells, or delete

old cells.

The central entry in a 3� 3 matrix is in a special role. A successful match of a

rule requires that the central node must match. On the other hand, the other eight

entries may contain di�erent kind of wildcard characters not requiring exact match.

The system starts with one \seed cell". Other possibility is to use 3� 3 matrix also

on the right hand side of the L rule instead of one cell so that one L rule can change

several cells together at one time. However, this is not implemented in our system.

There are three types of wildcards and four types of matching. If the wildcard

is not used the match is exact, i.e. all the values of the cell must be the same. The

target cell has to be exactly matched. The wildcard NoCell means that there must

7



Free

Any

No

4 10

7

8

9

31 2

7

8

9

31 2

9

556 6

4 10

>6

2 3

8

1

Figure 3: Example of L rule and its application.

not be a cell in the cell matrix. The wildcard FreeCell means that there has to be

a cell in the cell matrix but this cell can be of any kind. Last wildcard Anything

means that we do not even check if there is the cell in the cell matrix, anything

goes. The target cell has to match and eight surrounding cells have to also match

according to any wildcards used. Each of the eight cells may have its own wildcard.

A cell has four attributes: a weight, threshold function, scent and target scent.

The weight is initial value for the axon of the cell. The threshold function gives the

function to be used for the connections of the cell. A cell looks for other cells having

the same scent or scent close enough to the target scent of the cell. Scent values

are used to build connections between cells. Cells are spatially distributed in a two-

dimensional matrix. Hence, there has to be a way to make decisions concerning how

connections are created between cells. The scents and the distance between cells are

used as criteria for creating connections.

The context consists of nine cells in the 3�3 matrix. The central cell is matched

with the target cell of the cell matrix. All the other cells in the context are also

matched but not strictly. Wildcards can be used to weaken exact matching.

There are four di�erent types of L rules: And rule, Or rule, GreaterThan rule and

LesserThan rule. And rule means that in every single matching the corresponding

cell in the context have to match. Or rule means that just one match is enough. In

GreaterThan rule there has to be as many matches as accompanied value says and

8



in LesserThan rule there have to be as many or less matches. Figure 3 shows how to

apply L rule of type GreaterThan (> 6). Seven cells matchs and two do not, hence

we can replace cell number four with cell number ten. Figure 3 does not show the

exact contents or attributes of each cell.

Further, our L rules have attribute \age" which bounds the number of times the

rule can be �red, i.e. matched. One parallel step can consume only one unit of age:

if the same rule �res many times on the same parallel step, it does not consume the

age any more than �ring the rule only once at that parallel step. The use of age is

justi�ed by the fact that the cell mass does not continue to grow forever. Further,

it is very hard to justify any human selected number of L rule application times: we

leave this decision to genetic algorithm.

The sample rule shown in Figure 3 changes the type of the cell corresponding to

the central entry. Notice that rules of this form can also create new entries to the

matrix, i.e. they can increase the cell mass.

4. Generation of cell connections

4.1. Axons and Dendrites

After we have grown the neurons we have to create connections between them.

Every neuron grows one axon �rst, after that it grows one or more dendrites. When

a dendrite meets an axon, they establish a connection. A neuron grows its axon to

its right hand side and its dendrites to the left. This orientation con�rms that our

network will always be acyclic.

neuron

connection

dendrite

axon

Figure 4: Neurons and connections.

Figure 4 shows an example for our neural network. There are six neurons, which

have grown their axons and dendrites. The neurons on the left have no dendrites

and the ones on the right have no axons for obvious reasons. The lower of the two

neurons in the middle does not have any incoming dendrite connections so we can

remove it from the �nal network or it can become input-cell if we need more than

two inputs.

9



4.2. Growing Axons

A neuron has two codes, which it uses for growing axons. We call them scent

numbers. The one is the own scent of the neuron and the other one is the target

scent. A neuron grows the axon to such a neuron whose scent is near the scent of the

growing neuron. If the di�erence is small enough or the axon long enough, the axon

stops at that position. The growth of the axon is independent of the other axons,

so it is not important in what order the neurons grow their axons. The growing can

even happen parallel.

4.3. Growing Dendrites

When every neuron has grown its axon, we can begin to grow the dendrites. The

principle is quite similar to growing axons, but this time every neuron can have more

than one dendrite and the scent numbers are not used. A neuron starts to grow a

dendrite to the left side of its position. The dendrite tries to �nd an axon and when

it �nds such, it makes a connection. The search is begun in small area on the left

side of the neuron. If an axon is not found in this area, the area will be expanded.

A neuron can grow more than one dendrite and these dendrites can, of course,

connect to di�erent axons, but it is not normally accepted that more than one

dendrite of the same neuron can connect to the same axon. The dendrites from

di�erent neurons can connect to the same axon. It is possible to bound the number

of dendrites connecting to the same axon, how many dendrites one neuron can grow

or how long a dendrite can be. By using these parameters we can a�ect the resulting

network. If we want a tight and large network with many connections, we use greater

values for these parameters. If we use small values, we get a smaller network with

few connections.

4.4. Setting Input and Output Cells

The main idea is that the left side of the cell network becomes the input cells and

the right side of the network becomes the output cells. We noticed that it is not the

best way to take �rst cells of the border, because they might be isolated from the

others. So we take the �rst ones, which have a connection to some other cell. In this

way we get more probable networks, which can operate at least in some way. The

amount of the input and output cells can be computed, since we know the input

and output data.

After the input and output cells have been chosen we suppress the cell matrix.

There might be some cells that have no inputs or outputs. They can be removed.

See also Figure 5. The dashed cells and connections are removed because they

10



are not used in our calculations. We also shorten the chains of cells. In Figure 5

the circulated area containing three connections and two cells is replaced with two

connections and one cell. This has its in
uence on the behaviour of the network.

However, because this is done for all the networks, the speed gain is more important

than using the exact networks the L rules give.

I = input O = output

I

I

O

O

Figure 5: Suppressing network.

5. Learning and evolution

In this section we show how to include the axon information into the neural network

models. In section 5.2 a link is established between the axon weights and the learning

parameters �.

5.1. Axons and structure

The neural models are usually based on the simpli�cation of the biological neural

cell [6, 8]. Figure 6 shows a neuron with synapses and input dendrites, the cell body,

and axon with synaptic terminals.

Modular neural networks have many properties that are of interest to us [2, 3, 6,

8, 10]. Segev [19] introduces di�erent models for a single neurons. Based on Segev's

result we notice that axons can be used to form modularity so that our model

resembles the operation of real brain more than the conventional model. Figure

1 shows both models so that the di�erences become clear. The axons have their

own weights and the second layer is divided into separate subsets of neurons. This

decreases the number of di�erent connections. Neurons can also specialize; in our

algorithm this is modelled so that the cells can have di�erent activation functions.

11



Synaptic
terminalsSynapse

Axon

Figure 6: Typical neuron.

The dotted lines at the layers separate \levels" that are fully connected. It is worth

mentioning that in the structured network there are usually much fewer connections

than in the conventional networks.

If the networks use back propagation and if the structure is applicable to problem

at the hand, the learning of the network will become much faster than and superior

to that in the conventional networks [3]. But why to use separate weights for the

axons? If the dendrite connections also have their own weights, then the weights

from layer one to layer two can have any value. The explanation for this is given

later in subsection 5.2 by establishing a link between the learning rate parameter(s)

� and the axon weights.

5.2. The learning algorithm

The learning algorithm for our model is based directly on the normal back propa-

gation algorithm (cf. [6, 8]). However, a few things may be pointed out.

The levels are sets of nodes, so that the levels can be collected to two-pairs

G1; : : : ; Gn, the input and output levels that are fully connected. The �rst pairs

contain the input nodes of the whole network and the last pairs the output nodes

of the whole network. We do not implicitly form the levels in the algorithms, but it

is convenient to use them in the forward pass.

Consider a network Gi = (Ii; Oi) where jIij = n and jOij = m. Hence, we have

axon weights jAj = n, activation functions jf j = m, connection matrix (dendrite

weights) N 2 R
m�n and the signals jsj = n waiting for the processing in the input

nodes. We have dropped the index i, so that we can use, say Ai, to mean the axon

weight of node i. The sum vi =
P

j Nijsj is the internal activity level of the node

i. The inputs are added directly to the internal activity level so the output O will

12



give out

f(Ns) � A = f(v) � A = fi(vi)Ai (1 � i � m); (1)

where the (�) operation means Hadamard product. The output of the node i to

the dendrite connection is fi(vi)Ai. Once we have calculated the output Oj, we can

form the inputs for the next level Gj+1 and then the outputs of this level and so on

until we have calculated the �nal outputs.

Let the �nal output (or result) be y and desired result d. Now we have error

e = d � y and we calculate the gradients against E =
P

e2i =2. In backward phase

we cannot use the levels as in forward phase, because in the inner nodes the error is

calculated from output nodes that might not be on the same level. However, we can

calculate and store vi =
P

j NijAjsj for later use. The correction for the connections

leading to output nodes i of the whole network is

�Nij =
@E

@Nij

= �iAjsj; (2)

where the �i = ei(�1)f
0

i(vi). The correction for the links leading to inner nodes i for

the whole network looks as (2), but this time we have �i = f 0i(vi)
P

k �kNkiAi. Here

the �-sum corresponds to the error ei at the output nodes.

From the equation (2) it follows that we use almost normal back propagation, if

we think that the axon weights Ai are learning rate parameters �i. Haykin [6] has

noted that the performance of the network can be improved by giving individual

parameters �i for the layers or for the cells. Our system justi�es and determines the

approriate parameters for the user through evolution, and the parameters (axons)

a�ect also the gradients more naturally than the normal algorithm does.

We do not have to choose those parameters ourselves but we leave readily the

decision to the genetic algorithm and L rules. According to Haykin [6] we can

calculate and use the gradients also for learning parameters (each node has its own

parameter), and the network will perform better and learn faster. The genetic

algorithm should �nd good axon weights for the network, but it has to learn itself

how the genes a�ect the axon weights through L rules. This may take a lot of time.

5.3. Evolution

To determine the appropriate structure, we use evolution through L systems, since

there is no direct method to calculate the goodness of a given structure. We have

used standard genetic operations and algorithms provided by galib [4].

The main algorithm is shown in Figure 7. After some initializations we let the

evolution perform a predetermined number of generations for the population. In

13



(1) Initialize random genes for the population

(2) while generations left do

(3) Make some evolutionary operations for the population

(4) for each gene in population do

(5) Form the L rules from the gene and create neural mass

(6) Generate the cell connections

(7) Train the new network

(8) Calculate the score based on the training results

(9) od

(10) od

Figure 7: The main algorithm.

each generation some genetic operations are done for the population after which

for each individual in the population, we calculate the score. To obtain the score,

we form the L rules, generate the connections and train the network corresponding

to the individual at hand in the population. This setting allows an easy way to

distribute calculations to many processors.

The score is a combination of the learning speed of the network (epochs used),

the change of the error (end error minus start error), the overall error at the end of

the learning process and the number of neurons used in the network (i.e. the size of

the network). These criteria can be weighted to make them work well together. We

will also add and test the number of connections with the criteria mentioned above.

A individual contains only the information to form L rules. The number of

generations needed is highly problem speci�c, just like the weights for the criteria.

6. Implementation

The genetic algorithms are well suited for distributed parallel implementations and

in this framework they will perform specially well. We use pvm-library [17] to dis-

tribute the calculations of each gene in the population. The pvm-distribution enables

the network of heterogeneous workstations to look as a multiprocessor computer.

The network implies rather large latency but the forming of L rules, the growth

of the network, the generation of connections and the learning of one individual will

take much more time than the tra�c caused by sending one gene (at most a few

kilos of integers) over the network. A few seconds or fractions of a second for the

network tra�c is little as only the learning phase in the calculation of the score may

take hours depending on the problem at hand.

Hence, we use master-slave model where the master performs all the genetic

14



(1) Initialize random genes for the population

(2) while generations left do

(3) Make some evolutionary operations for the population

(4) while not done do

(5) if some gene without score and free slave then

(6) Send gene to the slave

(7) end

(8) if slave with gene and the slave is ready to send score then

(9) Receive the score from the slave

(10) end

(11) if all genes have their score then

(12) done is set true

(13) end

(14) od

(15) od

Figure 8: The master.

operations and counts the number of generations and where the slaves form the L

rules, grow up and generate the network, learn the network and �nally evaluate the

score to be returned to the master. Figure 8 shows the master algorithm.

The slave is essentially the innermost part of the for-loop of the algorithm in

Figure 7 so we do not show it here. Apart from that, it will have the tasks of

receiving the gene, sending the pvm-note \score ready" and the actual score sending.

With the score we actually send also the error, the number of cells used in the

learning phase and the matrices (connections, axon weigths, i/o-types and activa-

tion function types). We want the master to keep records on the overall progress. It

records from every population the average scores, errors and sizes of the valid net-

works. The valid networks are those that have at least 2 cells (networks containing

only one cell cannot be used). The galib can also give a lot of di�erent statistics

concerning genes and population.

Also each new best scoring network is recorded into a separate �le. The �rst

networks in that �le are not very good ones but they show how the system evolve

through the time. The last networks might have rather similar scores but the net-

works can be totally di�erent. Having few networks from which to select gives

alternatives we are looking for (cf. section 7).

15



.88

.50

.57

-1.74

-.90
-2.68

-1.75

-1.72.88

.88

.71

-.713.71

.08

.86
-2.95

2.3

S

L

L

L L

Figure 9: Seven cells solving the xor problem.

7. Experiments

To obtain good results one has to �nd �rst appropriate parameters for the system

(see appendix for detailed description of parameters). It is achieved by testing the

system and looking at the outputs of the system. It may take a few days but after

that the system starts to work. Much of the time is consumed by waiting to see at

least few generations and their results. When the system is somehow tuned, it can

be used with some problems. We used the well-known xor problem.

Figures 9{10 show some structures found for the xor problem. On the left there

are input nodes and at right there is the output node. Each network was taught with

18 example-answer pairs until the error was less than one percent or the network

had used all of its epochs (one epoch consists of those 18 pairs). The results are

shown in the �gures, where we denote S for sigmoid, T for tanh, s for step and L

for linear activation function. Also rounded axon and dendrite weights are shown.

The axons are drawn with a thicker line. We also tested the known structure for xor

problem given in [6, 8], which needed, on many trials, several thousands epochs and

which even did not converge every time. The long training times for xor problem

with standard solution have been noticed also in f. ex. [8]. Hence our system has

found very interesting networks and has proved to work out (almost) as expected.

The main problem is the running time: we needed time from one to two weeks with

5 Sun Workstations and two Linux PC.

Figure 9 shows a network consisting of 7 cells. This particular example needed

80 epochs to converge. This networks contains only sigmoid and linear activation

functions. It is noteworthy that sigmoid function is needed only once. In the same

test the system found other networks with a similar graph: the axons were di�erent

and usually the activation functions were a combination of sigmoid and tanh func-

tions without step or linear functions. The convergences happened in about 130{750

16



.71 .35
-.15

-.85

-.22

.49

-.52.35

-.78

.51

-3.2

1.7-.05

.95

-4.7

-5.1

.87

.18

-.16

-.20
.18

-.25

-.30

.71

.71

.71

-.60
.71

T

S

T

S

s

s

s

Figure 10: Nine cells solving the xor problem.

epochs with average about 425 epochs.

The algorithm also found many 8 cell networks. They showed up similarly as the

7 cell networks: they had the same underlying graph and only the axons and the

activation functions di�ered. However, the axons and the activation functions did

not di�er very much. These networks were reasonably fast (convergences happened

in 200� 800 epochs).

Figure 10 shows a network consisting of 9 cells. It needed only 138 epochs before

convergence (in this particular case, not overall). One should note that three cells

has step function as their activation function.

We also found networks of sizes from 15 (average 300 epochs) up 22 (one with

51 epochs) that were able to learn e�ciently the xor problem. These networks were

found during normal system test runs. The networks structures found and believed

to be e�cient should be tested separately by several successive runs to have a view

of the overall performance.

At the same time we noted the need to make the evolution score dependent

on the total number of multiply-operations used in the learning phase. That may

describe the speed of learning most e�ectively. Networks involve rather often only

tanh and sigmoid activation function (at the same time), which is not surprising.

In some cases also step-functions has shown but linear activation functions did not

show up very often.

We remarked during tests that axon weights are not adjusted as strongly as

we supposed. To increase this \prelearning" e�ect we propose that the dendrite

weigths are not initialized randomly. We rather run the system a number of genera-

tions with deterministically initialized dendrite weight 3�10 epochs to �nd suitable

axon weights �rst and then continue normally allowing more epochs (for example

17



maximum 3500 epochs).

8. Conclusion

We have considered a new method to �nd e�cient neural network structures. Our

method simulates the evolution and thereby uses genetic algorithms. The genes

involved in the individuals are encoded into the L rules. It is possible that we have

stored too much information in our individuals and we are planning to simplify

them.

After the L rules are formed, we start to operate on 2-dimensional cell matrix

with L rules. Each L rule is matched in turn to whole matrix and if at least one

matching occurs the age of the rule is increased. When the rule is old enough to die,

we stop to use that L rule. The age and other parameters of L rules are produced

by the genetic algorithm.

The cell matrix is formed with L rules or more exactly, with L rule directed

growth. After producing enough cell mass (i.e. no more applicable L rules can be

found), we grow the axons from the cells and then form some dendrite connections.

Now the network topology is in principle ready to be taught. Practically, however,

we want to suppress the network. We remove useless cells and connections.

In our neural model the signal goes from the neuron �rst through the axon, after

which it goes through dendrites to the other neurons. The neuron having signals

from many sources �rst sums them up and then applies activation function, which

also can be one of several types (given by the L rules).

The axons represent the prelearned things: information that is knowledge by

birth. The dendrite connections are used to represent experience. A link is shown

between learning parameters used in back propagation and the axon weights.

Our experiments show that this kind of system can be used to �nd very e�cient

structures for neural networks. Our prototype system is still rather slow and it

consumes much computational capacity. However, other similar systems su�er also

from these kinds of problems. These problems are mostly technical and we are

working to improve the e�ciency of our system.

We have used genetic algorithms, but maybe evolutionary algorithms (EA) [1]

would be more useful in this kind of problem. It is very di�cult to set all the

parameters for genetic algorithm and learning process. If we use EA, we can leave

many decisions to the algorithm. On the other hand our problem will easily become

too large to solve if we leave all parameters to the EA.

18



Acknowledgment

Authors are grateful to Prof. Martti Juhola for his comments.

References

[1] Thomas B�ack, Evolutionary Algorithms: Principles and Algorithms, SNAC|

School on Natural Computation, Working Material, Turku Centre for Computer

Science, TUCS General Publication, No. 6, August 1997.

[2] Richard K. Belew, Interposing an ontogenic model between genetic algorithms

and neural networks, In: Stephen J. Hanson, Jack D. Cowan and C. Lee Giles

(eds.), Advances in Neural Information Processing Systems 5, Morgan Kauf-

mann, San Mateo, CA, 1993, 99-106.

[3] Egbert J.W. Boers and Herman Kuiper, Biological metaphors and the design

of modular arti�cial neural networks, Master's thesis, Dep. CS and Exp. and

theor. psych., Leiden University, Netherlands.

[4] galib, software available in http://lancet.mit.edu/ga/.

[5] Frederic Gruau, Neural Network Synthesis Using Cellular Encoding and the

Genetic Algorithm. Ph.D. Thesis, Ecole Normale Sup�erieure de Lyon, France,

1994.

[6] Simon Haykin, Neural Networks, A Comprehensive Foundation, Macmillan Col-

lege Publishing Company, 1994.

[7] Gabor T. Herman and Grzegorz Rozenberg, Developmental Systems and Lan-

guages, North-Holland, 1975.

[8] John Hertz, Anders Krogh and Richard G. Palmer, Introduction to the theory

of neural computation, Lecture Notes Volume I, Santa Fe Institute Studies in

the Sciences of Complexity, Addison-Wesley, March 1992.

[9] Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell (eds.), Principles

of Neural Science, Third Edition, Elsevier, 1991.

[10] Hiroaki Kitano, Designing neural networks using genetic algorithms with graph

generation system, Complex Systems 4, 1990, 461{476.

[11] Aristid Lindenmayer, Mathematical models for cellular interactions in develop-

ment, Parts I and II, Journal of Theoretical Biology 18, 1968, 280-315.

19



[12] S.M. Lucas, Evolving neural based learning behaviours with set-based chro-

mosomes, In: Proc. of European Symposium on Arti�cial Neural Networks

(ESANN '96), 1996, 291 { 296.

[13] Warren S. McCulloch and Walter Pitts, A logical calculus of the ideas immanent

in nervous activity, Bulletin of Mathematical Biophysics, 5, 1943, 115-133.

[14] Zbigniew Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-

grams, Springer-Verlag, 1992.

[15] Marvin Minsky, Computation: Finite and In�nite Machines, Prentice Hall,

1967.

[16] Melanie Mitchell, An Introduction to Genetic Algorithms, The MIT Press, 1996.

[17] pvm, software available in http://www.epm.ornl.gov/pvm/pvm home.html

[18] Grzegorz Rozenberg and Arto Salomaa,The Mathematical Theory of L Systems,

Academic Press, 1980.

[19] Idan Segev, Single neurone models: oversimple, complex and reduced, TINS

15, 11, 1992, 414{421.

20



Appendix - system parameters

The whole system has many parameters which a�ect its behaviour dramatically.

The parameters are divided into a groups. One group contains the parameters that

are �xed into the code as constants and to change them one have to compile the

code. The other three groups are read from the �les as the system starts. These

�les are conf gen.dat, conf �x.dat and conf run.dat.

The �rst set is the parameter �le controlling the genetic algorithm. The galib

has many things that can be parametrized. We use the next ones:

GEN_POP_SIZE 100

GEN_GENERATIONS 1000

GEN_SCORE_FILE bog.dat

GEN_FLUSH_FREC 3

GEN_CROSSOVERS 0.9

GEN_MUTATIONS 0.015

GEN_FILE_CHANGE 250

The meaning of GEN_POP_SIZE, GEN_GENERATIONS, GEN_CROSSOVERS and

GEN_MUTATIONS is obvious. The GEN_FLUSH_FREC is the frequency in generations

how often to write the some statistics into the �le GEN_SCORE_FILE. Parameter

GEN_FILE_CHANGE is not used with master-slave -model. It is used if the calculations

are done on single machine without pvm and the number is the generation number

when to change the conf run.dat to some other �le with the same parameters (with

di�erent values). This way we can change the behaviour of the system at run time,

if it seems to be worthwhile.

The second set of parameters are �xed parameters, i.e. they are not meant to be

changeable during the run. The parameters are:

NUMBER_OF_INPUTS 16

NUMBER_OF_OUTPUTS 3

NN_EX /home/ohdake/tyisah/gennet/data2/esim.mat

NN_AN /home/ohdake/tyisah/gennet/data2/ans.mat

STATS_FILE /home/ohdake/tyisah/gennet/data2/stats.dat

COLLECT_STATS 1

BEST_NET_FILE /home/ohdake/tyisah/gennet/data2/best_nets.dat

By NUMBER_OF_INPUTS and NUMBER_OF_OUTPUTS we �x the size of the network. The

number of inputs means the maximum number of input nodes the network can

have. It is also the number of columns the example �le contains (dimension of one

example). Similarly, the number of outputs is the number of outputs the network

21



must have and at the same time the number of columns the answer �le contains

(dimension of one answer to an example). The rows of the example and the answer

�les correspond to each other.

That we want every time the number of outputs to be precisely used has nothing

astonishing. However, the number of inputs does not have to be �xed in the network

itself. There are situations when the network can learn the problem without using

all its inputs [3]. Also if the network needs more inputs than the example �le has,

the additional inputs can be interpreted as treshold inputs giving always �1 signal.

The COLLECT_STATS parameter tells if the statistics are to be collected. If it is

one, then the statistics are collected to STATS_FILE. The NEST_NET_FILE is always

in use.

Another group of parameters are varying (run) parameters. At the moment the

system reads this �le only once. Yet it is easy to change the system so that it reads

the parameter �le every time it processes a gene and this would enable us to change

the values at run time by writing directly new values to the �le. These parameters

are

NN_USE_INIT_VALS 1

NN_INIT_VALS 0.5

NN_MAX_EPOCHS 2000

NN_ALFA 0.5

NN_ERROR 0.01

NN_ME_ERROR 0.0001

NN_ME_ERROR_T 25

NN_DEATH 750

NN_SHOW_PROG 0

NN_LARGE_SIZE 45

NN_LARGE_EPOCHS 2

SC_SIZE_W 0.2

SC_ERROR_W 2500

SC_IDEAL_SIZE 15

SC_LITTLE_NET 95

The parameters with pre�x NN are used with back propagation algorithm and

the parameters with pre�x SC are used in the function that calculates the actual

score to be given for the genetic algorithm.

The �rst two parameters are related to the use of initial values. If we want to

use initial values before starting to learn the network, the values are given randomly

from the interval [�0:5; 0:5]. NN_MAX_EPOCHS counts the number of times we teach

the example-answer pairs (whole �le) to the neural network. This varies a lot with

22



di�erent problems. NN_ERROR is the error level of the mean square error of the epoch

that we consider as small enough.

Parameters NN_ME_ERROR and ME_ERROR_T are used to stop the learning phase

of the networks that have converged to some value. If the di�erence between two

consecutive epochs is smaller NN_ME_ERROR we decrease ME_ERROR_T by one. When

it is zero, we stop the learning phase. In the tests we realized rather quickly that

many networks are such that there is no need to continue the learning phase to

NN_MAX_EPOCHS. Parameter NN_DEATH is also used to quit the learning phase before

NN_MAX_EPOCHS: it is decreased by one every time the error of the previous epoch is

smaller than the new one. When it reaches zero we stop the learning phase.

NN_SHOW_PROG should be zero (false) when used with pvm-system. If it is one

(true), then the learning algorithm shows the progress of error of the networks,

not every epochs, but some. NN_LARGE_SIZE is the size of the networks in cells

that we consider too large to be practical and these networks are learned only

NN_LARGE_EPOCHS epochs. \Too large" is very dependent on the problem at hand

and it should be considered carefully. Too large networks are slow to teach and they

are also rather often non-stable.

The SC_LITTLE_NET is the number to be added to the networks that have less

cells than the number of the input and output nodes is. It can be said that those

networks are not good ones, because it is unlike that there will be intermediate nodes

and hence the question of structure is in almost every case ruled out. If the network

size is less than SC_IDEAL_SIZE we add same amount to the size of the network.

Size is used in score so that its square is multiplied with the number of the epochs

used (if the network did not learn the problem then the NN_MAX_EPOCHS is used)

and then it is weighted with SC_SIZE_W parameter and decreased from the score.

SC_ERROR_W weights the inverse of the error and this is added to the score.

Size is squared because we want networks that learn and operate fast. The total

number of multiply-operations is of order of square of the size multiplied with the

number of the epochs used in the operation (feed forward) phase.

23


