
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

TRANSLATIONOF CONDITIONALCOMPIL

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF TAMPERE

REPORT A-1997-13

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1997-13, NOVEMBER 1997

TRANSLATION OF CONDITIONAL COMPILATION

Maarit Harsu

University of Tampere

Department of Computer Science

P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4258-X

ISSN 0783-6910

Translation of conditional compilation

Maarit Harsu

Department of Computer Science
University of Tampere

P.O. Box 607, FIN-33101 Tampere, Finland
e-mail: csnima@cs.uta.fi

Abstract

This paper describes how to translate the compiler directives for

conditional compilation in automated source-to-source translation be-

tween high-level programming languages. The directives for condi-

tional compilation of the source language are translated into the cor-

responding directives of the target language, and the source program

text of each branch of conditional compilation is translated into the

corresponding target program text. Such translation raises a problem

in conventional parsing because the source text is not a continuous

stream of tokens of a legal program but rather a sequence of frag-

ments that must be combined in certain ways to obtain one of several

possible alternative programs. As a solution to this problem, a pars-

ing technique is introduced which is able to cope with such input if

certain reasonable conditions are satis�ed.

Keywords: source-to-source translation, language conversion, con-

ditional compilation.

1 Introduction

Some programming languages have compiler directives enabling conditional
compilation. Compilers for these languages usually have a preprocessor which
�rst evaluates the compilation condition and then searches for the branch to
be executed. The preprocessor forwards only one branch to the compiler and
neglects the other branches. Thus, the actual compiler parses and compiles
only the branch ful�lling the compilation condition.

However, problems arise when implementing a source-to-source transla-
tor for this kind of language. In language conversion, the aim is naturally to

1

translate the conditional compilation of the source language into the condi-
tional compilation of the target language. Thus, the translator should parse
and translate all the branches of the conditional compilation. However, nor-
mal continuous parsing is not always adequate. The successive branches of
conditional compilation do not always form together a legal stream of tokens,
and thus, the syntactical rules of the language may be broken. Consequently,
the translator must somehow revoke its parsing process. When it has parsed
one branch, and is starting to parse another one, it should restore the pars-
ing situation in which it was when the head of the condition began. In other
words, when a new branch begins, the converter should pretend not to have
done any parsing during the earlier alternative branches handled so far. The
described parsing method is called multi-branch parsing. Because the trans-
lator parses and translates all the branches, it has also the problem of how
to store the nonterminal and terminal symbols of several branches.

We detected the problem of translating conditional compilation in source-
to-source translation during the development of the PL/M-to-C converter
translating PL/M [12] programs into C [11, 7]. The converter is implemented
with TaLE (Tampere Language Editor) [8, 9], an object-oriented framework
and a supporting editor for language implementation. In the earlier paper
concerning the converter [11], we did not discuss the problem of translating
conditional compilation at all. In [7], we tried to avoid the problem in usual
cases by grammar transformations. In the present paper, we describe a more
general solution. To implement this solution some modi�cations are required
to the parsing code produced by TaLE.

This paper proceeds as follows. In the second section, we consider the
problem in more detail. In sections 3 and 4, we present the solution, �rst
informally and then as algorithms. These sections describe the solution in
terms of general top-down parsing. Section 5 considers the solution especially
from the point of view of TaLE. Finally, we give some concluding remarks.
Throughout the paper, we assume a familiarity with the terms concerning
parsing. For example, the term 'parse tree' is used as de�ned in [1].

2

2 Problem

The problem of translating conditional compilation is due to the di�erence
between conventional compilation and source-to-source translation. When
compiling, no problems arise because only one branch of the conditional
compilation is parsed and translated. However, when translating, all the
branches are parsed, and parsing them in pure consecutive order may be
against the syntactic rules of the source language.

In source-to-source translation, the nonterminal and terminal symbols of
all the branches should be stored somehow. During conventional parsing a
parse tree of the program is logically constructed. When only one branch is
parsed, the symbols of the branch are stored to the parse tree in a normal
way. The branches of conditional compilation are actually alternatives of
each other, and hence, the parse tree has place for the symbols of only one
of the branches. Consequently, in source-to-source translation, the symbols
of additional branches require some special storing convention.

In the following examples, we use PL/M compiler directives for condi-
tional compilation ($IF, $ELSEIF, $ELSE and $ENDIF). There are many sit-
uations in which continuous parsing does not cause any problem. If the
conditional compilation has only one branch, normal parsing is always possi-
ble. Even if there are several branches, but the branches form a syntactically
correct token stream, continuous parsing does not cause any problem. For
example, the branches may consist of whole statements, as follows:

statement1;

$IF

statement2;

statement3;

$ELSE

statement4;

$ENDIF

statement5;

In this case, the parser can simply treat the compiler directives like com-
ments and parse the program text in normal way. Because conditional com-
pilation is often used in this way, the problem is easy to ignore in source-
to-source translators. However, testing the PL/M-to-C converter with real

3

industrial PL/M programs revealed many ways to use conditional compila-
tion such that continuous parsing of the branches is not possible. In the
following example a syntax error occurs when parsing the program text in
consecutive order:

DECLARE

$IF

a BYTE;

$ELSE

a WORD;

$ENDIF

According to the syntactic rules of PL/M, variables are declared after
the keyword DECLARE, di�erent variables are separated from each other with
commas, and the whole declaration ends with a semicolon. Thus, when
parsing the above declaration continuously, a syntax error occurs when the
variable a is detected for the second time. A more complicated (�ctitious)
example of nested conditional compilation in a declaration is shown below:

DECLARE

$IF

a BYTE

$IF

DATA (1); /* constant value for the variable a */

$ELSE

INITIAL (2); /* initial value for the variable a */

$ENDIF

$ELSE

a WORD

$IF

PUBLIC; /* public attribute for the variable a */

$ELSE

EXTERNAL; /* external attribute for the variable a */

$ENDIF

$ENDIF

In PL/M, either constant or initial values can be given for a variable in a
declaration, but not both. A variable can be de�ned either public or exter-
nal, but not both. Thus, the above code cannot be parsed continuously.

4

Although there are several papers concerning source-to-source transla-
tion, we have found only one paper concerning the problem of translating
conditional compilation, namely [2]. Other papers do not mention this prob-
lem at all. Instead, they often mention that di�cult parts of the source
language, for example those which have no correspondence in the target lan-
guage, are left untranslated; for example, see [10]. Many source-to-source
translators require the user assistance: the user must either edit the source
program before-hand to a more suitable form for the translator or complete
the translated target program afterwards by hand. This policy has likely
been applied to the translation of conditional compilation, too.

In [2], translation of macros and other preprocessor structures is consid-
ered. The authors show how macro de�nitions and calls can be translated
in source-to-source translation. They suggest a method which �rst expands
the macros. After that parsing can be performed normally. When translat-
ing, they use a syntax tree and a fragment tree telling which fragment each
token belongs to. According to the fragments, they can conclude whether
the expanded macro should be translated into the body of the macro or into
the call of the macro. The same practice can be applied to translating all
textual substitutions including conditional compilation. According to the au-
thors [3], the translation of a program is performed in several sessions, and
each conditionally compiled program region is translated in di�erent sessions.
Thus, some parts of the program are translated several times.

3 Solution

In this section, we �rst introduce some assumptions which the solution is
based on. Then we describe the solution step by step.

3.1 Assumptions

The solution is based on top-down parsing. We assume a parsing stack, which
is used in parsing in the following way (the algorithm is generalized from [5],
p. 121):

parsing_algorithm is

push the start symbol onto an empty stack;

5

while the stack is not empty do

/* let X be the top stack symbol */

/* let a be the current input token */

if X is a nonterminal symbol then

pop X from the stack;

push the components of X onto the stack in reverse

order;

else if X is a terminal symbol and X = a then

pop X from the stack;

scan a;

else

/* syntax error */

end if;

end while;

end parsing_algorithm;

We assume that the parsing stack is implemented as an array because we
need the indexes of the terminal and nonterminal symbols. We also use the
well-known convention of source-to-source translators that comment strings
of the program are attached to the latest parsed nonterminal in the parse
tree. We treat compiler directives like comments and apply the same con-
vention to the compiler directives, too.

3.2 Storing parsing situations

An easy solution for the problem of translating conditional compilation would
be to translate the program as many times as it has combinations of com-
pilation conditions. At each translation time, we would parse and translate
a di�erent combination. Then we could merge all the di�erent translations
together. However, this would be very ine�ective solution, we would parse
and translate large parts of the program unnecessarily over and over again.

As mentioned, to solve the problem of translating conditional compila-
tion properly we have to revoke parsing. When we detect the beginning of
conditional compilation (if-control), we store the parsing situation. When
we detect a new branch of conditional compilation (else-if-control or else-
control), we restore the stored parsing situation. When we detect the end

6

of conditional compilation (end-control), we can forget the stored parsing
situation. If the end-control belongs to an inner conditional compilation of
nested ones, we forget the current stored parsing situation and set the current
situation to denote the previous situation. Thus, this multi-branch parsing
method needs a stack structure for storing parsing situations.

The described solution seems very obvious and easy. However, the prob-
lem is how to store the parsing situations, based on the standard top-down
parsing algorithm. We propose the following method. We collect the terminal
and nonterminal symbols parsed during the �rst branch of conditional com-
pilation. Then we parse the same symbols during each subsequent branch.
When we have applied this method to all branches, normal parsing can con-
tinue, and no syntactic errors occur.

As can be seen from the top-down parsing algorithm (in subsection 3.1),
when the parsing of a nonterminal is started, the nonterminal is �rst popped
from the parsing stack. Thus, if a nonterminal has been popped, its parsing
operation has begun. Consequently, to know the parsed nonterminal and
terminal symbols we collect all the popped symbols during the �rst branch
of conditional compilation. Then we call the parsing functions of these non-
terminals during the following branches.

However, we need not and must not collect all the popped symbols. Con-
sider the nonterminal A having the following structure

A -> B C D.

If A has been parsed during the �rst branch of conditional compilation, it has
been popped from the parsing stack. In addition, its components have been
popped. Thus, our pop list contains the nonterminal A, the components of
A, the components of the components of A, and so on, as far as they have
been popped. However, if parsing of A has been completed during the �rst
branch, it is su�cient to call only the parsing function of A in the following
branches. When calling the parsing function of a nonterminal, the parsing
sequence proceeds implicitly to the components of the nonterminal and to the
components of the components as far as they exist. Thus, we should remove
the component symbols from the pop list such that the pop list contains as
large nonterminals as possible.

7

3.3 Reducing pop lists

To remove the undesired component symbols from the pop list, we should be
able to conclude the component relations between the symbols. We assumed
the parsing stack to be implemented as an array. Hence, we can store the
array index of each symbol popped, and attach the index to the same symbol
in the pop list. From these indexes we can conclude the component relations
between the symbols.

Consider again the nonterminal A shown above. If A is popped from the
index 1, the component nonterminals are popped from the indexes 3, 2, and
1, respectively. Consequently, we obtain an algorithm for reducing a pop
list. If we �nd a sequence of symbols having the indexes of the form 1, 3,
2, 1 from the pop list, we can remove the whole sequence except the �rst
symbol. We know that the other symbols of the sequence are the component
symbols of the �rst nonterminal. In general, we can search for these kinds
of removable sequences as follows. We start from the end of the pop list.
We mark each item of the pop list in turn (�rst we mark the last item). We
move backwards item by item as long as i = j + 1 holds for the index i of
the current item and the index j of the previous item. When no such indexes
are found, we compare the index of the current item with the index of the
marked item. If they are equal, we have found a removable sequence, and
we can remove it. Searching and removing removable sequences continues
until all the items have been marked and no more removable sequences can
be found. The resulting pop list is the reduced pop list.

By using the described method, we can �nd out the parsed nonterminal
and terminal symbols. These symbols have been popped from the parsing
stack during the �rst branch. To restore the parsing situation, we put (not
push) these symbols again to the parsing stack to the same indexes as they
were earlier, and call their parsing functions, which e�ect popping them from
the parsing stack and parsing them. Note that when putting symbols to the
parsing stack again, we must be sure that we do not put them on the indexes
which already have symbols. To consider this further, we de�ne:

De�nition 1 A pop list is well-structured if all the indexes of its nontermi-

nal and terminal symbols are greater than the index of the top item of the

parsing stack and if each index between the lowest and the highest index of

8

the pop list appears exactly once.

3.4 Obtaining well-structured pop lists

If the pop list is well-structured, there is no problem in putting the additional
nonterminal and terminal symbols back to the parsing stack. To �nd out in
which situations the pop list is well-structured, we �rst examine the situation
in which the pop list is not well-structured. Consider the following grammar:

Statement -> Statement1 | Statement2 | ...

StatementList -> Statement+

Statement1 -> 'IF' Condition 'THEN' Statement

Statement2 -> 'DO' StatementList 'END'

In the above grammar, nonterminal names begin with uppercase letters, ter-
minal names are enclosed with quotes, and plus (+) denotes a list having one
or more elements. Suppose we have the following input text:

/* Input 1 */

$IF

IF cond1 THEN DO

Statement3

$ELSE

IF cond2 THEN DO

Statement4

$ENDIF

Statement5

END

Table 1 shows the terminal and nonterminal symbols pushed onto the
parsing stack and popped from it.

Table 1: A sample content of the parsing stack.

4 ='IF'

3 =Condition ='DO' =Statement

2 ='THEN' =StatementList -[Statement]

1 =Statement1 =Statement -'END'

9

In Table 1, the numbers of the leftmost column denote the indexes of the
terminal and nonterminal symbols. The symbols marked with (=) are both
pushed onto the parsing stack and popped from it, the symbols marked with
(-) are only pushed onto the parsing stack. To get the above situation of the
parsing stack, we perform the following actions. First, we push the nonter-
minal Statement1 onto the parsing stack. Then we pop it from the parsing
stack and substitute it with its components ('IF', Condition, 'THEN', and
Statement). We pop the �rst three of them ('IF', Condition, and 'THEN').
Actually, when the nonterminal Condition is popped, it is substituted with
its components, which are again popped and substituted with their compo-
nents; we omit the details here. (The resulting situation is still the same.)
We pop the nonterminal Statement and because the next coming statement
is Statement2, we push its components. We pop the component 'DO'.

The nonterminal StatementList is a list structure having no separa-
tor. We assume the following parsing actions for such structures. The list
nonterminal (here StatementList) is popped from the parsing stack, the
nonterminal of the list body (here Statement) is pushed onto the parsing
stack as optional (optionality is presented with enclosing brackets). In addi-
tion, the body nonterminal is pushed as such, and the parsing function of the
body nonterminal is called. While the structure of the body occurs in the
program text, the body nonterminal is pushed, and its parsing function is
called. When the whole list structure is parsed in this way, the optional body
is popped from the parsing stack. In the case of Table 1, we have popped
the body nonterminal Statement. Because the parsing of the whole list is
not �nished, we have not yet popped the optional body.

According to Table 1, we obtain the following pop list (the index and the
name of the symbol):

1 Statement1

4 'IF'

3 Condition

2 'THEN'

1 Statement

3 'DO'

2 StatementList

3 Statement

10

We can reduce the pop list as follows:

1 Statement1

3 'DO'

2 StatementList

3 Statement

We can present the situation of the parsing stack (Table 1) in a more sim-
pli�ed form:

2 [Statement]

1 'END'

This is the situation in which the pop list is not well-structured: we cannot
put the items of the pop list to the parsing stack properly. However, suppose
we have, instead of the above input text, the following input text:

/* Input 2 */

$IF

IF cond1 THEN DO

Statement3

Statement5

END

$ELSE

IF cond2 THEN DO

Statement4

Statement5

END

$ENDIF

In this situation, the items of the parsing stack (optional statement and the
terminal symbol 'END') are also popped, and thus, added to the pop list.
Our pop list is then as follows:

1 Statement1

3 'DO'

2 StatementList

3 Statement

2 [Statement]

1 'END'

11

It can be reduced two times, �rst as follows:

1 Statement1

3 'DO'

2 StatementList

1 'END'

and second as follows:

1 Statement1

Thus, if we had this situation, our pop list would be well-structured and
we could put the nonterminal Statement1 to the parsing stack, because the
index 1 would be free.

As shown above, nonterminal and terminal symbols move from the pars-
ing stack to the pop list because popped items are taken away from the
parsing stack while the pop list contains the popped items. When we move
symbols from the parsing stack to the pop list, the item count of the parsing
stack decreases and that of the pop list increases. The smaller the item count
of the parsing stack, the more likely the indexes of the pop list are greater
than the top index of the parsing stack. Thus, the pop list is more likely
well-structured. The larger the item count of the pop list, the more likely we
can reduce it and make it well-structured.

3.5 Parsing conditional compilation

If the pop list is well-structured, the proposed multi-branch parsing is possi-
ble, because we can restore the parsing situation by putting the nonterminal
and terminal symbols of the pop list to the parsing stack. We are now trying
to characterize the cases where the pop list is well-structured. In the follow-
ing theorem, we denote S the set of nonterminals whose parsing has started
during the �rst branch of conditional compilation.

Theorem 1 If parsing of all the nonterminals in set S has both started and

�nished during the �rst branch of conditional compilation, the pop list is

well-structured.

12

Proof We �rst proof the following reverse statement. If the pop list is not
well-structured, the set S contains nonterminals whose parsing has started
but not �nished. The proof of this reverse statement is as follows. If the
pop list is not well-structured, it has some nonterminal symbols whose com-
ponents are lacking. Because these components have not been popped, their
parsing functions have not been called. Consequently, parsing of the nonter-
minals which have the unparsed nonterminals as their components has not
been �nished. These nonterminals are those items of set S whose parsing has
started but not �nished. Hence, the reverse statement holds, and thus, the
original statement holds, too. 2

Note that when conditional compilation occurs, there are some nontermi-
nals whose parsing has started but not �nished. At least this holds for the
start symbol of the language. However, these nonterminals are not meaning-
ful from the point of view of the well-structured pop lists. We require only
that if parsing of a nonterminal has started during a branch it must also be
�nished during the branch to get a well-structured pop list.

Multi-branch parsing is always possible if the pop list is well-structured.
However, parsing can be possible even if the pop list is not well-structured.
In the previous subsection, we illustrated the relation between pop lists,
one of which being well-structured and the other not. It seemed that well-
structured pop lists can be obtained from ones which are not well-structured
by just moving symbols from the parsing stack to the pop list. In practice it
is not such simple, because the calling sequence in which these symbols will
be popped has started. Thus, we cannot explicitly pop the symbols from the
parsing stack, or they would be popped more than once, which causes errors.

When we have a pop list which is not well-structured, parsing succeeds
in some situations in the following way. Consider the �rst input text (In-
put 1) of the previous example (in subsection 3.4). The branches of the
conditional compilation contain the beginning of the conditional statement
(Statement1). The common end of the statement is after the whole condi-
tional compilation. When we note that the pop list is not well-structured,
we search for the end of the conditional compilation (end-control). We read
input text from this new location until the pop list is well-structured, i.e.,
until the necessary symbols are popped from the parsing stack. Then we
return to the earlier location.

13

However, it is possible to �nd situations in which parsing does not succeed
if the pop list is not well-structured. Consider the following situation:

$IF assignment

a

$ELSE

RETURN

$ENDIF

$IF assignment

= 1;

$ELSE

2;

$ENDIF

It is easy to conclude from the above example that parsing does not succeed
with our method. However, the example is �ctitious and not very sensible.
Note that because the statement of the �rst branch is un�nished, the same
kind of statement is expected to appear in the second branch, too. Suppose
the whole conditional compilation is in more sensible form as follows:

$IF

a = 1;

$ELSE

RETURN 2;

$ENDIF

Now parsing succeeds (the pop list would be well-structured). Because the
statements of the branches are �nished, they are allowed to di�er each other.

After all, if the pop list is well-structured, multi-branch parsing succeeds.
In addition, even if the pop list is not well-structured, parsing succeeds in
some cases, but not always. Thus, a well-structured pop list is a su�cient
but not a necessary condition for the success of multi-branch parsing.

3.6 Storing the symbols of the additional branches

We still have to solve the problem of storing the nonterminal and terminal
symbols of the additional branches of conditional compilation. We cannot

14

store them to the parse tree to their own places, because it has only room
for the symbols of one branch.

We assumed that compiler directives (and comment strings) are attached
to the latest parsed nonterminal. Thus, each nonterminal has a comment
list containing the comment strings and the compiler directives attached to
it. To store also the additional nonterminals, we expand the structure of
the comment list item such that each item has a list of symbols attached to
it. Thus, the symbols appearing in a program text after, for example, the
compiler directive if-control are attached to this directive, and the if-control
itself is attached to the preceding nonterminal.

In source-to-source conversion, when a nonterminal has been translated,
the comments and the compiler directives of the nonterminal are written. If
a compiler directive has other symbols attached to it, translation functions
of these symbols are called. This convention works very well in usual cases.
However, translation functions are called one after another and they are sep-
arated from their original context. If more global information is needed in
conversion, the result of the translation may not be valid. How well this
convention works depends on how the user has divided the grammar of her
language to di�erent nonterminals and how she has divided the semantic ac-
tions to the translation functions of di�erent nonterminals.

4 Implementation of the solution

To translate conditional compilation, we have to make some additions to the
parsing code. We need some additional functions mainly concerning pars-
ing stack and scanning. In this section, we show the algorithms in essence
considered in the previous section. In addition, we show how multi-branch
parsing can be implemented without an explicit parsing stack.

4.1 Parsing stack

We need a new data structure, a stack for pop lists. The top of the stack has
the situation of the current conditional compilation (the current pop list).

15

The parsing stack originally has the operations push and pop (as shown in
the top-down parsing algorithm), which pushes a nonterminal or a termi-
nal symbol onto the parsing stack and pops a symbol from it, respectively.
We need new push and pop operations for the pop list stack. These new
operations are called push list and pop list, and the code of them is as
follows:

push_list is

create a new pop list;

add the new pop list onto the top of the pop list stack;

increase 'pop_saving';

end push_list;

pop_list is

take the pop list from the top of the pop list stack;

set the pop list just under the taken pop list to be the

new top of the pop list stack;

delete the pop list taken away;

decrease 'pop_saving';

end pop_list;

We need the global variable pop saving to tell whether the nonterminal or
terminal symbol popped by the function pop should be added to the current
pop list (on the top of the pop list stack). Note that the variable pop saving

has to be an integer variable (not a boolean variable), because conditional
compilation may be nested. We show the additions to the original function
pop later. We need also a new operation restoring the parsing stack situation:

restore is

reduce the current pop list;

if the current pop list is well-structured then

set the variable 'skipped' the value false;

put each symbol of the pop list to the parsing stack

to the same index from which it has been popped;

set 'last_symbol' to denote the latest parsed symbol;

for each put symbol

parse the symbol;

add the symbol to the nonterminal list of

'last_symbol';

16

end for;

else

set the variable 'skipped' the value true;

mark the current scanning position;

set the new scanning position to be just after the

next end-condition;

end if;

end restore;

We need the global variable skipped to tell whether we have skipped over the
rest of the conditional compilation. If the pop list is not well-structured, we
mark the current scanning position and skip scanning to the next occurence
of an end-control. The original pop operation restores the scanning position.
All the necessary additions to the pop function are shown below:

pop is

if the parsing stack index is greater than zero then

// added code begins

if 'pop_saving' is greater than zero then

add the top symbol of the parsing stack to the

pop list on the top of the pop list stack;

end if;

if 'skipped' and the pop list is well-structured

then

set the scanning position to the marked one;

set the variable 'skipped' the value false;

end if;

// added code ends

decrease the parsing stack index;

end if;

end pop;

4.2 Scanning

We need two new scanning operations for conditional compilation. We need
a boolean function is conditional, which returns true if and only if a com-
piler directive for conditional compilation is coming next in the input. In
addition, we need the operation process conditional, which acts accord-
ing to the type of the directive, as follows:

17

process_conditional is

if if-control is coming next then

push_list();

else if else-if-control or else-control is coming next

then

restore();

else if end-if-control is coming next then

pop_list();

end if;

end process_conditional;

The operation process conditional just calls the added operations of
the parsing stack, which actually has a new operation for each di�erent con-
trol of conditional compilation.

4.3 Parsing conditional compilation without a stack

In the latest two chapters (3 and 4), we have described the multi-branch
parsing method and its implementation for conditional compilation. We
have assumed the parsing stack. However, multi-branch parsing could also
be implemented in recursive descent parsers having no explicit parsing stack.
These parsers have a parsing function for each nonterminal symbol of the
language. This function calls the parsing functions of the nonterminal com-
ponents, and scans the terminal components. To our nonterminal A, the
parsing function (having the same name A) would be as follows:

A is

B;

C;

D;

end A;

More examples of these parsing functions can be seen, for example, in [5], pp.
33-38. Instead of the explicit stack, recursive descent parsers have an implicit
run-time stack containing the called procedures in the form of activation
records. To allow parsing of conditional compilation, the parsing function of
the nonterminal A should be modi�ed as follows:

18

A(i: integer) is

B(i);

C(i+1);

D(i+2);

if pop_saving is greater than zero then

add the current nonterminal (A) to the pop list;

end;

end A;

We use the global variable pop saving for the same purpose as in the stack
implementation (to tell whether nonterminal and terminal symbols should
be saved to the pop list). We obtain the indexes of the pop list items by
adding an integer parameter for each function corresponding a nonterminal
of the language. If the nonterminal A receives the parameter i, it passes the
same value i to the �rst component B, the value i+1 to second component
C, and the value i+2 to the third component D. We can reduce the pop list
normally (as described in subsection 3.3). To parse the additional symbols,
we just call the parsing functions of the corresponding nonterminal symbol
or scan the corresponding terminal symbol.

With the above modi�cations, multi-branch parsing could be implemented
in recursive descent parsers, too. However, the modi�cation to these parsers
is harder than to the parsers having a parsing stack, because the same mod-
i�cation is required in all the parsing functions.

5 Modi�cations to TaLE

In this section, the necessary parsing modi�cations are considered from the
point of view of TaLE.

5.1 Backgrounds

TaLE (Tampere Language Editor) is a tool supporting the development of
language implementation software in an object-oriented programming envi-
ronment. It emphasizes software engineering qualities rather than contribu-
tions in formal languages. TaLE does not expect the user to write a language

19

speci�cation, but to edit the classes representing language structures under
the control of a specialized editor. In order to use TaLE, the user need not
learn any textual metalanguage. TaLE is meant to be simple and easy to use,
to attract also users who intend only to implement a small task concerning
textual representations of data, speci�cations, algorithms, etc.

TaLE is written in C++ [13]. There are actually two versions of TaLE,
one generates C++ code and the other Java [4] (both are written in C++).
There are several papers about TaLE: an overview can be found in [8], an
example of using TaLE in [9], and the introduction of the Java version in [6].
The PL/M-to-C converter is implemented with the C++ version.

A main principle in designing TaLE has been reuse. Reuse is due to the
class division of TaLE which is di�erent from that of more traditional sys-
tems. In TaLE, each language structure (nonterminal symbol in the gram-
mar) is implemented as an independent software unit, i.e., a class. Each
nonterminal knows only its component nonterminals. Thus, the syntactic
information about a language is dispersed in several classes.

In TaLE, parsing is controlled by metaobjects. Each nonterminal class has
a metaclass, which knows the components of the nonterminal. The instance
of the metaclass, metaobject takes care of the instantiation of its actual non-
terminals when needed. A metaclass has two basic operations, look ahead

and make. The operation look ahead is a boolean function returning true if
and only if the corresponding nonterminal appears next in the input. The
function make is the instantiation operation returning a new instance of the
actual nonterminal class.

TaLE automatically generates the parsing code for the given grammar.
However, TaLE provides no semantic support for a language, instead, the
user is expected to write the semantic functions for her language. The se-
mantic processing begins by calling the function process of the start symbol
of the language. TaLE provides the feature to generate the default process
functions for each class. For example, the default process function of a
structural class contains the calls of the process functions of the compo-
nents. The process function of each nonterminal of the PL/M-to-C con-
verter implements the translation of the nonterminal.

20

5.2 Modi�cations

Some concepts concerning conditional compilation in TaLE are di�erent from
the concepts used in the present paper. TaLE has a parsing stack called work

list. The items of the work list are not nonterminal or terminal symbols, in-
stead the work list contains the corresponding metaobjects. Similarly, the
items of the pop list are metaobjects, too. In TaLE, calling the parsing func-
tion of a nonterminal means calling the make function of the corresponding
metaobject. This e�ects creating and parsing the nonterminal.

Consider again the nonterminal A. The make function of the metaclass
MetaA is in essence as follows:

Notion* MetaA::make(void)

{

worklist->pop(); // metaobject of A is popped

worklist->push(meta_D);

worklist->push(meta_C);

worklist->push(meta_B);

return new A;

}

In the above code, Notion is a superclass of all the nonterminal classes.
MetaA is a metaclass for a nonterminal A. The parameters meta D, meta C

and meta B are metaobjects, instances of the metaclasses MetaD, MetaC and
MetaB, respectively.

Each nonterminal of the language has a metaclass and the corresponding
make operation. In addition, TaLE has di�erent make functions for di�erent
prede�ned language structures: for a keyword (terminal symbol), for a set
of keywords, for a list with a separator, for a list without a separator, and
for an optional structure. (The make function of the list without a separator
is such as assumed in subsection 3.4.) Together all these make functions act
like the top-down parsing algorithm.

TaLE stores comments and compiler directives to the latest created non-
terminal (like in our assumptions). If a compiler directive has nonterminals
attached to it, we call the process function of the nonterminals to get the

21

corresponding translation code.

We have implemented the modi�cations described in this paper to the
TaLE code. The modi�cations mainly concern two classes of TaLE: work list
and scanner. However, the compiler directives for conditional compilation
are in some cases di�cult to lead to their own places in the target code.
Thus, we have made some additional minor changes. For example, we have
implemented an optimation which checks whether the nonterminals of the
branch of conditional compilation are items of a list. In a�rmative cases we
treat the branches like there were no conditional compilation. These cases
do not cause any syntactic errors, but the output of the compiler directives
is easier to lead to the proper place, if we ignore the conditional compilation.

We have compared the e�ciency of multi-branch parsing with the normal
parsing of TaLE. Table 2 shows the results of the comparison.

Table 2. E�ciency comparison of multi-branch parsing.

program 1 program 2
PL/M 12.40 12.43
PL/M' 10.19

In Table 2, program 1 is a PL/M program having a lot of directives for
conditional compilation. Program 2 is the same program, but the directives
for conditional compilation are enclosed with comment marks, and some tiny
modi�cations have been done to prevent the syntax errors due to the com-
mented directives. The sizes of program 1 and program 2 are 270 kb and 279
kb, respectively. In Table 2, PL/M means normal PL/M language allowing
the directives for conditional compilation. PL/M' has been modi�ed from
PL/M such that the directives for conditional compilation are not allowed.
The numbers are translation times in seconds. According to Table 2, the
additional parsing stack operations do not slow down parsing (compare the
numbers 12.40 and 12.43). Instead, �nding the directives takes time (com-
pare the numbers 12.43 and 10.19): the directives for conditional compilation
must be distinguished from the other directives (in PL/M beginning with the
same letter '$'). We performed the comparison under TaLE. TaLE uses top-
down parsing, thus, the time ratio should be approximately the same in any
environment using top-down parsing.

22

6 Conclusions

Very little attention is paid to the conversion of conditional compilation in
source-to-source translation. However, in practice it is important that also
the programs containing compiler directives of conditional compilation can
be automatically translated into the target language. If a syntax error occurs
due to conditional compilation the whole program is left without translation.
In this paper, we have proposed a parsing method which enables parsing of
conditional compilation.

We have implemented the necessary modi�cations for conditional compi-
lation to TaLE. TaLE originally had a parsing stack (work list) to which we
have applied the main modi�cations. By using the parsing stack the pars-
ing situations are easy to store and restore. However, we have shown that
multi-branch parsing could also be implemented in recursive descent parsers
having no explicit parsing stack.

Multi-branch parsing is not quite perfect. There are situations of con-
ditional compilation in which parsing does not succeed with our method.
However, these situations are very rare, and we have de�ned the conditions
in which multi-branch parsing succeeds.

Acknowledgements

The author gratefully acknowledges Kai Koskimies and Erkki M�akinen for
their review of this paper.

References

[1] A. V. Aho, R. Sethi and J. D. Ullman, Compilers - Principles, Tech-

niques, and Tools, Addison-Wesley, 1986.

[2] K. Andrews, P. del Vigna and M. Molloy, Macro and �le structure preser-
vation in source-to-source translation, Software - Practice and Experience

26 (3), 281 - 292 (1996).

[3] K. Andrews, Private communication (via e-mail), in October, 1997.

23

[4] K. Arnold and J. Gosling, The Java Programming Language, Addison-
Wesley, 1996.

[5] C. N. Fischer and R. J. LeBlanc, Crafting a Compiler with C, The Ben-
jamin/Cummings Publishing Company, 1991.

[6] M. Harsu, J. Hautam�aki and K. Koskimies, A language implementation
framework in Java, In Bosch, J., Hedin, G., Koskimies, K. (eds.), Proceed-
ings of LSDF'97 Workshop on Language Support for Design Patterns and
Object-Oriented Frameworks, Department of Computer Science, Univer-
sity of Karlskrona/Ronneby, Research Report 6/97.

[7] M. Harsu, Automated conversion of PL/M to C, Report A-1997-7, De-
partment of Computer Science, University of Tampere.

[8] J. Hautam�aki, Language Implementation with TaLE, Department of
Computer Science, University of Tampere, Master of Science Thesis,
1996.

[9] E. J�arnvall, K. Koskimies and M. Niittym�aki, Object-oriented language
engineering with TaLE, Object Oriented Systems, 2, 77 - 98 (1995).

[10] V. D. Moynihan and P. J. L. Wallis, The design and implementation of
a high-level language converter, Software - Practice and Experience, 21
(4), 391 - 400 (1991).

[11] M. Niittym�aki, Implementing a PL/M-to-C converter with TaLE, Pro-
ceedings of the Fourth Symposium on Programming Languages and Soft-
ware Tools, Visegrad, Hungary, June 1995, 9 - 20.

[12] PL/M Programmer's Guide, Intel Corporation, USA, 1987.

[13] B. Stroustrup, The C++ Programming Language, Addison-Wesley,
1987.

24

