
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

JUMPING PETRI NETS.

SPECIFIC PROPERTIES

Ferucio Laurent�iu T� iplea and Erkki M�akinen

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF TAMPERE

REPORT A-1996-8

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1996-8, OCTOBER 1996

JUMPING PETRI NETS.

SPECIFIC PROPERTIES

Ferucio Laurent�iu T� iplea and Erkki M�akinen

University of Tampere

Department of Computer Science

P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4050-1

ISSN 0783-6910

Jumping Petri Nets. Speci�c Properties

Ferucio Laurent�iu T� IPLEA (1 and Erkki M�AKINEN (2

(1 Faculty of Informatics
\Al. I. Cuza" University of Ia�si

6600 Ia�si, Romania
E-mail: fltiplea@infoiasi.ro

(2 Department of Computer Science
University of Tampere

P.O. Box 607, FIN-33101 Tampere, Finland
E-mail: em@cs.uta.fi

Abstract

A Jumping Petri Net ([18], [12]), JPTN for short, is de�ned as a classical net which
can spontaneously jump from a marking to another one. In [18] it has been shown
that the reachability problem for JPTN 's is undecidable, but it is decidable for �nite
JPTN 's (FJPTN).

In this paper we establish some speci�c properties and investigate the computational
power of such nets, via the interleaving semantics. Thus, we show that the non-labelled
JPTN 's have the same computational power as the labelled or �-labelled JPTN 's.
When �nal markings are considered, the power of JPTN 's equals the power of Tur-
ing machines. The family of regular languages and the family of languages generated
by JPTN 's with �nite state space are shown to be equal. Languages generated by
FJPTN 's can be represented in terms of regular languages and substitutions with
classical Petri net languages. This characterization result leads to many important con-
sequences, e.g. the recursiveness (context-sensitiveness, resp.) of languages generated
by arbitrarily labelled (labelled, resp.) FJPTN 's. A pumping lemma for nonterminal
jumping net languages is also established. Finally, some comparisons between families
of languages are given, and a connection between FJPTN 's and a subclass of inhibitor
nets is presented.

1 Introduction

It is well-known that the behaviour of some distributed systems cannot be adequately
modelled by classical Petri nets. Many extensions which increase the computational and
expressive power of Petri nets have been thus introduced. One direction has led to the
modi�cation of the �ring rule of the nets ([2], [3], [5], [6], [7], [8], [12], [16], [17], [18], [19],
[20], [21], [22]).

In this paper we consider jumping Petri nets as introduced in [18]. A jumping Petri net
is a classical net � equipped with a (recursive) binary relation R on the markings of �. If
(M;M 0) 2 R then the net � may \spontaneously jump" from M to M 0 (this is similar to

1

�-moves in automata theory). When modelling systems using Petri nets, the extension to
jumps is interesting for several reasons ([18]):

{ unrelevant parts of the behaviour may be hidden,

{ exception handling and recovery mechanisms can be added.

The paper is organized as follows. Section 2 presents the basic terminology, notations,
and results concerning Petri nets and jumping Petri nets. In Section 3 we show that non-
labelled JPTN 's have the same computational power as labelled or �-labelled JPTN 's and,
in the case of �nal markings, their power equals that of Turing machines. Section 4 gives
some characterization results for FJPTN 's in terms of regular languages and substitutions
with �-free languages. Then some important consequences are derived and a pumping
lemma for nonterminal jumping net languages is established. In Section 5 some comparisons
between families of languages are given. The last section presents a connection between
FJPTN 's and a subclass of inhibitor nets.

2 Preliminaries

The aim of this section is to establish the basic terminology, notations, and results concern-
ing Petri nets in order to give the reader the necessary prerequisites for the understanding
of this paper (for details the reader is referred to [1], [9], [11], [13], [14]).

The empty set is denoted by ;; for a �nite set A, jAj denotes the cardinality of A and
P(A) denotes the set of all subsets of A. Given the sets A and B, A � B (A � B; resp.)
denotes the inclusion (strict inclusion, resp.) of A in B. If R � A � B then dom(R) and
cod(R) denote the sets dom(R) = fa 2 Aj9b 2 B : (a; b) 2 Rg and cod(R) = fb 2 Bj9a 2
A : (a; b) 2 Rg. The set of integers (nonnegative integers, positive integers, resp.) is
denoted by Z (N, N+, resp.).

For a (�nite) alphabet V , V � denotes the free monoid generated by V (under the con-
catenation operation) with the empty word �. Given a word w 2 V �, jwj denotes the
length of w, and alph(w) denotes the set of all letters occurring in w. The alph-notation is
extended by union to sets of words (languages). L3 (L2, L1, Lrec, resp.) denotes the family
of regular (context-free, context-sensitive, recursive, resp.) languages and L3;pref denotes
the family of regular pre�x languages (i.e., regular languages containing all pre�xes of their
words).

2.1 Petri Nets

A (�nite) P/T-net (with in�nite capacities), abbreviated PTN , is a 4-tuple � = (S; T ;F;
W) where S and T are two �nite non-empty sets (of places and transitions, resp.), S\T = ;,
F � (S � T) [(T � S) is the ow relation and W : (S � T) [(T � S) ! N is the weight
function of � verifying W (x; y) = 0 i� (x; y) =2 F . A marking of a PTN � is a function
M : S ! N; it will be sometimes identi�ed with a vector M 2 NjSj. The operations and
relations on vectors are componentwise de�ned. NS denotes the set of all markings of �.

A marked PTN , abbreviated mPTN , is a pair = (�;M0), where � is a PTN andM0,
the initial marking of , is a marking of �. An mPTN with �nal markings, abbreviated

2

mPTNf , is a 3-tuple = (�;M0;M), where the �rst two components form an mPTN
and M, the set of �nal markings of , is a �nite set of markings of �. A labelled mPTN
(mPTNf , resp.), abbreviated lmPTN (lmPTNf , resp.), is a 3-tuple (4-tuple, resp.) =
(�;M0; l) (= (�;M0;M; l), resp.) where the �rst two (three, resp.) components form
an mPTN (mPTMf , resp.) and l, the labelling function of , assigns to each transition
a letter (label). A �-labelled mPTN (mPTNf , resp.), abbreviated l�mPTN (l�mPTNf ,
resp.), is de�ned as an lmPTN (lmPTMf , resp.) with the di�erence that the labelling
function, called now the �-labelling function of , assigns to each transition either a letter
or the empty word �.

In the sequel we often use the term \Petri net" (PN) or \net" whenever we refer to
a PTN (mPTN , mPTNf , lmPTN , lmPTNf , l�mPTN , l�mPTNf) and it is not
necessary to specify its type (i.e., marked, labelled, etc.); moreover, we implicitly assume
that the components of are de�ned as above. The term \Petri net" or \net" will be
sometimes used together with other terms. For instance, the term \labelled net" denotes
a net which is at least labelled. The �rst component � of a PN is called the underlying
net of . A marking (place, transition, arc, weight, resp.) of a net is any marking (place,
transition, arc, weight, resp.) of the underlying net of .

Graphically, a net is represented by a graph. The places are denoted by circles and
transitions by boxes; the ow relation is represented by arcs. An arc f 2 F is labelled by
W (f) whenever W (f) > 1. The initial marking M0 is presented by putting M0(s) tokens
into the circle representing the place s. The labelling function is denoted by placing letters
into the boxes representing transitions, and the �nal markings are explicitly listed.

Let be a net, t 2 T and w 2 T �. We de�ne the functions t�; t+, and �w from S into
Z by t�(s) = W (s; t), t+(s) = W (t; s) and �w(s) = 0 if w = � and �w(s) =

Pn
i=1(t

+
i � t

�
i)

if w = t1 : : : tn; n � 1, for all s 2 S. The sequential behaviour of is given by so-called
transition (�ring) rule, which consists of

(i) the enabling rule: a transition t is enabled at a marking M (in), abbreviated M [ti,
i� t� �M ;

(ii) the computing rule: ifM [ti , then tmay occur yielding a new markingM 0, abbreviated
M [tiM 0, de�ned by M 0 =M + �t.

In fact, for any transition t of we have de�ned a binary relation on NS , denoted by [ti
and given by

M [tiM
0 i� t� �M and M 0 =M +�t:

If t1; : : : ; tn; n � 1, are transitions of , the classical product of the relations [t1i , : : : ; [tni
will be denoted by [t1 � � � tni ; i.e. [t1 � � � tni = [t1i � : : :� [tni . Moreover, we consider the
relation [�i given by [�i = f(M;M) jM 2 NSg.

Let be a marked Petri net and M0 its initial marking. The word w 2 T � is called a
transition sequence of if there exists a marking M of such that M0[wiM . Moreover,
the marking M is called reachable (fromM0) in . The set of all reachable markings of is
denoted by [M0i. The notation \[�i" will be simpli�ed to \[�i" whenever is understood
from the context.

Petri nets may be considered as generators of languages. Let 1 be an mPTN , 2 either
an lmPTN or an l�mPTN , 3 an mPTNf , and 4 either an lmPTNf or an l�mPTNf .

3

The languages generated by these nets are de�ned as follows:

P (1) = fwjw 2 T � ^ (9M 2 NS : M0[wi1M)g;

P (2) = fl(w)jw 2 T � ^ (9M 2 NS : M0[wi2M)g;

L(3) = fwjw 2 T � ^ (9M 2 M : M0[wi3M)g;

L(4) = fl(w)jw 2 T � ^ (9M 2 M : M0[wi4M)g:

The languages generated by mPTN (lmPTN , l�mPTN , resp.) are called free P-type
languages (P-type languages, arbitrary P-type languages, resp.) and the family of these lan-
guages is denoted by Pf (P, P�, resp.). For Petri nets with �nal markings the notation and
terminology is obtained by changing \P" into \L". Sometimes, \nonterminal" (\terminal",
resp.) is used instead of \P-type" (\L-type", resp.). These languages are usually referred
to as Petri net languages or Petri languages.

2.2 Jumping Petri Nets

A jumping P/T-net ([18]), abbreviated JPTN , is a pair = (�; R), where � is a PTN and
R, the set of (spontaneous) jumps of , is a binary relation on the set of markings of �. In
what follows the set R of jumps of any JPTN will be assumed recursive, that is for any
couple of markings (M;M 0) we can e�ectively decide whether or not (M;M 0) is a member
of R. Let = (�; R) be a JPTN . The pairs (M;M 0) 2 R are referred to as jumps of . If
 has �nitely many jumps then we say that is a �nite JPTN , abbreviated FJPTN .

Let Y 2 fJPTN; FJPTNg. An mY (mY f , lmY , lmY f , l�mY , l�mY f , resp.) is
de�ned as an mPTN (mPTNf , lmPTN , lmPTNf , l�mPTN , l�mPTNf , resp.), by
changing \�" into \�; R". For instance, = (�; R;M0;M; l) denotes either an lmY f
or an l�mY f . We shall use the term \jumping net" (JN) (\�nite jumping net" (FJN),
resp.) to denote any of the following: JPTN , mJPTN , mJPTNf , lmJPTN , lmJPTNf ,
l�mJPTN , l�mJPTNf (FJPTN , mFJPTN , mFJPTNf , lmFJPTN , lmFJPTNf ,
l�mFJPTN , l�mFJPTNf , resp.). In fact, all remarks about Petri nets equally hold
for jumping Petri nets. Graphically, a jumping net will be represented as a classical net.
Moreover, the relation R will be separately listed.

The behaviour of a jumping net is given by the j-transition (j-�ring) rule, which
consists of

(i) the j-enabling rule: the transition t is j-enabled at a marking M (in), abbreviated
M [ti;j , i� there exists a marking M1 such that MR�M1[ti� (� being the underlying
net of and R� the reexive and transitive closure of R);

(ii) the j-computing rule: the marking M 0 is j-produced by occurring t at M , abbreviated
M [ti;jM 0, i� there exist markings M1;M2 such that MR�M1[ti�M2R

�M 0.

The notions of transition j-sequence and j-reachable marking are de�ned similarly as for
Petri nets (the relation [�i;j is de�ned by [�i;j = f(M;M 0)jM 2 NS ; MR�M 0g). The set
of all j-reachable markings of a marked JN is denoted by [M0i;j (M0 being the initial
marking of). The notation \[�i;j" will be simpli�ed to \[�ij" whenever is understood
from the context.

4

Jumping nets may be considered as generators of languages in the same way as classical
nets, by changing \[�i" into \[�ij". For example, if = (�; R;M0;M; l) is an l�mJPTNf ,
then the language generated by is

L() = fl(w)jw 2 T � ^ (9M 2 M : M0[wijM)g:

Thus, RXf (RX, RX�, resp.) will denote the family of free X-type jumping Petri net lan-
guages (X-type jumping Petri net languages, arbitrary X-type jumping Petri net languages,
resp.), for any X 2 fP; Lg. For �nite jumping nets, the corresponding family of languages
will be denoted by RXf

�n
(RX�n, RX

�
�n
, resp.). For any X 2 fP; Lg we have:

Xf � RXf

�n
� RXf ;

X � RX�n � RX;
X� � RX�

�n
� RX�:

Some jumps of an FJN may be never used. Thus we say that a marked �nite jumping
net is R-reduced if for any jump (M;M 0) of we have M 6= M 0, M 2 [M0i;j , and there
is a �nal marking of which is j-enabled at M 0 (provided that �nal markings are de�ned).

As the reachability problem for FJN 's is decidable ([18]), for any marked FJN we
can e�ectively construct (modifying only the set of jumpings of) a marked FJN 0 such
that 0 is R-reduced and it has the same computational power as . All �nite jumping nets
in this paper will be considered R-reduced.

3 Jumps and Labellings

In this section we show that the jumps can \simulate" the labelling of nets. Then we use this
result to prove that the power of JPTN 's with �nal markings equals the class of recursively
enumerable languages. In the case of jumping nets with �nite state space the connection
with regular languages is shown.

Theorem 3.1 For any X 2 fP; Lg we have RXf = RX = RX�.

Proof It is enough to prove that RX� � RXf , and we will �rst do it for the case X = L.
Let L 2 RL� and = (�; R;M0;M; l) be an l�mJPTNf such that L = L(). Without

loss of generality we may assume that T \ fl(t)jt 2 Tg = ;, where � = (S; T ;F;W). Let
T1 = ft 2 T j(8t0 2 T)(t 6= t0) l(t) 6= l(t0))g � T , T2 = ft 2 T j(9t0 2 T)(t 6= t0 ^ l(t) =
l(t0))g, and T3 = ft 2 T jl(t) = �g. It is easy to see that T = T1 [T2 [T3.

If T2 = T3 = ; we consider 0 = (�0; R;M0;M), where �0 is obtained from � by
renaming each transition t by l(t). 0 is an mJPTNf and L(0) = L.

If T2 6= ; or T3 6= ; we construct 0 = (�; R0;M 0
0;M

0) as described below. We partition
the set T2 = T �T1 into k � 1 subsets, T2 = T 1

2 [� � �[T
k
2 , such that for any i, 1 � i � k, the

set T i
2 contains those transitions of � which have the same label; let ai be this label. We have

ai 6= aj for any i 6= j. The set of transitions of �0 will be T 0 = l(T1)[T2[fa1; : : : ; akg[T3
(for a set A, l(A) stands for the set fl(a)ja 2 Ag). The basic idea is: when a transition
t 2 T1 occurs in , its e�ect is simulated in 0 by the transition l(t) 2 l(T1); when a
transition t 2 T i

2 occurs in , 1 � i � k, its e�ect is simulated in 0 by the relation R0 and

5

the transition ai. Finally, when a transition t 2 T3 occurs in , its e�ect is simulated in 0

by the relation R0. The transitions of T2 [T3 will be blocked forever in 0. Formally, 0 is
given by:

(i) T 0 = T 0
1 [T2 [fa1; : : : ; akg [T3, where T

0
1 = l(T1). We have T2 \ fa1; : : : ; akg = ;;

(ii) S0 = S [fs0; s
0
0; s1; s

0
1; : : : ; sk; s

0
kg, where s0; s

0
0; s1; s

0
1; : : : ; sk; s

0
k are new places. All

the markings of �0 will be written in the form

(M; �0|{z}
s0

; �00|{z}
s0
0

; �1|{z}
s1

; �01|{z}
s0
1

; : : : ; �k|{z}
sk

; �0k|{z}
s0
k

);

where M 2 NS and �i; �0i are nonnegative integers;

(iii) F 0 = F 0
1 [F

00
1 [F

0
2 [F

00
2 [F3, where

F 0
1 = f(s; l(t))js 2 S; t 2 T1; (s; t) 2 Fg [f(l(t); s)js 2 S; t 2 T1; (t; s) 2 Fg,
F 00
1 = f(s0; t)jt 2 T

0
1g,

F 0
2 = f(s; t) 2 F jt 2 T2 [T3g [f(t; s) 2 F jt 2 T2 [T3g,
F 00
2 = f(s00; t)jt 2 T2 [T3g,
F3 = f(si; ai)j1 � i � kg [f(ai; s0i)j1 � i � kg;

(iv) W 0(x; y) =

8>><
>>:
W (x; y); if (x; y) 2 F 0

2

1; if (x; y) 2 F 00
1 [F

00
2 [F3

W (x; t); if y = l(t); t 2 T1; (x; y) 2 F
0
1

W (t; y); if x = l(t); t 2 T1; (x; y) 2 F 0
1;

(v) R0 = R0 [R1 [R0
2 [R

00
2 [R3, where

R0 = f((M1; 0; 0; 0; 0; : : : ; 0; 0); (M2; 0; 0; 0; 0; : : : ; 0; 0))j(M1;M2) 2 Rg,
R1 = f((M; 0; 0; 0; 0; : : : ; 0; 0); (M; 1; 0; 0; 0; : : : ; 0; 0))j

M 2 NS ; (9t 2 T1 : M [ti�)g,
R0
2 = f((M; 0; 0; 0; 0; : : : ; 0; 0); (M; 0; 0; 0; 0; : : : ; 1|{z}

si

; 0|{z}
s0
i

; : : : ; 0; 0))j

M 2 NS ; 1 � i � k; (9t 2 T i
2 : M [ti�)g,

R00
2 = f((M; 0; 0; 0; 0; : : : ; 0|{z}

si

; 1|{z}
s0
i

; : : : ; 0; 0); (M1; 0; 0; 0; 0; : : : ; 0; 0))j

M 2 NS ; 1 � i � k; (9t 2 T i
2 : M [ti�M1)g,

R3 = f((M1; 0; 0; 0; 0; : : : ; 0; 0); (M2; 0; 0; 0; 0; : : : ; 0; 0))j
M 2 NS ; (9t 2 T3 : M1[ti�M2)g.

The relation R0 such de�ned is recursive;

(vi) M 0
0 = (M0; 0; 0; 0; 0; : : : ; 0; 0);

(vii) M0 = f(M; 0; 0; 0; 0; : : : ; 0; 0)jM 2 Mg.

Graphically, the net �0 is represented in Figure 3.1. We show that L = L(0). Let us �rst
consider the inclusion L � L(0). It is enough to prove that if M0[wi;jM , w 2 T �, then

(M0; 0; 0; 0; 0; : : : ; 0; 0)[l(w)i0;j(M; 0; 0; 0; 0; : : : ; 0; 0):

6

�

�
	

�

�
	

�

�
	

�

�
	

�

�

	

���

����

�

�

�

� � �

� � �

� � �

� � �

s0

s00

T 0
1

T 1
2

T k
2

T3

...

S
�

��� ���- -s1 s01

a1

��� ���- -sk s0k
ak

...

�0

Figure 3.1

By induction on jwj it is enough to prove that if M1 2 NS , t 2 T and M1[ti;jM2 then

(M1; 0; 0; 0; 0; : : : ; 0; 0)[l(t)i0;j(M2; : : : ; 0; 0; 0; 0; : : : ; 0; 0):

Suppose M1[ti;jM2. Then, there exist M3;M4 2 NS such thatM1R
�M3[ti�M4R

�M2. We
have to consider three cases.

Case 1 t 2 T1. Then l(t) 2 T
0
1 and

(M1; 0; 0; 0; 0; : : : ; 0; 0)R
�
0(M3; 0; 0; 0; 0; : : : ; 0; 0)R1

(M3; 1; 0; 0; 0; : : : ; 0; 0)[l(t)i�0(M4; 0; 0; 0; 0; : : : ; 0; 0)R
�
0(M2; 0; 0; 0; 0; : : : ; 0; 0):

Case 2 t 2 T i
2 for some i, 1 � i � k. Then,

(M1; 0; 0; 0; 0; : : : ; 0; 0)R
�
0(M3; 0; 0; 0; 0; : : : ; 0; 0)R

0
2

(M3; 0; 0; 0; 0; : : : ; 1|{z}
si

; 0|{z}
s0
i

; : : : ; 0; 0)[ai = l(t)i�0(M3; 0; 0; 0; 0; : : : ; 0|{z}
si

; 1|{z}
s0
i

; : : : ; 0; 0)

R00
2(M4; 0; 0; 0; 0; : : : ; 0; 0)R

�
0(M2; 0; 0; 0; 0; : : : ; 0; 0):

Case 3 t 2 T3. Then,

(M1; 0; 0; 0; 0; : : : ; 0; 0)R
�
0(M3; 0; 0; 0; 0; : : : ; 0; 0)R3

(M4; 0; 0; 0; 0; : : : ; 0; 0)R
�
0(M2; 0; 0; 0; 0; : : : ; 0; 0);

that is (M1; 0; 0; 0; 0; : : : ; 0; 0)[�= l(t)i0;j(M2; 0; 0; 0; 0; : : : ; 0; 0).

7

Hence, if M1[ti;jM2 then

(M1; 0; 0; 0; 0; : : : ; 0; 0)[l(t)i0;j(M2; 0; 0; 0; 0; : : : ; 0; 0):

Thus we have L � L(0).
As for the converse (L(0) � L) it is necessary to note that each j-reachable marking in

0 is of one of the following forms:

(1) (M; 0; 0; 0; 0; : : : ; 0; 0),

(2) (M; 1; 0; 0; 0; : : : ; 0; 0),

(3) (M; 0; 0; 0; 0; : : : ; 1|{z}
si

; 0|{z}
s0i

; : : : ; 0; 0),

(4) (M; 0; 0; 0; 0; : : : ; 0|{z}
si

; 1|{z}
s0
i

; : : : ; 0; 0),

where M 2 [M0i;j and i 2 f1; : : : ; kg.
No transition of 0 is enabled at a (1)- or (4)-type marking. Only a jump by R0 makes it
possible to pass from a (1)- or (4)-type marking to a (1)-, (2)- or (3)-type marking. In 0

the transitions are enabled only at the (2)- or (3)-type markings. Now it is enough to prove
that if u 2 (T 0)� and

(M0; 0; 0; 0; 0; : : : ; 0; 0)[ui0;j(M; �0; �
0
0; �1; �

0
1; : : : ; �k; �

0
k)

then there is w 2 T � such that l(w) = u and M0[wi;jM . Taking into account that any
jump by R3 can be simply simulated by a transition labelled by �, it remains to be shown
that if t0 2 T 0 � T3, M1 2 NS ,

(M1; 0; 0; 0; 0; : : : ; 0; 0)[t
0i0;j(M2; 0; 0; 0; 0; : : : ; 0; 0)

and no jump by R3 is used in this computation, then there is t 2 T such that l(t) = t0 and
M1[ti;jM2. We have to consider two cases.

Case 10 t0 2 T 0
1 = l(T1). Then there is an unique t 2 T such that l(t) = t0. From

(M1; 0; 0; 0; 0; : : : ; 0; 0)[t
0i0;j(M2; 0; 0; 0; 0; : : : ; 0; 0)

it follows that there exist M3;M4 2 NS such that

(M1; 0; 0; 0; 0; : : : ; 0; 0)R
�
0(M3; 0; 0; 0; 0; : : : ; 0; 0)R1

(M3; 1; 0; 0; 0; : : : ; 0; 0)[t
0 = l(t)i�0(M4; 0; 0; 0; 0; : : : ; 0; 0)R

�
0(M2; 0; 0; 0; 0; : : : ; 0; 0):

But l(t) acts as t on the same places of S and hence M1R
�M3[ti�M4R

�M2 which shows us
that M1[ti;jM2.

Case 20 There is i 2 f1; : : : ; kg such that t0 = ai. Then, for any t 2 T
i
2 we have l(t) = ai.

From
(M1; 0; 0; 0; 0; : : : ; 0; 0)[t

0 = aii0;j(M2; 0; 0; 0; 0; : : : ; 0; 0)

8

it follows that there exist M3;M4 2 NS such that

(M1; 0; 0; 0; 0; : : : ; 0; 0)R
�
0(M3; 0; 0; 0; 0; : : : ; 0; 0)R

0
2

(M3; 0; 0; 0; 0; : : : ; 1|{z}
si

; 0|{z}
s0
i

; : : : ; 0; 0)[aii�0(M3; 0; 0; 0; 0; : : : ; 0|{z}
si

; 1|{z}
s0
i

; : : : ; 0; 0)R00
2

(M4; 0; 0; 0; 0; : : : ; 0; 0)R
�
0(M2; 0; 0; 0; 0; : : : ; 0; 0):

From the de�nition of R00
2 it follows that there is t 2 T i

2 such that M3[ti�M4. Moreover
l(t) = ai = t0. Hence we have M1R

�M3[ti�M4R
�M2 which shows that M1[ti;jM2.

We have proved that RL� = RLf . To accomplish the proof of the theorem we note that
for the case X = P the net 0 is constructed in the same way as it was described. The
di�erence is that the �nal markings are not used. 2

Remark 3.1 Usually in Petri net theory, isolated places and transitions are not allowed,
and this is the reason that in the proof of Theorem 3.1 the set T2[T3 has not been removed
from T 0.

Theorem 3.2 RLf = RL = RL� = L0.

Proof The equalities RLf = RL = RL� have been already established. The equality
with the set of all recursively enumerable languages can be obtained as follows.

In [18] it has been proved that jumping Petri nets can simulate inhibitor nets (which
have the power of Turing machines). As a consequence, L0 � RL�. Now we prove that
RLf � L0. Let = (�; R;M0;M) be an mJPTNf . We show that there is an algorithm
A such that for all w 2 T � we have

w 2 L() i� A beginning with the input w it will eventually halt accepting w:

First we have to remark that w 2 L() i� there is a computation in of the form

M0R
�M 0

0[w1iM1R
+M 0

1 � � �Mk�1R
+M 0

k�1[wkiMkR
�M;

where M 2 M and w1; : : : ; wk (k � 1) is a decomposition of w into non-empty words, that
is w = w1 � � �wk and none of wi is empty. All the computations of the above form will be
called terminal computations in . A terminal computation can be written as a (formal)
string

(M0;M
0
0)w1(M1;M

0
1) � � �(Mk�1;M

0
k�1)wk(Mk ;M);

where (M0;M
0
0); (Mk;M) 2 R�, (M1;M

0
1); : : : ; (Mk�1;M

0
k�1) 2 R+ and w1; : : : ; wk 2 T+

(the empty transition sequence is identi�ed by a string of the form (M0R
�M 0

0)).
It is clear that not any string of the above form describes a terminal computation in .

But if we have such a string we can e�ectively decide whether or not it describes a terminal
computation in .

Since R is recursive, R� is recursively enumerable and consequently, we can enumerate
R� by

r0; r1; : : : ; rn; : : :

9

(for any n � 0, rn is a couple (M;M 0) satisfying MR�M 0).
Any w 2 T � has �nitely many decompositions w = w1 � � �wk (k � 1) with wi 2 T

+ for
all i, and let d1; : : : ; dm (m � 1) be all these decompositions. For any decomposition di
(1 � i � m),

di : w = w1 � � �wki ;

we consider the N -indexed sequence Si de�ned by:

� consider �rst all strings obtained from di and r0 as above (in this case we have only
one string r0w1r0 � � �r0wkir0);

� consider then, in an arbitrary but �xed order, all strings as above obtained from di
and r0; r1 (for example, r0w1r0 � � �r0wkir1 is such a string);

� and so on.

We obtain, using all decompositions of w, m sequences:

S1 : c11; c12; : : : c1n; : : :
S2 : c21; c22; : : : c2n; : : :

� � �
Sm : cm1 ; cm2 ; : : : cmn ; : : :

Now, the activity of the algorithm A on the input w 2 T � can be described as follows:

1. A computes all decompositions of w; let d1; : : : ; dm (m � 1) be these decompositions;

2. A searchs the sequences S1; : : : ; Sm (as above) in the order

c11; c
2
1; : : : ; c

m
1 ; c

1
2; c

2
2; : : : ; c

m
2 ; : : :

3. for a string cji (i � 1, 1 � j � m) the algorithm A can e�ectively decide whether or

not cji describes a terminal computation of w in . If this is the case, then A halts
with the answer \w is a member of L()"; otherwise, A will continue the searching.

It is easy to see that A halts on the input w i� w 2 L(). We conclude that L() 2 L0 and
so, RLf � L0. Combining this inclusion with the other one we obtain the theorem. 2

Remark 3.2 In our study only recursive sets of jumps have been considered. But, the con-
struction in [18] showing that jumping Petri nets can simulate inhibitor nets needs only
jumping nets in which the set R of jumps is even more restrictive than recursive. Namely,
the simulation is possible with nets where the set fM 0j(M;M 0) 2 Rg is �nite for each mark-
ingM . Hence, we could add this restriction to our de�nition for jumping Petri nets without
a�ecting their computational power. This restriction would also allow a direct simulation
of jumping Petri nets by non-deterministic Turing machines.

Remark 3.3 If we know that [M0i;j is recursive, we can replace NS by [M0i;j in the
de�nition of R0 in the proof of Theorem 3.1. Consider now the case where [M0i;j is �nite.

10

Case 1 R is �nite. Then R0 will be �nite. Moreover, it is easy to see that the set
[M 0

0i0;j is �nite. Denote by RX(fss)f
�n

(RX(fss)
�n
; RX(fss)�

�n
, resp.) the family of

X-type languages generated by FJN 's which have a �nite state space (i.e., a �nite set of
j-reachable markings). We have then

RX(fss)f
�n

= RX(fss)
�n

= RX(fss)�
�n
; 8X 2 fP; Lg:

Case 2 R is in�nite. Then [M 0
0i0;j is also �nite. Denote by RX(fss)f (RX(fss),

RX(fss)�, resp.) the family of X-type languages generated by JN 's which have a �nite
set of j-reachable markings. We have then

RX(fss)f = RX(fss) = RX(fss)�; 8X 2 fP; Lg:

Moreover, in this case, only �nitely many jumps of R are j-enabled from M0 ([M0i;j is

�nite); hence RX(fss)f
�n

= RX(fss)f and thus, for any X 2 fP; Lg we have

RX(fss)f
�n

= RX(fss)
�n

= RX(fss)�
�n

= RX(fss)f = RX(fss) = RX(fss)�:

There is a strong connection between these families of languages and the family of regular
languages. Indeed, if we denote by X(fss)f (X(fss), X(fss)�, resp.) the family of X-type
languages generated by PN 's which have a �nite set of reachable markings, then we have

L3 � L(fss) � L(fss)� � RL(fss)�fin = RL(fss)ffin � L3:

The �rst inclusion follows from the fact that the transition graph of a deterministic �nite
automaton can be easily transformed into an lmPTNf which has a �nite set of reachable
markings; the last inclusion follows from the fact that any mFJPTNf which has a �nite
set of j-reachable markings can be transformed into a �nite automaton with �-moves whose
set of states is the set of j-reachable markings and whose transition function is given in an
obvious way (the �-moves are given by R)

�(M;x) =

�
M 0; if x is a transition and M [xi�M

0

fM 0j(M;M 0) 2 Rg; if x = �.

Analogously we have

L3;pref � P(fss) � P(fss)� � RP(fss)��n = RP(fss)f�n � L3;pref :

Thus we have obtained

Theorem 3.3

(1) L3 = L(fss) = L(fss)� = RL(fss)f
�n

= RL(fss)
�n

=

RL(fss)�
�n

= RL(fss)f = RL(fss) = RL(fss)�;

(2) L3;pref = P(fss) = P(fss)� = RP(fss)f
�n

= RP(fss)
�n

=

RP(fss)�
�n

= RP(fss)f = RP(fss) = RP(fss)�;

(3) X(fss)f � X(fss), for any X 2 fP; Lg.

Proof (1) and (2) directly follow from Remark 3.1. (3) follows from de�nitions and from
the fact that L1 = fbaag [fabbg 62 Lf ([11]) and L2 = fanjn � 0g [fbnjn � 0g 62 Pf ([17]).
It is easy to see that L1 2 L(fss) and L2 2 P(fss). 2

11

4 Characterization Results and Consequences

In this section we focus on �nite jumping nets. We shall prove that any language L 2 RLf
�n

(RL�n, RL
�
�n
, resp.) can be represented as L = '(L0), where L0 is a regular language and

' is a substitution with �-free languages. Similar results hold true for P-type jumping Petri
net languages.

Theorem 4.1 For any L 2 RLf
�n

(RL�n, RL
�
�n
, resp.) there exist a language L0 2 L3

and a substitution with �-free languages ' from alph(L0) into Lf (L, L�, resp.) such that
L = '(L0).

Proof Let L 2 RLf
�n
. There is an mFJPTNf = (�; R;M0;M) such that L = L().

We construct a �nite automaton with �-moves, A = (Q; I; �; q0; Qf), as follows:

(i) Q = fM0g [dom(R) [cod(R)[M;

(ii) I = faM 0;M jM
0;M 2 Q and M is reachable from M 0 in � by a non-empty

sequence of transitionsg;

(iii) � : Q� (I [f�g)! Q is given by:

{ �(M 0; aM 0;M) = fMg if aM 0;M 2 I ,

{ �(M;�) = fM 0j(M;M 0) 2 Rg,

{ unde�ned, otherwise;

(iv) q0 =M0;

(v) Qf =M.

Let L0 = L(A) and ' : alph(L0) ! Lf given by '(aM 0;M) = L(M 0;M) � f�g, where
L(M 0;M) is the language generated by the mPTNf (�;M 0; fMg).

We have L0 2 L3. Let us prove that L = '(L0). First, � 2 L i� � 2 L0 and hence � 2 L i�
� 2 '(L0). Let now w 2 L; w 6= �. There is a decomposition of w; w = w1 � � �wm+1; m � 0,
such that

M0R
�M 0

0[w1i�M1R
+M 0

1 : : :R
+M 0

m[wm+1i�Mm+1R
�M 0

m+1;

where M 0
m+1 2 M and Mi and M

0
i are markings of and wi 6= � for any 0 � i � m+ 1.

The sequence u = aM 0

0
;M1

aM 0

1
;M2

: : :aM 0

m;Mm+1
determines a unique path, excepting �-

moves, from M0 to M 0
m+1 in the automaton A. Hence u 2 L0 (the computation in and

the path in the automaton A are shown in Figure 4.1). For any i, 1 � i � m+ 1, we have
wi 2 L(M 0

i�1;Mi) � f�g which shows that w 2 '(u), i.e. w 2 '(L0). Thus the inclusion
L � '(L0) is proved. The other inclusion can be proved analogously.

The case L 2 RL�n can be simply settled by starting from the remark that if L = L(),
 = (�; R;M0;M; l), then L = l(L(0)), where 0 = (�; R;M0;M). Now, there exist a
regular language L0 and a substitution with �-free languages from alph(L0) into Lf such
that L(0) = (L0). De�ne ' = l � which is a substitution with �-free languages. We
have L = '(L0).

12

M0 M 0
0 M 0

1 M 0
m M 0

m+1

M1 M2 Mm+1

'

&

$

%

'

&

$

%

'

&

$

%

? ? ? ?

: : :

R� R+ R+ R�

� � �

? ? ?

w1 w2 wm+1

��
��

��
��

��
��

��
��

��
��

��
��

- - - - - -M0 M 0
0 M1 M 0

m Mm+1 M 0
m+1

� aM 0

0
;M1

� � aM 0

m;Mm+1
�

: : :

Figure 4.1

The previous idea does not work for the family RL�
�n

because l is an arbitrary labelling
function and, for some a, (l �)(a) could contain �. We modify the construction given in
the case of RLf

�n
by setting

'(aM 0;M) = l(L(M 0;M))� f�g;

for any aM 0;M , and adding arcs (M;M
0
) labelled by � to A whenever there exist in A

the arcs (M;M 0) and (M;M
0
) labelled by � and (M 0;M) labelled by aM 0;M and � 2

l(L(�;M 0; fMg)) (since Petri net languages are recursive languages ([11]) we can e�ectively
decide whether or not � is in such a language). Figure 4.2 shows this construction. It is

M 0 M
0

M M

'

&

$

%

'

&

$

%

'

&

$

%

? ?

R+ R+

� � �

? ? ?

w

��
��

��
��

��
��

��
��

- - -M M 0 M M
0

� aM 0;M �

Figure 4.2 (The case l(w) = �)

- -
?

: : : : : :

: : :: : :

13

easy to see that the theorem holds also true in this case. 2

The proof of Theorem 4.1 is e�ective. This fact permits us to show that terminal
jumping Petri net languages are recursive.

Corollary 4.1 RL�
�n

� Lrec.

Proof We show that the membership problem for the family RL�
�n

is decidable. Let
 = (�; R;M0;M; l) be an l�mFJPTNf , T the set of its transitions and V the range of l.

>From Theorem 4.1 it follows that we can e�ectively compute a regular language L0

(given by a �nite automaton) and a substitution with �-free languages ' : alph(L0) ! L�

such that L() = '(L0). Let w 2 V �. Since ' is a substitution with �-free languages we
have:

{ � 2 L() i� � 2 L0;

{ if w 6= �, w = a1 � � �an (n � 1), then w 2 L() i� there exist b1 � � �bm 2 L0 (1 � m � n)
and ui 2 '(bi), 1 � i � m, such that w = u1 � � �um.

Consequently, the membership problem for L() can be reduced to the membership problem
for a regular language and for some arbitrary Petri net languages. Since Petri net languages
are recursive ([11]) we conclude that the membership problem for RL�

�n
is decidable, and

so RL�
�n
� Lrec. 2

Corollary 4.2 RL�n � L1.

Proof For any language L 2 RL�n there exist a regular language L0 and a substitution
with �-free languages ' from alph(L0) into L such that L = '(L0). But L � L1 ([11]) and
L1 is closed under substitutions with �-free languages, from which the theorem follows. 2

The converse of Theorem 4.1 holds true for labelled and arbitrarily labelled jumping
nets.

Theorem 4.2 If L 2 L3 and ' is a substitution from alph(L) into L (L�, resp.) then
'(L) 2 RL�n (RL�

�n
, resp.).

Proof Let L 2 L3 and ' : alph(L) ! L. By Theorem 3.3 there is an lmPTNf =
(�;M0;M; l) such that L() = L, and [M0i is �nite. Let alph(L) = fa1; : : : ; ang, n � 1,
and Li = '(ai), 1 � i � n. There exists an lmPTNf i = (�i;M

i
0;Mi; li), 1 � i � n, such

that Li = L(i) for each i.
Construct an lmJPTNf 0 = (�0; R0;M 0

0;M
0; l0) such that '(L) = L(0), as follows.

The nets �;�1; : : : ;�n will be subnets of �0 and initially they will be \blocked". When a
transition t labelled by l(t) = ai; 1 � i � n, occurs in then in 0 the subnet �i will be
relieved (by means R0) and a transition sequence w in i can now occur in 0. When a �nal
marking is reached in �i this subnet will be blocked again (by means of R0).

Without loss of generality we may assume that Si \ Sj = ;, Ti \ Tj = ;, T \ Ti = ; and
S \ Si = ; for any i; j 2 f1; : : : ; ng, i 6= j. Now 0 is given by:

14

(i) S0 = S [
Sn
i=1 Si [fs0; s1; : : : ; sng, where s0; s1; : : : ; sn are new places. Any marking

of 0 will be written in the form

M 0 = (M; �0|{z}
s0

;M1; �1|{z}
s1

; : : : ;Mn; �n|{z}
sn

);

where M 2 NS and Mi 2 NSi ; 1 � i � n;

(ii) T 0 = T [
Sn
i=1 Ti;

(iii) F 0 = F [
Sn
i=1 Fi [f(s0; t)jt 2 Tg [f(si; t); (t; si)jt 2 Ti; 1 � i � ng;

(iv) W 0(x; y) =

8<
:
W (x; y); if (x; y) 2 F
Wi(x; y); if (x; y) 2 Fi
1; otherwise;

(v) R0 = R1 [R2, where

R1 = f((M1; 0;M1
0 ; 0; : : : ;M

n
0 ; 0); (M2; 0;M1

0 ; 0; : : : ;M
i
0; 1; : : : ;M

n
0 ; 0))j

1 � i � n and (9t 2 T : l(t) = ai and M1 2 [M0i and M1[tiM2)g,

R2 = f((M; 0;M1
0 ; 0; : : : ;Mi; 1; : : : ;M

n
0 ; 0); (M; 0;M1

0 ; 0; : : : ;M
i
0; 0; : : : ;M

n
0 ; 0))j

M 2 [M0i and Mi 2 Mi; 1 � i � ng;

(vi) M 0
0 = (M0; 0;M1

0 ; 0; : : : ;M
n
0 ; 0);

(vii) M0 = f(M; 0;M1
0 ; 0; : : : ;M

n
0 ; 0)jM 2 Mg;

(viii) l0(t) =

�
t if t 2 T
li(t) if t 2 Ti; 1 � i � n.

Graphically, the net �0 is shown in Figure 4.3. The relation R1 is �nite because [M0i is

�

�
	
�

�
	� � � ����

S T
�

s0

�

�
	
�

�
	� � � ����

S1 T1
�1

s1

�

�
	
�

�
	� � � ����

Sn Tn
�n

sn

� � �

Figure 4.3

�0

�nite and R2 is �nite because the sets Mi; 1 � i � n, are �nite. Hence R0, is �nite and 0

is an lmFJPTNf . The j-reachable markings of 0 are of the following types:

(1) (M; 0;M1
0 ; 0; : : : ;M

n
0 ; 0), where M 2 [M0i ;

15

(2) (M; 0;M1
0 ; 0; : : : ;M

i; 1; : : : ;Mn
0 ; 0), where M 2 [M0i and M i 2 [M i

0ii ; 1 � i � n.

No transition of 0 is enabled at an (1)-type marking. Only by jumps from R1 we can pass
from an (1)-type marking to a (2)-type marking; conversely only by jumps from R2. It is
not di�cult to show that L(0) = '(L) and hence, '(L) 2 RL�n.

A similar argument holds for the family RL�
�n
. 2

Corollary 4.3 L 2 RL�n (RL�
�n
, resp.) i� there exist L0 2 L3 and a substitution with

�-free languages ' : alph(L)! L (L�, resp.) such that L = '(L0).

A result similar to that in Theorem 4.1 holds for P-type jumping languages.

Theorem 4.3 For any L 2 RPf

�n
(RP�n, RP�

�n
, resp.) there exist a language L0 2

L3;pref , a substitution with �-free languages ' from alph(L0) into Lf (L, L�, resp.), and
the languages P0 and Pa, a 2 alph(L0), such that

L = P0 [
[

a2alph(L0)

'(@ra(L
0)fag)Pa

(@r denotes the right derivative). Moreover, the languages P0 and Pa, a 2 alph(L0), are
�nite unions of free P -type languages (P -type languages, arbitrary P -type languages, resp.).

Proof Let = (�; R;M0) be an mFJPTN such that L = L(). We construct a
�nite automaton with �-moves, A = (Q; I; �; q0; Qf), similar to that described in the proof
of Theorem 4.1, excepting only that the sets of states and �nal states are Q = fM0g [
dom(R) [cod(R) and Qf = Q. Next we consider

{ L0 = L(A) which is a pre�x regular language;

{ the substitution ' as in the proof of Theorem 4.1;

{ P0 =
S
(M0;M)2R� P (�;M);

{ PaM 0;M
=
S
(M;M 00)2R+ P (�;M 00), for any aM 0;M 2 alph(L0).

Now, let us prove the equality in theorem. Let w 2 L.
If w = � or the computation induced by w contains a group of jumps only at the

beginning (M0R
�M 0

0[wiM) then w 2 P0. Otherwise there is a decomposition of w, w =
w1 � � �wm+1; m � 1, such that

M0R
�M 0

0[w1iM1R
+M 0

1 : : : [wmiMmR
+M 0

m[wm+1iM 2 NS ;

where wi 6= � for any 1 � i �m+ 1.
The sequence u = aM 0

0
;M1

aM 0

1
;M2

: : :aM 0

m�1
;Mm

determines a unique path (from M0 to

Mm) in the automaton A and hence u 2 L0.

16

For any i, 1 � i � m, we have wi 2 L(M 0
i�1;Mi) = '(aM 0

i�1;Mi
) which shows that

w1 � � �wm 2 '(u), i.e. w1 � � �wm 2 '(u) � '(@r
a(M 0

m�1
;Mm)(L

0)faM 0

m�1
;Mm

g). But, it is clear

that wm+1 2 PaM 0

m�1
;Mm

, and thus we obtain

w 2 '(@raM 0

m�1
;Mm

(L0)faM 0

m�1
;Mm

g)PaM 0

m�1
;Mm

�
[

a2alph(L0)

'(@ra(L
0)fag)Pa:

The other inclusion can be proved analogously.

The case L 2 RL�n (L 2 RL�
�n
, resp.) can be settled as in the proof of Theorem 4.1.

We only mention that the languages P0 and Pa are images by the labelling homomorphism
l of �nite unions of free P-type Petri net languages; that is, P0 and Pa are �nite unions of
P-type Petri net languages (arbitrary P-type Petri net languages, resp.). 2

Corollary 4.4 For any L 2 RP�n (RP�
�n
, resp.) there exist a language L0 2 L3;pref , a

substitution with �-free languages ' from alph(L0) into L (L�, resp.), and P -type languages
(arbitrary P -type languages, resp.) P0 and Pa, a 2 alph(L

0), such that

L = P0 [
[

a2alph(L0)

'(@ra(L
0)fag)Pa:

Proof The family of P -type languages (arbitrary P -type languages, resp.) is closed under
union ([11]). 2

Remark 4.1 The idea in the proof of Theorem 4.2 cannot be used for the family RLf
�n

because it is not generally true that Ti \ Tj = ; for any i 6= j, and it cannot be used for
P -type languages because the relation R2 is, in general, in�nite.

Using similar constructions as for classical Petri net languages it is easy to prove that
the families RL�n and RL�

�n
are closed under �nite union and catenation (one can use also

the power of jumping relation in correlation with �nal markings). Then we have:

Corollary 4.5 RP�n � RL�n and RP�
�n
� RL�

�n
.

Proof We will prove only the inclusion RP�n � RL�n, the other one being similar to
this one. If L 2 RP�n then L can be written as in Theorem 4.3

L = P0 [
[

a2alph(L0)

'(@ra(L
0)fag)Pa:

@ra(L
0)fag is a regular language and so, by Theorem 4.2, we have '(@ra(L

0)fag) 2 RL�n for
any a 2 alph(L0).

It is well-known that P-type Petri net languages are also L-type Petri net languages
([11]), that is P � L, and so P0; Pa 2 L � RL�n. Using the remark above concerning the
closedness of RL�n under �nite union and catenation, we obtain L 2 RL�n. 2

For P -type languages the following pumping lemma holds true.

17

Theorem 4.4 For any L 2 RP�
�n

there is a number k 2 N such that for each word w 2 L,
if jwj � k then there is a pre�x w0 of w which has a decomposition w0 = xyz such that:

(i) jyj � 1,

(ii) xym+1z 2 L, for any m � 0.

Proof Let = (�; R;M0; l) be an l�mFJPTN such that L = P (). Consider the
automaton A, the substitution ' and the languages L0, P0 and Pa (a 2 I) as in the proof
of Theorem 4.3 (the languages P0 and Pa, a 2 I , are arbitrary P -type Petri net languages).
We have

L = P0 [
[

a2alph(L0)

'(@ra(L
0)fag)Pa:

Let k1; k0; ka (a 2 I) be the constants from the pumping lemmata for the regular language
L0 ([10]) and for the arbitrary P -type Petri net languages P0 and Pa, a 2 I ([4]). Consider
k2 = maxfk0; kaja 2 Ig and k = k1k2. We shall prove that the number k satis�es the
theorem.

Let w 2 L such that jwj � k. If w 2 P0 then we apply the pumping lemma for w
with respect to P0 and we obtain the theorem, with w0 = w. Otherwise, there is a word
u = a1 � � �as 2 L0 such that w 2 '(u)Pas. We have to consider two cases.

Case 1 s � k1. From the pumping lemma for regular languages, u has a decomposition
u = u1u2u3 such that ju2j � 1 and u1u

i
2u3 2 L0 for any i � 0. Since w 2 '(u)Pas =

'(u1)'(u2)'(u3)Pas, there exist x 2 '(u1), y 2 '(u2), z 2 '(u3) and v 2 Pas such that
w = xyzv. ' being a substitution with �-free languages it follows that jyj � 1.

From u1u
i
2u3 2 L0 it follows that '(u1)['(u2)]i'(u3)Pas � L for any i � 0. Hence,

xyizv 2 L for any i � 0, and the theorem is satis�ed with w0 = w.

Case 2 s < k1. From w 2 '(a1 � � �as)Pas it follows that there exist wj 2 '(aj), 1 � j � s,
and ws+1 2 Pas such that w = w1 � � �wsws+1. Since jwj � k = k1k2 and jwj = jw1j+ : : :+
jwsj+ jws+1j and s < k1, there is j 2 f1; : : : ; s+ 1g such that jwjj > k2 � kaj .

If j = s+ 1 then we apply the pumping lemma for the language Pas and we obtain the
theorem with w0 = w.

If j = 1 then it is clear that L(M 0
0;M1) � P0, where a1 = aM 0

0
;M1

and M0R
�M 0

0[w1iM1.
Thus w1 2 P0, and now we have to apply the pumping lemma for the word w1 with respect
to P0. Then w1 = x1y1z1 with jy1j � 1 and x1y

i
1z1 2 P0 for any i � 1. Consider w0 = w1,

x = x1, y = y1 and z = z1 and the theorem is satis�ed.
If 1 < j < s + 1 then let us suppose that aj�1 = aM 0

j�2
;Mj�1

and aj = aM 0

j�1
;Mj

.

Then, '(aj) = L(M 0
j�1;Mj) = L(�;M 0

j�1; fMjg) and Paj�1 =
S
(Mj�1;M)2R+ P (�;M).

Since Mj�1R
+M 0

j�1 it follows that '(aj) � Paj�1 and '(a1) � � �'(aj�1)Paj�1 � L. Thus
w1 � � �wj�1wj 2 '(a1) � � �'(aj�1)Paj�1 , and now we have to apply the pumping lemma for
the word wj with respect to Paj�1 . Then, wj = xjyjzj with jyj j � 1 and xjy

i
jzj 2 Paj�1 for

any i � 1. Consider w0 = w1 � � �wj , x = w1 � � �wj�1xj , y = yj and z = zj and the theorem
is satis�ed in this case too. 2

18

5 Comparisons Between Families of Languages

Any family of L-type jumping Petri net languages is closed under *" (the net jumps from
any �nal marking to the initial marking). This proof also works for the family RPf , RP,
RP�, but not for RPf

�n
, RP�n, RP

�
�n
. The closure under *" of the family RP�

�n
can be

proved using the following idea. At any reachable marking of the net some �-transitions
are enabled. These transitions will reset the current marking to the zero-marking 0 (all the
components are 0) and then, a jump from 0 to the initial marking will restart the net.

Theorem 5.1 The family RP�
�n

is closed under *".

Proof Let = f�; R;M0; lg be an l�mFJPTN . Consider the net �0 as described in Figure
5.1 together with its labelling l0. For any marking M of � denote by M 0 the marking of

��� ���

� �

������
�

6

- �

6

-
6

6
- �

6

??

t1 tm s1 sn

t01 t0m

t

: : : : : :

: : :

u

�
�0

Figure 5.1

�0 given by M 0 = (M; 1|{z}
s0

; 0|{z}
s0
0

). Consider the binary relation R0 = f(M 0
1;M

0
2)j(M1;M2) 2

Rg [f((0; : : : ; 0; 0; 1);M 0
0)g and then, the net 0 = (�0; R0;M 0

0; l
0) satis�es P (0) = (P ())�.

2

The non-closure under Kleene star of the families of Petri net languages leads us to the
following results:

Theorem 5.2

(1) Lf � RLf
�n
, L � RL�n, L

� � RL�
�n
;

(2) P� � RP�
�n
.

Theorem 5.3 L3 � RLf
�n
.

Proof The inclusion follows from the fact that L3 = RL(fss)f
�n

� RLf
�n

and the strict

inclusion follows from the facts that L3 [Lf � RLf
fin and the families L3 and Lf are

incomparable ([11]). 2

Using the results from Section 4 we can prove:

19

Theorem 5.4 L = fanbn j n � 0g =2 RLf
�n
.

Proof For the sake of contradiction suppose that L 2 RLf
�n
. Then there exist a regular

language L0 and a substitution with �-free languages ' : alph(L0)! Lf such that L = '(L0):

Case 1 L0 is in�nite. There exist u 2 L0 and a decomposition of u, u = u1u2u3 such that
ju2j � 1 and u1u

i
2u3 2 L

0 for any i � 0 (the pumping lemma for regular languages).
Since '(u1ui2u3) = '(u1)['(u2)]i'(u3) � L and u2 6= �, it follows that there exist

w1 2 '(u1); w2 2 '(u2) and w3 2 '(u3) such that w1w
i
2w3 2 L for any i � 0. It is easy to

see that no matter how w1; w2; w3 (w2 6= �) are chosen we cannot have w1w
i
2w3 2 L for any

i � 0:

Case 2 L0 is �nite. If so, let L0 = fu1; : : : ; ukg; k � 1. Since L is in�nite, there exists
j 2 f1; : : : ; kg such that '(uj) is in�nite. Let uj = a1 : : : amj

, mj � 1, and '(uj) =
fai1bi1 ; ai2bi2 ; : : :g, where 0 � i1 < i2 < : : :. Then there is i 2 f1; : : : ; mjg such that '(ai)
is in�nite. We have to consider now the next cases.

If '(ai) = fa�1 ; a�2; : : :g, where 0 � �1 < �1 < : : :, then it is easy to see that no
matter how the words in '(ai) are catenated to the left or to the right we obtain also other
words than those in '(uj). Similar reason tells that '(ai) cannot be fb

�1; b�2; : : :g, where
0 � �1 < �2 < : : :.

As any subset of '(uj) of cardinality at least two is not a member of Lf , the only
case which remains to be considered is '(ai) = fa�1b�1 ; a�2b�2 ; : : :g, where �'s and �'s are
natural numbers and there is n such that �n 6= �n. There is also p, p 6= n, such that either
�n 6= �p or �n 6= �p. A straightforward analysis shows us that no matter how the language
'(ai) is catenated to the left or to the right we we obtain also other words than those in
'(uj).

In both cases we have derived a contradiction and hence L =2 RLf
�n
. 2

Corollary 5.1 fanbn j n � 0g 2 L �RLf
�n
.

Corollary 5.2 The families RLf
�n

and L2 are incomparable.

Proof fanbn j n � 0g 2 L2 �RLf
�n

and fandbnecn j n � 1g 2 RLf
�n
� L2. 2

Corollary 5.3 RLf
�n

� RL�n.

Proof fanbn j n � 0g 2 RL�n and fanbn j n � 0g =2 RLf
�n
. 2

6 Finite Jumping Nets and Global Inhibitor Nets

We establish a connection between �nite jumping nets and a subclass of inhibitor nets,
global inhibitor nets. We recall that an inhibitor net ([9]) is a pair = (�; I), where � is a
Petri net and I � S � T such that I \ F = ;.

In an inhibitor net the transition t is i-enabled at a marking M , abbreviated M [ti;i,
i� t� � M and M(s) = 0 for any s 2 fs 2 Sj(s; t) 2 Ig. If M [ti;i then t may occur
yielding a new marking M 0, abbreviated M [ti;iM 0, given byM 0 =M +�t. As we can see,
an inhibitor net has the capability to perform zero-tests on some places.

20

A global inhibitor net is de�ned as an inhibitor net performing zero-tests on all places,
that is

(8t 2 T)((9s 2 S)((s; t) 2 I)) (8s0 2 S)((s0; t) 2 I)):

Now we show that FJPTN 's can be simulated by global inhibitor nets. Let =
(�; R;M0; l) be an FJPTN with only one jump, R = f(M;M 0)g. Construct the fol-
lowing inhibitor net (the net is shown in Figure 6.1 and the relation I is given by I =
f(s; t0)js is a placeg). It is clear that t0 performs a zero-test on all places and so this net is

��� ���

� �

������
�

6

- �

6

-

??

t1 tm

s1 sn

t01 t0n

t

: : : : : :

: : :

u

�

�0

Figure 6.1

���
6 6

6 6

�

? ?

: : :

M 0(s1) M 0(sn)

M(s1) M(sn)

t0

a global inhibitor net. Its activity can be described as follows:

- the transition t blocks � and then the transitions t01; : : : ; t
0
m check whether or not the

current marking covers M (if all t0i can occur then the current marking covers M).
The zero-test performed by t0 checks when the current marking is exactly M (t0 can
occur i� no token is in the net). If this is the case the marking M 0 is set for �.

The above construction can be easily generalized to an FJPTN with arbitrarily many
jumps.

Now we show that any arbitrarily labelled global inhibitor net can be simulated by an
FJPTN . Indeed, let = (�; I;M0; l) be such an inhibitor net. Assume I = f(s; t)js 2 Sg,
where t is a �xed transition.

If l(t) = � then we can simulate the extent of change caused by the occurrence of t using
the jump (0;M), where M(s) = W (t; s) for all s 2 S (we recall that I \ F = ;, that is
W (s; t) = 0 for all s 2 S).

If l(t) = a 6= � then we simulate the extent of change caused by t using the net shown
in Figure 6.2 and the jump f((0; 1; 0); (M; 0; 1))g (M is as above). By this jump the net �
will be blocked; it is relieved after an occurrence of the transition t labelled by a (t being a
new transition).

21

�

�
	
�

�
	 �
��u a ������

-
S T t�

�0

: : :

Figure 6.2

The generalization to an arbitrary global inhibitor net is straightforward.

Final Remarks

We consider that the extension of Petri nets allowing a �nite number of jumps is quite
reasonable: on the one hand such nets have the basic decision problems decidable and, on
the other hand a �nite number of jumps strictly increase the power of the nets.

We close with some important open problems.

P1. Petri nets may be considered as being jumping nets where the set of jumps is empty.
Therefore, the construction given in the proof of Theorem 3.1 works in this case as
well, and it shows us how we can replace (�-)labelling functions of Petri nets by sets
of jumps. As a conclusion, (�-)labelled Petri nets are unlabelled jumping nets (via
the interleaving semantics). The natural question now is the following: which class of
JN corresponds exactly to (�-)labelled Petri nets?

P2. Are the inclusions RL�n � L1, RL
�
�n

� Lrec, RL�n � RL�
�n
, RP�n � RL�n,

RP�
�n
� RL�

�n
proper or not?

P3. Are the families RPf

�n
and RP�n closed under *"?

P4. De�ne RXf

k
(RXk, RX

�
k
, resp.) as being the family of X-type languages generated

by jumping nets having at most k jumps (k � 0), that is jRj � k. We have

Xf � RXf

k
� RXf

k+1 � RXf

�n

X � RXk � RXk+1 � RX�n

X� � RX�
k

� RX�
k+1 � RX�

�n

for all k � 1 and X 2 fP; Lg.
Does this restriction de�ne proper hierarchies of jumping Petri net languages?

P5. What about the connection between FJPTN 's and global inhibitor nets in the case
we do not allow �-transitions?

22

References

[1] E. Best, C. Fernandez: Notations and Terminology on Petri Net Theory, Arbeitspapiere
der GMD 195, 1986.

[2] H.D. Burkhard: On priorities of parallelism; Petri nets under the maximum �ring
strategy, Int. Conf. LOGLAN 77, Poznan, 1980.

[3] H.D. Burkhard: The Maximum Firing Strategy in Petri Nets Gives More Power, ICS-
PAS Report 441, Warszaw, 24-2, 26, 1980.

[4] H.D. Burkhard: Two pumping lemmata for Petri nets, Journal of Information Process-
ing and Cybernetics EIK, vol. 17, no. 7, 1981, 349 { 362.

[5] H.D. Burkhard: Ordered �ring in Petri nets, Journal of Information Processing and
Cybernetics EIK, vol. 17, no. 2/3, 1981, 71 { 86.

[6] H.D. Burkhard: Control of Petri Nets by Finite Automata, Preprint 26, Sektion Math-
ematik, Humboldt-Universit�at, Berlin, 1982.

[7] H.D. Burkhard: What Gives Petri Nets More Computational Power, Preprint 45, Sek-
tion Mathematik, Humboldt-Universit�at, Berlin, 1982.

[8] H.J.M. Goeman, L.P.J. Groenwegen, H.C.M. Kleijn, G.Rozenberg: Constrained Petri
nets (Part I, II), Fundamenta Informaticae, vol. 6, no. 1, 1983.

[9] M. Hack: Petri Net Languages, CSG Memo 124, Project MAC, MIT, 1975.

[10] J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages, and Com-
putation, Addison-Wesley, Reading, Mass., 1979.

[11] M. Jantzen: Language Theory of Petri Nets, Advances in Petri Nets 1986, Part I,
LNCS 254, Springer-Verlag, 1987, 397{412.

[12] T. Jucan, C. Masalagiu, F.L. T� iplea: Relation Based Controlled Petri Nets, Scienti�c
Annals of the "Al. I. Cuza" University, Section Informatics, Tom 2, 1995.

[13] W. Reisig: Petri Nets. An Introduction, EATCS Monographs on Theoret. Comput.
Sci., Springer-Verlag, 1985.

[14] W. Reisig: Place Transition Systems, Advances in Petri Nets 1986, Part I, LNCS 254,
Springer-Verlag, 1987, 117{141.

[15] G. Rozenberg, R. Verraedt: Restricting the in-out structure of graph of Petri nets,
Fundamenta Informaticae VII.2, 1984, 151{189.

[16] F.L. T� iplea, T. Jucan, C. Masalagiu: Conditional Petri net languages, J. Inf. Process.
Cybern. EIK, vol. 27, no. 1, 1991, 55 { 66.

[17] F.L. T� iplea: Selective Petri net languages, Intern. J. Computer Math., vol. 43, no. 1-2,
1992, 61 { 80.

23

[18] F.L. T� iplea, T. Jucan: Jumping Petri Nets, Foundations of Computing and Decision
Sciences, vol. 19, no. 4, 1994, 319 { 332.

[19] F.L. T� iplea: On Conditional Grammars and Conditional Petri Nets, in: Mathematical
Aspects of Natural and Formal Languages (Gh. P�aun, ed.), World Scienti�c, Singapore,
1995, 431 { 455.

[20] T. Ushio: On controllability of controlled Petri nets, Control Theory and Advanced
Technology, vol. 5, no. 3, 1989, 265 { 277.

[21] R. Valk: Self-modifying nets, a natural extension of Petri nets, Fifth Colloquium \Au-
tomata, Languages and Programming", 1978, LNCS 62, Springer-Verlag, 1978, 464{
476.

[22] R. Valk: On the computational power of extended Petri nets, Proc. of the 7th Sym-
posium \Mathematical Foundations of Computer Science", 1978, LNCS 64, Springer-
Verlag, 1978, 526{535.

24

