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Abstract

A Jumping Petri Net ([18], [12]), JPTN for short, is defined as a classical net which
can spontaneously jump from a marking to another one. In [18] it has been shown
that the reachability problem for JPTN’s is undecidable, but it is decidable for finite
JPTN’s (FJPTN).

In this paper we establish some specific properties and investigate the computational
power of such nets, via the interleaving semantics. Thus, we show that the non-labelled
JPTN’s have the same computational power as the labelled or A-labelled JPTN’s.
When final markings are considered, the power of JPTN’s equals the power of Tur-
ing machines. The family of regular languages and the family of languages generated
by JPTN’s with finite state space are shown to be equal. Languages generated by
FJPTN’s can be represented in terms of regular languages and substitutions with
classical Petri net languages. This characterization result leads to many important con-
sequences, e.g. the recursiveness (context-sensitiveness, resp.) of languages generated
by arbitrarily labelled (labelled, resp.) FJPTN’s. A pumping lemma for nonterminal
jumping net languages is also established. Finally, some comparisons between families
of languages are given, and a connection between F.JPTN’s and a subclass of inhibitor
nets is presented.

1 Introduction

It is well-known that the behaviour of some distributed systems cannot be adequately
modelled by classical Petri nets. Many extensions which increase the computational and
expressive power of Petri nets have been thus introduced. One direction has led to the
modification of the firing rule of the nets ([2], [3], [5], [6], [7], [8], [12], [16], [17], [18], [19],
20, [21], [22)).

In this paper we consider jumping Petri nets as introduced in [18]. A jumping Petri net
is a classical net ¥ equipped with a (recursive) binary relation R on the markings of ¥. If
(M, M') € R then the net ¥ may “spontaneously jump” from M to M’ (this is similar to



A-moves in automata theory). When modelling systems using Petri nets, the extension to
jumps is interesting for several reasons ([18]):

— unrelevant parts of the behaviour may be hidden,
— exception handling and recovery mechanisms can be added.

The paper is organized as follows. Section 2 presents the basic terminology, notations,
and results concerning Petri nets and jumping Petri nets. In Section 3 we show that non-
labelled JPT N’s have the same computational power as labelled or A-labelled JPT N’s and,
in the case of final markings, their power equals that of Turing machines. Section 4 gives
some characterization results for FJPT N’s in terms of regular languages and substitutions
with A-free languages. Then some important consequences are derived and a pumping
lemma for nonterminal jumping net languages is established. In Section 5 some comparisons
between families of languages are given. The last section presents a connection between
FJPTN’s and a subclass of inhibitor nets.

2 Preliminaries

The aim of this section is to establish the basic terminology, notations, and results concern-
ing Petri nets in order to give the reader the necessary prerequisites for the understanding
of this paper (for details the reader is referred to [1], [9], [11], [13], [14]).

The empty set is denoted by §; for a finite set A, |A| denotes the cardinality of A and
P(A) denotes the set of all subsets of A. Given the sets A and B, A C B (A C B, resp.)
denotes the inclusion (strict inclusion, resp.) of A in B. If R C A x B then dom(R) and
cod(R) denote the sets dom(R) = {a € A|Fb € B : (a,b) € R} and cod(R) = {b € B|da €
A : (a,b) € R}. The set of integers (nonnegative integers, positive integers, resp.) is
denoted by Z (N, N*, resp.).

For a (finite) alphabet V', V* denotes the free monoid generated by V' (under the con-
catenation operation) with the empty word A\. Given a word w € V*, |w| denotes the
length of w, and alph(w) denotes the set of all letters occurring in w. The alph-notation is
extended by union to sets of words (languages). L3 (L2, L1, Lyec, resp.) denotes the family
of regular (context-free, context-sensitive, recursive, resp.) languages and L3 ,,.; denotes
the family of regular prefix languages (i.e., regular languages containing all prefixes of their
words).

2.1 Petri Nets

A (finite) P/T-net (with infinite capacities), abbreviated PTN, is a 4-tuple ¥ = (S,T'; F,
W) where S and T are two finite non-empty sets (of places and transitions, resp.), SNT = (),
FC(SXxT)u(T xS8) is the flow relation and W : (S x T) U (T x S) — N is the weight
function of ¥ verifying W(z,y) = 0iff (2,y) ¢ F. A marking of a PTN X is a function
M : S — N; it will be sometimes identified with a vector M € NISI. The operations and
relations on vectors are componentwise defined. N* denotes the set of all markings of ¥.
A marked PT N, abbreviated mPT N, is a pair v = (X, Mg), where ¥ is a PTN and My,
the nitial marking of ~, is a marking of ¥. An mPTN with final markings, abbreviated



mPTN f, is a 3-tuple v = (X, My, M), where the first two components form an mPTN
and M, the set of final markings of v, is a finite set of markings of 3. A labelled mPT N
(mPTN f, resp.), abbreviated ImPTN (ImPTN f, resp.), is a 3-tuple (4-tuple, resp.) v =
(3, Mo, 1) (v = (X, Mo, M, 1), resp.) where the first two (three, resp.) components form
an mPTN (mPTMf, resp.) and [, the labelling function of v, assigns to each transition
a letter (label). A A-labelled mPTN (mPTN f, resp.), abbreviated [*mPTN (I*mPTN f,
resp.), is defined as an ImPTN (ImPTM f, resp.) with the difference that the labelling
function, called now the A-labelling function of v, assigns to each transition either a letter
or the empty word A.

In the sequel we often use the term “Petri net” (PN) or “net” whenever we refer to
a PTN (mPTN, mPTNf, InPTN, ImPTNf, PmPTN, ’mPTNf) v and it is not
necessary to specify its type (i.e., marked, labelled, etc.); moreover, we implicitly assume
that the components of + are defined as above. The term “Petri net” or “net” will be
sometimes used together with other terms. For instance, the term “labelled net” denotes
a net which is at least labelled. The first component 3 of a PN ~ is called the underlying
net of v. A marking (place, transition, arc, weight, resp.) of a net v is any marking (place,
transition, arc, weight, resp.) of the underlying net of .

Graphically, a net v is represented by a graph. The places are denoted by circles and
transitions by boxes; the flow relation is represented by arcs. An arc f € F is labelled by
W (f) whenever W(f) > 1. The initial marking Mj is presented by putting My(s) tokens
into the circle representing the place s. The labelling function is denoted by placing letters
into the boxes representing transitions, and the final markings are explicitly listed.

Let v be a net, t € T and w € T*. We define the functions t=, ¢, and Aw from S into
Z by t~(s) = W(s,t), tt(s) = W(t,s) and Aw(s) = 0if w = X and Aw(s) = S0, (tF — ;)
if w==t...t,,n > 1, for all s € §. The sequential behaviour of v is given by so-called
transition (firing) rule, which consists of

(i) the enabling rule: a transition t is enabled at a marking M (in ), abbreviated M][t).,
iff t— < M;

(ii) the computing rule: if M(t).,, then t may occur yielding a new marking AM’, abbreviated
M{[t),M', defined by M" = M + At.

In fact, for any transition t of 4 we have defined a binary relation on N®, denoted by [t)~
and given by
Mty M" iff 7 <M and M' = M + At.

Ift;,...,t,,n > 1, are transitions of -, the classical product of the relations [t1)., ..., [tn)~
will be denoted by [t; - - -tp)y; L. [t tn)y = [t1)5 ©...0 [ty ). Moreover, we consider the
relation [A), given by [A), = {(M, M) | M € N°}.

Let v be a marked Petri net and My its initial marking. The word w € T™ is called a
transition sequence of v if there exists a marking M of v such that My[w),M. Moreover,
the marking M is called reachable (from My) in . The set of all reachable markings of ~ is
denoted by [Mgp). The notation “[-),” will be simplified to “[-)” whenever « is understood
from the context.

Petri nets may be considered as generators of languages. Let v; be an mPT N, «; either
an ImPTN or an I"mPTN, ~v3 an mPTN f, and 74 either an ImPTN f or an I’mPTN f.



The languages generated by these nets are defined as follows:

wlw e T* A (IM € N° 1 My[w),, M)},

P(’Yl) = {

P(vy) = {l(w)|we T* A (3M € N° : Mo[w),, M)},
L(vs) ={wlweT* N (IM € M : My[w),, M)},
L{vg) = {l(w)jwe T* A (3M € M : My[w)., M)}.

The languages generated by mPTN (ImPTN, I*mPTN, resp.) are called free P-type
languages ( P-type languages, arbitrary P-type languages, resp.) and the family of these lan-
guages is denoted by Pf (P, P*, resp.). For Petri nets with final markings the notation and
terminology is obtained by changing “P” into “L”. Sometimes, “nonterminal” (“terminal”,
resp.) is used instead of “P-type” (“L-type”, resp.). These languages are usually referred
to as Petri net languages or Petri languages.

2.2 Jumping Petri Nets

A jumping P/T-net ([18]), abbreviated JPT N, is a pair v = (X, R), where ¥ is a PTN and
R, the set of (spontaneous) jumps of v, is a binary relation on the set of markings of ¥. In
what follows the set R of jumps of any JPTN will be assumed recursive, that is for any
couple of markings (M, M') we can effectively decide whether or not (M, M') is a member
of R. Let v = (X, R) be a JPTN. The pairs (M, M') € R are referred to as jumps of vy. If
~ has finitely many jumps then we say that v is a finite JPT N, abbreviated FJPTN.

Let Y € {JPTN,FJPTN}. An mY (mYf, ImY, ImY f, ’mY, ’mY f, resp.) is
defined as an mPTN (mPTNf, InPTN, InPTNf, ’"mPTN, ’mPTN f, resp.), by
changing “¥” into “X, R”. For instance, v = (X, R, My, M, 1) denotes either an ImY f
or an ’mY f. We shall use the term “jumping net” (JN) (“finite jumping net” (FJN),
resp.) to denote any of the following: JPTN, mJPTN, mJPTN f, imJPTN,ImJPTN f,
PmJPTN, "mJPTNf (FJPTN, mFJPTN, mFJPTNf, InFJPTN, ImFJPTN f,
PmFJPTN, ’"mFJPTNf, resp.). In fact, all remarks about Petri nets equally hold
for jumping Petri nets. Graphically, a jumping net will be represented as a classical net.
Moreover, the relation R will be separately listed.

The behaviour of a jumping net v is given by the j-transition (j-firing) rule, which
consists of

(i) the j-enabling rule: the transition t is j-enabled at a marking M (in v), abbreviated
M{t). ;, iff there exists a marking M; such that MR*M;[t)y, (¥ being the underlying
net of v and R* the reflexive and transitive closure of R);

(ii) the j-computing rule: the marking M’ is j-produced by occurring t at M, abbreviated
M{t). ;M', iff there exist markings My, M; such that MR*M;[t)s MyR*M'.

The notions of transition j-sequence and j-reachable marking are defined similarly as for
Petri nets (the relation [A), ; is defined by [\),; = {(M, M")|M € N°, MR*M'}). The set
of all j-reachable markings of a marked JN # is denoted by [My), ; (Mo being the initial
marking of ). The notation “[-), ;” will be simplified to “[-),;” whenever v is understood
from the context.



Jumping nets may be considered as generators of languages in the same way as classical
nets, by changing “[-)” into “[-),;”. For example, if v = (%, R, My, M, 1) is an I*m.JPTN f,
then the language generated by ~ is

L(y) = {l(w)|weT* A M € M : M[w);M)}.

Thus, RXT (RX, RX*, resp.) will denote the family of free X-type jumping Petri net lan-
guages (X-type jumping Petri net languages, arbitrary X-type jumping Petri net languages,
resp.), for any X € {P, L}. For finite jumping nets, the corresponding family of languages
will be denoted by RXE (RXgpn, RX}_, resp.). For any X € {P, L} we have:

Xf ¢ RXE C RX,
X C RXsn C RX,
X* € RX3, C RXM

Some jumps of an FJN may be never used. Thus we say that a marked finite jumping
net v is R-reduced if for any jump (M, M') of v we have M # M', M € [My) ;, and there
is a final marking of 4 which is j-enabled at M’ (provided that final markings are defined).

As the reachability problem for F.JN’s is decidable ([18]), for any marked FJN ~ we
can effectively construct (modifying only the set of jumpings of v) a marked FJN +' such
that 7" is R-reduced and it has the same computational power as v. All finite jumping nets
in this paper will be considered R-reduced.

3 Jumps and Labellings

In this section we show that the jumps can “simulate” the labelling of nets. Then we use this
result to prove that the power of JPT N’s with final markings equals the class of recursively
enumerable languages. In the case of jumping nets with finite state space the connection
with regular languages is shown.

Theorem 3.1 For any X € {P, L} we have RXf = RX = RX"*.

Proof It is enough to prove that RX* C RXY, and we will first do it for the case X = L.

Let L € RLA and v = (X, R, Mo, M, ) be an " mJPTN f such that L = L(v). Without
loss of generality we may assume that TN {l(¢)|t € T} = 0, where X = (S,T; F,W). Let
Ty={teT|(V' eT)t#t = ) £I))CT, Th={teT|3FH €eT)t#t N It) =
1(t')}, and T5 = {t € T|l(t) = A\}. It is easy to see that T =T, U T, U Ts.

If T, = T35 = 0 we consider v = (X', R, My, M), where ¥’/ is obtained from ¥ by
renaming each transition ¢ by I(¢). ¥"is an mJPTN f and L(y') = L.

If Ty # ( or T # () we construct v/ = (3, R, M, M) as described below. We partition
the set Ty = T —T) into k > 1 subsets, Ty = Ty U---UT¥, such that for any i, 1 < i < k, the
set T4 contains those transitions of ¥ which have the same label; let a; be this label. We have
a; # a; for any ¢ # j. The set of transitions of ¥’ will be T7 = [(T1) UT, U {ay,...,ap} UT;
(for a set A, [(A) stands for the set {l/(a)|la € A}). The basic idea is: when a transition
t € Ty occurs in v, its effect is simulated in 4’ by the transition I(t) € [(T}); when a
transition ¢ € T occurs in v, 1 < i < k, its effect is simulated in ~' by the relation R’ and



the transition ;. Finally, when a transition ¢ € T3 occurs in 7, its effect is simulated in 4/
by the relation R’. The transitions of Ty U T3 will be blocked forever in 4. Formally, 7' is
given by:

(i) T'=T{UTyU{ay,...,a} UTs, where T] = [(T}). We have T, N {ay,...,ax} = 0;

(ii) S" = S U{so,s0,51,8],- .-, Sk, sk}, where sq, s, 51,51, ..., Sk, s}, are new places. All
the markings of ¥/ will be written in the form

7 7 7
(M, ag , gy, a1, 04 ..., Ok, O ),
50 56 51 51 Sk 52

where M € N¥ and «a;, o} are nonnegative integers;

(iii) F' = F{UF/UF,UF} U Fs, where
Fl ={(s,l(t))|s€ S, t €Ty, (s,t) € F}U{(I(t),s)|s€ S, t €Ty, (t,s) € F},
Fy' = {(s0,t)|t € T1},
F,={(s,t) e Flt e T, UT5}U{(t,s) € F|t € T, UT5},
Fy' = {(s0,t)|t € T, UTs},
Fs={(s;,a;)|1 <i<k}U{(a;,sh)|1 <1<k}

Wiz, y), if (z,y) € Fy

1, if (z,y) € F{'UF} U F3
Wiz, t), ify=1I(t), teT, (x,y)€ F]
Wit,y), ifax=I(t),teT, (z,y) € F;

(v) R'=RyU Ry UR,URJU Rs3, where
Ry = {((M1,0,0,0,0,...,0,0), (M3,0,0,0,0,...,0,0))| (M, Ma) € R},
R, ={((M,0,0,0,0,...,0,0),(M,1,0,0,0,...,0,0))|
MeN® (3teTi: Mt)s)},

(iv) W'(z,y) =

A

Ry = {((M,0,0,0,0,...,0,0), (3,0,0,0,0,..., 1 , 0 ,...,0,0))|
MeN% 1<i<k (JteTi: Mt)s)},

RY = {((M,0,0,0,0,..., 0 , 1 ,...,0,0),(M,0,0,0,0,...,0,0))|

RN N S

MeEN?® 1<i<k, (3tecTi: M[t)sM)},
Rs = {((M;,0,0,0,0,...,0,0), (M3,0,0,0,0,...,0,0))|
M eN® (3teTs: Mi[t)sMy)}.
The relation R’ such defined is recursive;

(vi) M} = (Mo,0,0,0,0,...,0,0);
(vii) M’ = {(M,0,0,0,0,...,0,0)|M € M}.

Graphically, the net X' is represented in Figure 3.1. We show that L = L(v’). Let us first
consider the inclusion I C L(4’). It is enough to prove that if My[w), ;M, w € T*, then

(Mo,0,0,0,0,...,0,0)[I(w))-;(M,0,0,0,0,...,0,0).
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By induction on |w| it is enough to prove that if M; € N, t € T and M;[t), ;M, then
(M;,0,0,0,0,...,0,0)[[(t))y;(Mz, . ..,0,0,0,0,...,0,0).

Suppose M;[t), ;M;. Then, there exist Ms, My € N such that M, R*M;[t)s MyR* M,. We
have to consider three cases.

Case 1 t € Ty. Then I(t) € T{ and
(My,0,0,0,0,...,0,0)R;(Ms,0,0,0,0,...,0,0) R,
(Ms3,1,0,0,0,...,0,0)[I(t))s(M4,0,0,0,0,...,0,0)R;(M,0,0,0,0,...,0,0).
Case 2 t € T} for some i, 1 < i < k. Then,

(My,0,0,0,0,...,0,0)R5(M;,0,0,0,0,...,0,0)R,

(M5,0,0,0,0,..., 1, 0 ,...,0,0)[a; = ()} (M3,0,0,0,0,..., 0, 1,...,0,0)

RY(M4,0,0,0,0,...,0,0)R;(M>,0,0,0,0,...,0,0).
Case 3 t € T3. Then,
(M7,0,0,0,0,...,0,0)R;(Ms,0,0,0,0,...,0,0)R3

(M3,0,0,0,0,...,0,0)R5(M),0,0,0,0,...,0,0),
that is (M, 0,0,0,0,...,0,0)[A=I(t));(My,0,0,0,0,...,0,0).



Hence, if M;[t), ;M then
(My,0,0,0,0,...,0,0)[1(£)},,;(Mz,0,0,0,0,....0,0).

Thus we have L C L(v).
As for the converse (L(y') C L) it is necessary to note that each j-reachable marking in
v is of one of the following forms:

(1) (M,0,0,0,0,...,0,0),

(2) (M,1,0,0,0,...,0,0),

(3) (M,0,0,0,0,..., 1, 0 ,...,0,0),
(4) (M,0,0,0,0,..., 0 , 1 ,...,0,0),
vv

where M € [My),,; and ¢ € {1,..., k}.

No transition of 7’ is enabled at a (1)- or (4)-type marking. Ounly a jump by R’ makes it
possible to pass from a (1)- or (4)-type marking to a (1)-, (2)- or (3)-type marking. In
the transitions are enabled only at the (2)- or (3)-type markings. Now it is enough to prove
that if u € (T')* and

(M, 0,0,0,0,...,0,0)[u)y; (M, 60,6, 61,01, ..., 60k 6)

then there is w € T such that [(w) = w and My[w), ;M. Taking into account that any
jump by Rs can be simply simulated by a transition labelled by A, it remains to be shown
that if t' € T' — T3, My € N°,

M;,0,0,0,0,...,0,0)[t".;(M5,0,0,0,0,...,0,0
Ry

and no jump by Rs is used in this computation, then there is ¢t € T such that [(¢) = ¢ and
M [ty jM;. We have to consider two cases.

Case 1’ t' € T{ = (Ty). Then there is an unique ¢ € T such that [(¢) = . From
(M1,0,0,0,0,...,0,0)[t") (M, 0,0,0,0, ...,0,0)

it follows that there exist M3, My € N¥ such that
(M1,0,0,0,0, ...,0,0)R5(Ms, 0,0,0,0, ...,0,0) Ry

(Ms,1,0,0,0,...,0,0)[t' = ()5 (Mj, 0,0,0,0,...,0,0)Ri(Ms, 0,0,0,0, ..., 0,0).
But /(t) acts as t on the same places of S and hence M;R*Ms[tyy, MyR* M, which shows us
that Ml[t>%]‘M2.
Case 2/ Thereis i € {1,...,k} such that ¢ = a;. Then, for any t € T} we have I(t) = a;.

From
(My,0,0,0,0,...,0, 0)[t’ = a,'>7/7j(M2, 0,0,0,0,...,0,0)



it follows that there exist M3, My € N¥ such that

(My,0,0,0,0,...,0,0)R5(M;,0,0,0,0,...,0,0)R,

(M3,0,0,0,0,..., 1, 0 ..., 0,0)[a;)s:(M3,0,0,0,0,..., 0 , 1 ,....0,0)RY

(M3,0,0,0,0,...,0,0)R5(M,,0,0,0,0,...,0,0).

From the definition of RY it follows that there is ¢t € T§ such that M;[t)sMy. Moreover
I(t) = a; = t'. Hence we have My R*M;s[t)sx, My R* M, which shows that M [t)., ;M;.

We have proved that RL* = RLf. To accomplish the proof of the theorem we note that
for the case X = P the net 4’ is constructed in the same way as it was described. The
difference is that the final markings are not used. O

Remark 3.1 Usually in Petri net theory, isolated places and transitions are not allowed,
and this is the reason that in the proof of Theorem 3.1 the set Ty UT5 has not been removed
from T'.

Theorem 3.2 RLf = RL = RL* = £,.

Proof The equalities RLf = RL = RL? have been already established. The equality
with the set of all recursively enumerable languages can be obtained as follows.

In [18] it has been proved that jumping Petri nets can simulate inhibitor nets (which
have the power of Turing machines). As a consequence, £, C RL*. Now we prove that
RLf C £y. Let v = (%, R, My, M) be an mJPTN f. We show that there is an algorithm
A such that for all w € T* we have

w € L(vy) iff A beginning with the input w it will eventually halt accepting w.
First we have to remark that w € L(vy) iff there is a computation in v of the form
MoR* M [w)MyRYM] - - My,_y RT M}, [wp) My R* M,

where M € M and wy,...,wi (k> 1) is a decomposition of w into non-empty words, that
is w = wy - - -wy and none of w; is empty. All the computations of the above form will be
called terminal computations in v. A terminal computation can be written as a (formal)
string

(M07 M(l))wl(Mlv M{) T (Mk_lv Mllc—l)wk(Mkv M)?

where (Mo, M), (Mg, M) € R*, (M1, My),...,(My—1,M]_,) € Rt and wy,...,wx € T
(the empty transition sequence is identified by a string of the form (MoR*M])).

It is clear that not any string of the above form describes a terminal computation in 7.
But if we have such a string we can effectively decide whether or not it describes a terminal
computation in .

Since R is recursive, R* is recursively enumerable and consequently, we can enumerate
R* by

TosyT1yeees Ty .



(for any n > 0, ry, is a couple (M, M") satistying M R*M').
Any w € T* has finitely many decompositions w = wy - - -wg (k > 1) with w; € T for
all 7, and let dy,...,dy (m > 1) be all these decompositions. For any decomposition d;
(1<i<m),
di: w=w- - wk,

we consider the N-indexed sequence S; defined by:

e consider first all strings obtained from d; and rg as above (in this case we have only
one string rowyrg - - - roWk; 7o)}

e consider then, in an arbitrary but fixed order, all strings as above obtained from d;
and rg, ry (for example, rowyrg - - - rowy,r1 is such a string);

e and so on.

We obtain, using all decompositions of w, m sequences:

1 1 1

Sl C1y €9 Cno
2 2 2

Sz €1y €2 Cno
. m m m
Sm 'y oy, oo

Now, the activity of the algorithm A on the input w € T* can be described as follows:

1. A computes all decompositions of w; let dy, ..., d,, (m > 1) be these decompositions;
2. A searchs the sequences Si,..., S, (as above) in the order
I PN e SR L

3. for a string cf (¢ > 1,1 <7 < m) the algorithm A can effectively decide whether or
not ¢/ describes a terminal computation of w in +. If this is the case, then A halts
with the answer “w is a member of L(y)”; otherwise, A will continue the searching.

It is easy to see that A halts on the input w iff w € L(vy). We conclude that L(vy) € £y and
so, RLf C £,. Combining this inclusion with the other one we obtain the theorem. O

Remark 3.2 In our study only recursive sets of jumps have been considered. But, the con-
struction in [18] showing that jumping Petri nets can simulate inhibitor nets needs only
Jumping nets in which the set R of jumps is even more restrictive than recursive. Namely,
the simulation is possible with nets where the set {M'|(M, M') € R} is finite for each mark-
g M. Hence, we could add this restriction to our definition for jumping Petri nets without
affecting their computational power. This restriction would also allow a direct simulation
of jumping Petri nets by non-deterministic Turing machines.

Remark 3.3 If we know that [Mo). ; is recursive, we can replace N° by [My),.; in the
definition of R’ in the proof of Theorem 3.1. Consider now the case where [My). ; is finite.
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Case 1 R is finite. Then R’ will be finite. Moreover, it is easy to see that the set
[M})-; is finite. Denote by RX(fss)f (RX(fss)g,, RX(fss)y,, resp.) the family of
X -type languages generated by FJN ’s which have a finite state space (i.e., a finite set of
j-reachable markings). We have then

RX (fss)f = RX(fss)g, = RX(fss)j,, VX € {P,L}.

Case 2 R is infinite. Then [M}).; is also finite. Denote by RX (fss)f (RX(fss),
RX(fss)?, resp.) the family of X-type languages generated by JN ’s which have a finite
set of j-reachable markings. We have then
RX (fss) = RX (fss) = RX(fss)), VX e {P,L}.
Moreover, in this case, only finitely many jumps of R are j-enabled from My ([Mo)~ ; is
finite); hence B,X(fss)gn = RX(fss)f and thus, for any X € {P, L} we have
RX (fss)f = RX(fss)g, = RX (fss);, = RX(fss)’ = RX(fss) = RX (fss).

There is a strong connection between these families of languages and the family of regular

languages. Indeed, if we denote by X(fss)f (X(fss), X(fss)*, resp.) the family of X -type

languages generated by PN ’s which have a finite set of reachable markings, then we have
L3 C L(fss) C Lfss)* C RL(fss)j)m = RL(fss)}tm C Ls.

The first inclusion follows from the fact that the transition graph of a deterministic finite
automaton can be easily transformed into an ImPTN f which has a finite set of reachable
markings; the last inclusion follows from the fact that any mFJPTN f which has a finite
set of j-reachable markings can be transformed into a finite automaton with A-moves whose
set of states is the set of j-reachable markings and whose transition function is given in an
obvious way (the A-moves are given by R)

5(M,2) = {.M’7 if @ is a transition and M[x)x M’
T VMM, M) € RY, ifa= A

Analogously we have

L3 pres C P(fss) C P(fss))‘ C RP(fss)f:‘m = RP(fss)%n C L3 pref-

Thus we have obtained

Theorem 3.3
(1) L5 = L(fss) = L(fss)* = RL(fss)k = RL(fss)q, =
RL(fss)y, = RL(fss)’ = RL(fss) = RL(fss)*;
(2) L3pres = P(fss) = P(fss)* = RP(fss)k = RP(fss)g, =
RP(fss)f;m = RP(fss)’ = RP(fss) = RP(fss)’;
(3) X(fss)f ¢ X(fss), for any X € {P,L}.

Proof (1) and (2) directly follow from Remark 3.1. (3) follows from definitions and from
the fact that Ly = {baa} U {abb} ¢ Lf ([11]) and Ly = {a™|n > 0} U {0"|n > 0} ¢ Pf ([17)).
It is easy to see that L; € L(fss) and Ly, € P(fss). O
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4 Characterization Results and Consequences

In this section we focus on finite jumping nets. We shall prove that any language L € RL%n
(RLgin, RL},, resp.) can be represented as L = (L'), where L’ is a regular language and
@ is a substitution with A-free languages. Similar results hold true for P-type jumping Petri
net languages.

Theorem 4.1 For any L € RLY, (RLan, RL},, resp.) there exist a language L' € L3
and a substitution with A-free languages ¢ from alph(L') into LY (L, L, resp.) such that
L =¢(L).

Proof Let L € RLE . There is an mFJPTNf v = (S, R, Mo, M) such that L = L(v).
We construct a finite automaton with A-moves, A = (Q, 1,6, go, Q ), as follows:

(i) Q@ ={Mo}Udom(R)U cod(R)U M;

(i) I ={an m|M', M € Q and M is reachable from M’ in ¥ by a non-empty
sequence of transitions};

(iii) 0:Q x (TU{A}) = Q is given by:

- (S(M/,QM/7M) = {M} if apr M € 1,
- O(M,N) ={M'|(M,M") € R},

— undefined, otherwise;
(iv) o = Mo;
(v) Qf = M.

Let L' = L(A) and ¢ : alph(L') — L given by p(ayr ) = L(M', M) — {\}, where
L(M', M) is the language generated by the mPTN f (3, M',{M}).

We have L’ € L3. Let us prove that L = ¢(L’). First, A € Liff A € L’ and hence A € L iff
A€ o(L). Let now w € L, w # A. There is a decomposition of w, w = wy -+ - Wyy1, m > 0,
such that

MoR*Mé[w1>EM1R+M{ e R—l—MTIn [wm+1>2Mm+1R*Mr/n+17

where M, ., € M and M; and M; are markings of v and w; # X for any 0 < i < m + 1.

The sequence u = ANgY My O My -+ - My Mo determines a unique path, excepting A-
moves, from My to M, in the automaton A. Hence u € L' (the computation in v and
the path in the automaton A are shown in Figure 4.1). For any 7, 1 < ¢ < m+ 1, we have
w; € L(M/_,, M;) — {\} which shows that w € ¢(u), i.e. w € ¢(L"). Thus the inclusion
L C ¢(L’) is proved. The other inclusion can be proved analogously.

The case L € RLay can be simply settled by starting from the remark that if L = L(v),
v = (%, R, My, M, 1), then L = I(L(¥')), where v' = (3, R, My, M). Now, there exist a
regular language L’ and a substitution with A-free languages 1 from alph(L’) into L such
that L(y") = ¢(L’). Define ¢ = [ o1 which is a substitution with A-free languages. We
have L = ¢(L’).

12
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Figure 4.1

The previous idea does not work for the family RLf?‘m because [ is an arbitrary labelling

function and, for some a, (I o 1)(a) could contain A. We modify the construction given in
the case of RL%n by setting

plann) = H(L(M', M)) = {A},

for any apsr as, and adding arcs (M, H’) labelled by A to A whenever there exist in A
the arcs (M, M’) and (M, M) labelled by A and (M’, M) labelled by appas and A €
IL(X, M',{M})) (since Petri net languages are recursive languages ([11]) we can effectively
decide whether or not A is in such a language). Figure 4.2 shows this construction. It is

R* R*
7

=

(a0
N

[

Figure 4.2 (The case [(w)

= i}
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easy to see that the theorem holds also true in this case. O

The proof of Theorem 4.1 is effective. This fact permits us to show that terminal
jumping Petri net languages are recursive.

Corollary 4.1 RLf?‘m C Lree-

Proof  We show that the membership problem for the family RLf?‘m is decidable. Let
v = (%, R, My, M, 1) be an IMmFJPTN f, T the set of its transitions and V the range of /.

JFrom Theorem 4.1 it follows that we can effectively compute a regular language L’
(given by a finite automaton) and a substitution with A-free languages ¢ : alph(L') — L*
such that L(y) = ¢(L’). Let w € V*. Since ¢ is a substitution with A-free languages we
have:

—AeL(y)iff xe L’;

—ifw#ANw=ay---a, (n>1), then w € L(v)iff there exist by ---b,, € L' (1 < m < n)
and u; € ¢(b;), 1 <1< m, such that w = uy -+ Up,.

Consequently, the membership problem for L(7) can be reduced to the membership problem
for a regular language and for some arbitrary Petri net languages. Since Petri net languages
are recursive ([11]) we conclude that the membership problem for RL3  is decidable, and
SO RLf?‘m C Lree. O

Corollary 4.2 RLg, C L.

Proof For any language L € RLg, there exist a regular language L’ and a substitution
with A-free languages ¢ from alph(L’) into L such that L = ¢(L'). But L C £y ([11]) and
L4 is closed under substitutions with A-free languages, from which the theorem follows. O

The converse of Theorem 4.1 holds true for labelled and arbitrarily labelled jumping
nets.

Theorem 4.2 If L € L3 and ¢ is a substitution from alph(L) into L (L*, resp.) then
¢(L) € RLgy (RL},, resp.).

Proof Let L € L3 and ¢ : alph(L) — L. By Theorem 3.3 there is an ImPTNf ~ =
(3, My, M, 1) such that L(vy) = L, and [My) is finite. Let alph(L) = {a1,...,an}, n > 1,
and L; = p(a;), 1 <4 < n. There exists an ImPTN f v; = (Z;, M3, M;,1;), 1 < i < n, such
that L; = L(v;) for each .

Construct an ImJPTNf ' = (X', R, My, M',l') such that ¢(L) = L(v'), as follows.
The nets ¥,%4, ..., 3, will be subnets of ¥/ and initially they will be “blocked”. When a
transition t labelled by I(t) = a;, 1 < i < n, occurs in v then in 4/ the subnet ¥; will be
relieved (by means R’) and a transition sequence w in v; can now occur in 7. When a final
marking is reached in ¥; this subnet will be blocked again (by means of R’).

Without loss of generality we may assume that S;NS; =0, ;NT; =0, TNT; = and
SNS; =0 foranyi,je{l,...,n}, i# j. Now v is given by:
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(i) S"=SUUL, S;U{so,51,-..,5n}, where sg, 51,
of 7/ will be written in the form

!
.2\4—:(.2\4—7 0407]\4—17 aq ..
S vl

S0 S1
where M € N° and M; e N%, 1<i<n;

(i) I'=TUUL, T

(iii) F' = FUUL; F;U{(so, )|t € T} U{(s4,1), (t, )|t € T3, 1 <i< n}y

Wi(z,y), if(z,y)€F
(iv) W'(x,y) = { Wilz,y), if (z,y) € F;
1, otherwise;
(v) R' = R'UR?, where
RY = {((My,0,ML,0,..., M}, 0), (M, 0, M3, 0,

..., S, are new places. Any marking

'7Mn7\04174_)7

Sn

co ML, MR, 0))]

1<i<nand (It eT: l(t) =a; and M, € [My) and M, [t)M3)},
R? = {((M,0,M},0,...,M;,1,...,MZ,0),(M,0,MO0,...,M,0,..., M}, 0))

M € [Mp) and M; € M;, 1 <i<n};
(Vi) Mé = (M0707 M01707"'7M6170);
(vii) M/ ={(M,0, M}, 0,..., My 0)|M € M};

t ifteT
L(t) ifteT, 1<i<n.

(viid) I'(t) =

Graphically, the net ¥’ is shown in Figure 4.3. The relation R! is finite because [My)., is

| S L _ _ _ ]
L ] r——- - - - = 13,
1Sn Tnl

Figure 4.3

finite and R? is finite because the sets M;, 1 < ¢ < n, are finite. Hence R’, is finite and 7/
is an ImFJPTN f. The j-reachable markings of 4’ are of the following types:

(1) (M,0,M2,0,...,MZ,0), where M € [Mo)~;
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(2) (M,0,M},0,..., M 1,...,MZ,0), where M € [My), and M* € [M}),,, 1<i<n.

No transition of 4’ is enabled at an (1)-type marking. Only by jumps from R' we can pass
from an (1)-type marking to a (2)-type marking; conversely only by jumps from R2. It is
not difficult to show that L(v") = ¢(L) and hence, ¢(L) € RLsp.

A similar argument holds for the family RLf,‘m. O

Corollary 4.3 L € RLgy (RLf;m, resp.) iff there exist L' € L3 and a substitution with
A-free languages ¢ : alph(L) — L (L*, resp.) such that L = ¢(L').

A result similar to that in Theorem 4.1 holds for P-type jumping languages.

Theorem 4.3 For any L € RPL_(RPgqn, RP}_, resp.) there exist a language L' €
L3 pref, a substitution with A-free languages o from alph(L') into LY (L, L*, resp.), and
the languages Py and P,, a € alph(L’), such that

L=mU U @I
a€alph(L')

(0" denotes the right derivative). Moreover, the languages Py and P,, a € alph(L'), are
finite unions of free P-type languages (P-type languages, arbitrary P-type languages, resp.).

Proof  Let v = (X, R, My) be an mFJPTN such that L = L(y). We construct a
finite automaton with A-moves, A = (Q, I, 6, qo, Q ), similar to that described in the proof

of Theorem 4.1, excepting only that the sets of states and final states are Q = {Mp} U
dom(R) U cod(R) and Q¢ = (). Next we consider

— L' = L(A) which is a prefix regular language;

— the substitution ¢ as in the proof of Theorem 4.1;

= Po = U, myers P(E, M);

- PaM/,M = U(M7M,,)€R+ P(X, M"), for any ap pr € alph(L').

Now, let us prove the equality in theorem. Let w € L.

If w = A or the computation induced by w contains a group of jumps only at the
beginning (MoR*M{w)M) then w € Fy. Otherwise there is a decomposition of w, w =
Wy W1, M > 1, such that

MoR*M[w)MyRY M .. . [w) My RY M/ [wp )M € N7,

where w; # A for any 1 < < m+ 1.
The sequence u = AN My AMY My - - - OM!. | My, determines a unique path (from M, to
M,,) in the automaton A and hence u € L'
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For any 4, 1 < i@ < m, we have w; € L(M;_,, M;) = @(ap_ rr,) which shows that
wy - Wy € o(u), Le. wyewp € p(u) C (0, _1,Mm)( "“Yare  ar,}). But, it is clear

m—1?
that w41 € PaM, I and thus we obtain
m—1"""1
weeldl, o D Py € U @@ )P
m= a€alph(L')

The other inclusion can be proved analogously.

The case L € RLan (L € RLf,‘m7 resp.) can be settled as in the proof of Theorem 4.1.
We only mention that the languages Py and P, are images by the labelling homomorphism
[ of finite unions of free P-type Petri net languages; that is, Py and P, are finite unions of
P-type Petri net languages (arbitrary P-type Petri net languages, resp.). O

Corollary 4.4 For any L € RPgy (RPf?‘m, resp.) there exist a language L' € L3 prey, a
substitution with \-free languages ¢ from alph(L') into L (L, resp.), and P-type languages
(arbitrary P-type languages, resp.) Py and P,, a € alph(L'), such that

L=nu |J «@L"){a})P..
a€alph(L')

Proof The family of P-type languages (arbitrary P-type languages, resp.) is closed under
union ([11]). O

Remark 4.1 The idea in the proof of Theorem 4.2 cannot be used for the family RL%n
because it is not generally true that T, N T; = O for any i # j, and it cannot be used for
P-type languages because the relation R? is, in general, infinite.

Using similar constructions as for classical Petri net languages it is easy to prove that
the families RLg, and RLf?‘m are closed under finite union and catenation (one can use also
the power of jumping relation in correlation with final markings). Then we have:

Corollary 4.5 RPg, C RLg, and RP3, C RL3, .

Proof We will prove only the inclusion RPg, C RLgy, the other one being similar to
this one. If L € RPgy then L can be written as in Theorem 4.3

L=RuU |J «»@iL"){a})P..
a€alph(L’)

5 (L"){a} is a regular language and so, by Theorem 4.2, we have ¢(9;(L"){a}) € RLgy for
any a € alph(L’).

It is well-known that P-type Petri net languages are also L-type Petri net languages
([11]), that is P C L, and so Py, P, € L C RLgp. Using the remark above concerning the
closedness of RLgy, under finite union and catenation, we obtain L € RLgy,. O

For P-type languages the following pumping lemma holds true.
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Theorem 4.4 Forany L € RPf;ln there is a number k € N such that for each word w € L,
if |w| > k then there is a prefic w' of w which has a decomposition w' = xyz such that:

(i) lyl > 1,

(1) xy™tlz € L, for any m > 0.

Proof Let v = (3, R, My, l) be an I*mFJPTN such that L = P(y). Consider the
automaton A, the substitution ¢ and the languages L', Py and P, (¢ € I) as in the proof
of Theorem 4.3 (the languages Py and P,, a € I, are arbitrary P-type Petri net languages).
We have
L=RuU |J «»@5L){a})P..
a€alph(L')

Let ky, ko, ko (a € I) be the constants from the pumping lemmata for the regular language
L’ ([10]) and for the arbitrary P-type Petri net languages Py and P, a € I ([4]). Consider
ky = max{ko, kqla € I} and k = kiky. We shall prove that the number k satisfies the
theorem.

Let w € L such that |w| > k. If w € Py then we apply the pumping lemma for w
with respect to Py and we obtain the theorem, with w’ = w. Otherwise, there is a word
w=ay---as € L' such that w € p(u)P,,. We have to consider two cases.

Case 1 s > ki. From the pumping lemma for regular languages, v has a decomposition
u = uyuguz such that |up| > 1 and wjubus € L' for any i > 0. Since w € @(u)P,, =
o(ur)p(uz)p(us)Py,, there exist @ € p(u1), y € ¢(uz), z € p(us) and v € P,, such that
w = xyzv. ¢ being a substitution with A-free languages it follows that |y| > 1.

From wjubus € L' it follows that ¢(uq)[¢(ug)]'¢(us)Ps, C L for any ¢ > 0. Hence,
xy'zv € L for any ¢ > 0, and the theorem is satisfied with w’ = w.

Case 2 s < ky. From w € ¢(ay - -a;) Py, it follows that there exist w; € ¢(a;), 1 < j <s,
and wgyy € P,, such that w = wy -+ wswyqy. Since |w| > k = kyky and |w| = |wy|+ ...+
|ws| 4 |wsy1]| and s < ky, there is j € {1,...,s+ 1} such that |w;| > kg > kq;.

If j = s+ 1 then we apply the pumping lemma for the language P,, and we obtain the
theorem with w’ = w.

If j =1 then it is clear that L(M], M) C Py, where ay = ayy vy and MoR*M{[wq) M.
Thus wy € Py, and now we have to apply the pumping lemma for the word w; with respect
to Py. Then wy = xyy;2 with |y;| > 1 and xly{zl € P, for any 7 > 1. Consider v’ = wy,
x =1,y =y and z = z; and the theorem is satisfied.

If 1 < j < s+ 1 then let us suppose that a;_; = aN1_y Moy and a; = an_ M-
Then, pla;) = L(Mi_y, My) = L(S, M-y, {M;}) and Pay’y = Uy, anere PSS M),
Since M;_RYM]_, it follows that ¢(a;) C Py, and @(ay)---¢(a;_1)Pa;_, € L. Thus
wy - wjqwy € w(ay) -+ -p(aj_1)Pa;_;, and now we have to apply the pumping lemma for
the word w; with respect to P,;_,. Then, w; = x;y,2; with |y;| > 1 and z;y;2; € Pa,_,
any ¢ > 1. Consider w’ = wy -+ wj, * = wy ---wj_y2;, y = y; and z = z; and the theorem
is satisfied in this case too. O

for
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5 Comparisons Between Families of Languages

3

Any family of L-type jumping Petri net languages is closed under (the net jumps from
any final marking to the initial marking). This proof also works for the family RPf, RP,
RP*, but not for RP%117 RPgy, RPf?‘m. The closure under “*” of the family RPf;ln can be
proved using the following idea. At any reachable marking of the net some A-transitions
are enabled. These transitions will reset the current marking to the zero-marking 0 (all the
components are 0) and then, a jump from 0 to the initial marking will restart the net.

Theorem 5.1 The family RPf;ln 18 closed under “*7,

Proof Lety = {%, R, My,1} be an [*mF.JPTN. Consider the net ¥/ as described in Figure
5.1 together with its labelling I’. For any marking M of 3 denote by M’ the marking of

| F— == == = = = = = = = = = = 9 | s
| | tl tm 51 Sn | X |
|| ... [ |
| ! |
| L — |4+ — — — — 4 — - — —_ = = = — 4 |
| |
| iAo A, |
| |
| |
| (@) () |
| [ t T |
| |
| A |
Figure 5.1

Y/ given by M’ = (M, L \O/_/) Consider the binary relation R' = {(Mj, M})|(M;, M;) €
50 s,

R}U{((0,...,0,0,1), M{)} and then, the net y' = (X', R', M{, l') satisfies P(y') = (P(y))*.

|

The non-closure under Kleene star of the families of Petri net languages leads us to the
following results:

Theorem 5.2
(1) Lf ¢ RLY,, L C RLsn, L* C RLg,;
(2) P* C RPg,.

Theorem 5.3 L3 C RL%H.

Proof The inclusion follows from the fact that £3 = RL(fss)k  C RLL  and the strict
inclusion follows from the facts that £3 UL C RL}tm and the families £3 and LY are
incomparable ([11]). O

Using the results from Section 4 we can prove:
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Theorem 5.4 L= {a"b" |n >0} ¢ RLE_ .

Proof For the sake of contradiction suppose that L € RL%H. Then there exist a regular
language L’ and a substitution with A-free languages ¢ : alph(L’) — Lf such that L = ¢(L').

Case 1 L' is infinite. There exist u € L’ and a decomposition of u, u = ujusus such that
lug| > 1 and wyubus € L' for any i > 0 (the pumping lemma for regular languages).

Since @(uiubuz) = @(u1)[@(uz)]'e(us) € L and uz # A, it follows that there exist
wy € (ur), wy € p(uz) and wz € p(uz) such that wywiws € L for any i > 0. It is easy to
see that no matter how wy, wy, ws (wz # A) are chosen we cannot have wlwéw;; € L for any
1> 0.

Case 2 L' is finite. If so, let L’ = {wy,...,ux}, k > 1. Since L is infinite, there exists
J € {17.'..7]6} such that ¢(u;) is infinite. Let u; = ay...am;, m; > 1, and @(u;) =
{a"b", a0, ...}, where 0 < ¢3 < i3 < .... Then there is ¢ € {1,...,m;} such that ¢(«;)
is infinite. We have to consider now the next cases.

If p(a;) = {a*,a%,...}, where 0 < a; < a3 < ..., then it is easy to see that no
matter how the words in ¢(a;) are catenated to the left or to the right we obtain also other
words than those in ¢(u;). Similar reason tells that ¢(a;) cannot be {6%, 6% ...}, where
0<B1<Pa<..u

As any subset of ¢(uj) of cardinality at least two is not a member of Lf, the only
case which remains to be considered is o(a;) = {a®1b®, a2, ..}, where a’s and f’s are
natural numbers and there is n such that «,, # ,. There is also p, p # n, such that either
an # ap or B3, # (. A straightforward analysis shows us that no matter how the language
¢(a;) is catenated to the left or to the right we we obtain also other words than those in
o(u;).

In both cases we have derived a contradiction and hence L ¢ RLE . O

Corollary 5.1 {a"b" |n >0} € L — RLE .

Corollary 5.2 The families RL%n and Ly are incomparable.

Proof {a"b"|n >0} € L3 — RLE and {a"db"ec” |n > 1} € RLE — £,. O
Corollary 5.3 RL%n C RLgp.

Proof {a"0" |n >0} € RLgy, and {a"b" | n <0} ¢ RLE . O

6 Finite Jumping Nets and Global Inhibitor Nets

We establish a connection between finite jumping nets and a subclass of inhibitor nets,
global inhibitor nets. We recall that an inhibitor net ([9]) is a pair v = (£, ), where X is a
Petri net and I C S x T such that ITNF = 0.

In an inhibitor net v the transition ¢ is i-enabled at a marking M, abbreviated M][t). ;,
it t— < M and M(s) = 0 for any s € {s € S|(s,t) € I}. If M[t),; then t may occur
yielding a new marking M’, abbreviated M|t} ;M’, given by M’ = M + At. As we can see,
an inhibitor net has the capability to perform zero-tests on some places.
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A global inhibitor net is defined as an inhibitor net performing zero-tests on all places,
that is
(VteT)((Ase S)((s,t) e ) = (Vs e 9)((st)el).
Now we show that F.JPTN’s can be simulated by global inhibitor nets. Let v =
(2, R, My, 1) be an FJPTN with only one jump, R = {(M,M’)}. Construct the fol-

lowing inhibitor net (the net is shown in Figure 6.1 and the relation I is given by I =
{(s,t")|s is a place}). It is clear that ¢’ performs a zero-test on all places and so this net is

— I
: :__151_____15,,:___; ______ '_':z :
: IL () O B :
S | Msi)  [M(sa) | |
| A At |
| T T |
: (@) Q ﬁ) :
' t
NI — S |
i M (s)) 1 M (s,,) i

Figure 6.1

a global inhibitor net. Its activity can be described as follows:

- the transition ¢ blocks ¥ and then the transitions ¢}, ...t/ check whether or not the
current marking covers M (if all ¢/ can occur then the current marking covers M).
The zero-test performed by ¢’ checks when the current marking is exactly M (' can
occur iff no token is in the net). If this is the case the marking M’ is set for 3.

The above construction can be easily generalized to an FJPTN with arbitrarily many
jumps.

Now we show that any arbitrarily labelled global inhibitor net can be simulated by an
FJPTN. Indeed, let v = (X, I, My, 1) be such an inhibitor net. Assume I = {(s,t)|s € S},
where t is a fixed transition.

If I(t) = A then we can simulate the extent of change caused by the occurrence of ¢ using
the jump (0, M), where M(s) = W {(t,s) for all s € S (we recall that I N F = §, that is
W(s,t) =0 for all s € 5).

If I(t) = @ # X then we simulate the extent of change caused by t using the net shown
in Figure 6.2 and the jump {((0,1,0),(3,0,1))} (M is as above). By this jump the net &
will be blocked; it is relieved after an occurrence of the transition ¢ labelled by a (¢ being a
new transition).
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The generalization to an arbitrary global inhibitor net is straightforward.

Final Remarks

We consider that the extension of Petri nets allowing a finite number of jumps is quite

reasonable: on the one hand such nets have the basic decision problems decidable and, on

the other hand a finite number of jumps strictly increase the power of the nets.

We close with some important open problems.

P1.

P2.

P3.

P4.

P5.

Petri nets may be considered as being jumping nets where the set of jumps is empty.
Therefore, the construction given in the proof of Theorem 3.1 works in this case as
well, and it shows us how we can replace (A-)labelling functions of Petri nets by sets
of jumps. As a conclusion, (A-)labelled Petri nets are unlabelled jumping nets (via
the interleaving semantics). The natural question now is the following: which class of
JN corresponds exactly to (A-)labelled Petri nets?

Are the inclusions RLgn, C £1, RL3, C Ly, RLan C RL3, RPg, C RLgy,
RPf;ln C RLf?‘m proper or not?

Are the families RP%n and RPg, closed under “*”77

Define RX{; (RX, RXﬁ7 resp.) as being the family of X-type languages generated
by jumping nets having at most k jumps (k > 0), that is |R| < k. We have

Xf C RX{ C RX{, C RXj,
X € RXy € RXgy1 € RXsp
X* ¢ RXj C RXj,; C RXg,

forall k> 1and X € {P,L}.

Does this restriction define proper hierarchies of jumping Petri net languages?

What about the connection between FJPTN’s and global inhibitor nets in the case
we do not allow A-transitions?
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