
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

PATTERN AMBIGUITIES FOR

PURE CONTEXT{FREEGRAMMARS

Erkki M�akinen and Ferucio Laurent�iu T� iplea

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF TAMPERE

REPORT A-1996-6

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1996-6, AUGUST 1996

PATTERN AMBIGUITIES FOR

PURE CONTEXT{FREE GRAMMARS

Erkki M�akinen and Ferucio Laurent�iu T� iplea

University of Tampere

Department of Computer Science

P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4009-9

ISSN 0783-6910

Pattern Ambiguities for

Pure Context{Free Grammars

Erkki M�AKINENa and Ferucio Laurent�iu T�IPLEAb

aDepartment of Computer Science
University of Tampere, P.O. Box 607

FIN-33101 Tampere, Finland
e-mail: em@cs.uta.fi

bFaculty of Informatics
\Al. I. Cuza" University of Ia�si

6600 Ia�si, Romania
e-mail: fltiplea@infoiasi.ro

Abstract

We consider here some special forms of ambiguity for pure context-free

grammars, namely pattern avoiding ambiguity, pattern preserving ambiguity,

pattern ambiguity, and grammar avoiding ambiguity. The �rst two properties

are undecidable for arbitrary pure context-free grammars, and in a particu-

lar but general enough case we can e�ectively decide whether or not a pure

context-free grammar is pattern preserving ambiguous.

1 Introduction and Preliminaries

The notion of ambiguity is one of the key concepts of formal language theory. For
results concerning ambiguity in standard Chomsky type context-free grammars, the
reader is referred e.g. to [2]. In this paper we study some special forms of ambiguity
for pure context-free grammars. This study is motivated by an encryption method
proposed in [5]. We start with some terminology and notation (for details concerning
formal language theory the reader is referred to [2], [9]).

A pure context-free grammar (PCF grammar, for short) [6] is a 3-tuple G =
(V; V0; P), where V is a �nite alphabet, the set of axioms V0 is a �nite subset of V +,
and P is a �nite set of productions of the form a �! v, where a 2 V and v 2 V �. If
v = � then the production a �! v is called a �-production. The relation =) (yields
directly) and its reexive and transitive closure

�
=) is de�ned as usual. G is said to

be production-complete [5] if for each symbol a 2 V there is at least one production
with a in its left hand side.

Let G = (V; V0; P) be a pure context-free grammar. We consider a �nite set Lab
of labels and a bijective function � from P into Lab. The couple = (G; �) is called
a labelled PCF grammar (lPCF grammar, for short). If a production u �! v is
associated with the label r by �, we will write r : u �! v. The leftmost derivation

1

of y from x by using the sequence of productions � = r1 : : : rn 2 Lab+ is denoted by
x

�
=);ly.
With a labelled grammar we associate a morphism g : Lab� �! f0; 1g� with

the property j g(r) j� 1 for all r 2 Lab. A couple (; g) as above will be called
an arbitrarily labelled grammar, (alPCF grammar, for short). The terminology is
justi�ed by the fact that g � � associates to each production p 2 P an element of
the set f0; 1; �g, and thus g � � can be thought as an arbitrary (not necessarily one-
to-one) labelling of G, permiting � as a label. We have to remark that the labelling
� helps us to easily handle the productions, whereas the labelling g is in fact the
true labelling permiting di�erent \actions" with the same \name" or without name
(labelled by �).

An example of an alPCF grammar (; g) is presented in the next table. The last
column lists the productions of the grammar, the second one describes the labeling
�, whereas the �rst one gives the morphism g:

g � P
� r1 S �! ab

0 r2 a �! ab

0 r3 a �! cb

0 r4 c �! cb

0 r5 c �! ab

1 r6 b �! aa

A compact representation for such grammars is obtained by writing both labels in
the front of each production. For example, the �rst two rules of the above grammar
can be written as � : r1 : S �! ab, 0 : r2 : a �! ab.

In the next we shall consider only lPCF grammars with an axiom denoted by S.
For such a grammar de�ne the left Szilard language of [7],[8], denoted Szl(),
by Szl() = f� 2 Lab+jS

�
=);lyg; the strings � 2 Szl() are called control words

of .

2 On An Encryption Method

In [1] an encryption method based on control words associated to leftmost derivations
in context-free grammars has been proposed. We recall this method in terms of PCF
grammars [5].

An alPCF grammar (; g) de�nes an encryption method as follows. Assume
the plaintext space being the phrases in English. Such a phrase u is encoded, by a
one-to-one coding, into a string x 2 f0; 1g+. From this string we compute a new
string � 2 Lab+ such that g(�) = x and � is a control word of (suppose such
strings exist1 and we arbitrarily choose one of them). A possible encryption of u is
then the sentential form obtained in rewriting the axiom with the control word �.

1an alPCF grammar (; g) satisfying the property (8x 2 f0; 1g+)(9� 2 Szl())(g(�) = x) is
called (0; 1)-total [1], [5], [4]

2

Concerning this encryption method many problems arise [1], [5], [4]. Let us suppose
we are legal users of a cryptosystem like that described above:

u
|{z}

plaintext

encode
�! x 2 f0; 1g+

g�1

�! � 2 Szl()

�! S

�
=);l y

|{z}

cryptotext

(the strings x 2 f0; 1g+ will be called patterns, and if g(�) = x we say that � extends
x with respect to g).

Starting from x the sender has to look for a control word � extending x, and to
rewrite the axiom S of with respect to �; the result will be the cryptotext. In
general, there could exist more than one control word extending x, and therefore
the sender has to choose one of them. Then we have to take into consideration the
next two cases:

(S1) (easy encryption)
for any two distinct control words � and � extending the same pattern (g(�) =

g(�)) we have S
�

=);l �
�
(=;l S

2. That is, the cryptotext associated to x does
not depend on the control word extending the pattern g(�) = g(�). Clearly,
the sender may choose in the easiest way a control word and to encrypt with
respect to it; the problem is that the cryptotext could be less safe;

(S2) (supplementary encryption key)
for any two distinct control words � and � extending the same pattern (g(�) =

g(�)) we have :(S
�

=);l �
�
(=;l S). That is, the cryptotext associated to

x heavily depends on the control word extending the pattern g(�) = g(�).
Such a property permits to the sender the use of an encryption key in order
to choose a control word; this could be time consuming but in this way the
cryptosystem is strenghtened.

>From the receiver's point of view we have to take into considerations another two
cases:

(R1) (easy decryption)
for any two distinct parsings � and � of the same cryptotext we have g(�) =
g(�). Therefore, the receiver may parse the cryptotext in the easiest way, but
the cryptosystem could be less safe;

(R2) (supplementary decryption key)
for any two distinct parsings � and � of the same cryptotext we have g(�) 6=
g(�). Therefore, the receiver needs supplementary information in order to
decrypt (a supplementary encryption/decryption key). In fact, this case is
similar to the case (S2).

As we will see in the next section, these considerations lead to di�erent forms of
ambiguity for alPCF 's.

2\S
�

=);l �
�
(=;l S" denotes \9y : S

�
=);l y ^ S

�
=);l y"; sometimes it is necessary to �x

y, and then we write S
�

=);l y
�
(=;l S

3

3 Pattern Ambiguities

An lPCF is ambiguous if (9�; � 2 Szl())(� 6= � ^ S
�

=);l �
�
(=;l S). This

notion of ambiguity may be translated to alPCF (; l) by means of . But, in this
case, the ambiguity can be devided in two classes with respect to g:

1. 9�; � 2 Szl() such that � 6= � and g(�) = g(�) and S
�

=);l �
�
(=;l S. We

will call this one pattern preserving ambiguity (pp-ambiguity or ppa, for short),
because the computations � and � leading to ambiguity have in common the
pattern g(�) = g(�);

2. 9�; � 2 Szl() such that � 6= � and g(�) 6= g(�) and S
�

=);l �
�
(=;l S. We

will call this one pattern avoiding ambiguity (pa-ambiguity or paa, for short),
because the computations � and � leading to ambiguity have no pattern in
common.

It is clear that the negations of these two kinds of ambiguities correspond to the
cases (S2) (or (R2)) and (R1), respectively.

The above two ambiguities are referring to the grammar but we may consider
ambiguity with respect to the pattern as well. Therefore, we say that (; g) is pattern
ambiguous if there exist x 2 f0; 1g+ and �; � 2 Szl() such that � 6= � and g(�) =
g(�). That is, there is an x which can be extended to two di�erent control words. In
other words, (; g) is pattern ambiguous if (9�; � 2 Szl())(� 6= � ^ g(�) = g(�)).
This ambiguity can be divided in two kinds of ambiguities with respect two the
grammar :

1. 9�; � 2 Szl() such that � 6= � and g(�) = g(�) and S
�

=);l �
�
(=;l S. In

fact this one is the pattern preserving ambiguity;

2. 9�; � 2 Szl() such that � 6= � and g(�) = g(�) and :(S
�

=);l �
�
(=;l S).

This pattern ambiguity avoids grammar ambiguity and we will call it grammar
avoiding ambiguity (ga-ambiguity or gaa, for short).

It is clear that the negation of ga-ambiguity corresponds to the case (S1). Let us
conclude our discussion:

� ga-ambiguity | easy encryption

(gaa) (9�; � 2 Szl())(� 6= � ^ g(�) = g(�) ^ :(S
�

=);l �
�
(=;l S))

(non-gaa) (8�; � 2 Szl())(� = � _ g(�) 6= g(�) _ S
�

=);l �
�
(=;l S); or

(8�; � 2 Szl())((� 6= � ^ g(�) = g(�))) S
�

=);l �
�
(=;l S);

� pa-ambiguity | easy decryption

(paa) (9�; � 2 Szl())(� 6= � ^ g(�) 6= g(�) ^ S
�

=);l �
�
(=;l S)

(non-paa) (8�; � 2 Szl())(� = � _ g(�) = g(�) _ :(S
�

=);l �
�
(=;l S)); or

(8�; � 2 Szl())((� 6= � ^ S
�

=);l �
�
(=;l S)) g(�) = g(�));

4

� pp-ambiguity | supplementary encryption/decryption key

(ppa) (9�; � 2 Szl())(� 6= � ^ g(�) = g(�) ^ S
�

=);l �
�
(=;l S)

(non-ppa) (8�; � 2 Szl())(� = � _ g(�) 6= g(�) _ :(S
�

=);l �
�
(=;l S)); or

(8�; � 2 Szl())((� 6= � ^ g(�) = g(�))) :(S
�

=);l �
�
(=;l S)); or

(8�; � 2 Szl())((� 6= � ^ S
�

=);l �
�
(=;l S)) g(�) 6= g(�)):

Example 3.1 (1) Let (; g1) be the alPCF given by:

0 : r1 : S �! ac; 0 : r2 : S �! bc; � : r3 : a �! aa;

� : r4 : b �! aa; � : r5 : c �! cc:

It is easy to see that this grammar is both pp-ambiguous (take � = r1r3 and
� = r2r4) and ga-ambiguous (take � = r1 and � = r2) but not pa-ambiguous.

(2) Let (; g2) be the alPCF given by:

0 : r1 : S �! ac; 1 : r2 : S �! bc; � : r3 : a �! aa;

� : r4 : b �! aa; � : r5 : c �! cc:

It is easy to see that this grammar is pa-ambiguous (take � and � as in (1))
but neither pp-ambiguous nor ga-ambiguous.

(3) Let (0; g3) be the alPCF given by:

0 : r1 : S �! ac; 0 : r2 : S �! bc:

It is easy to see that this grammar is ga-ambiguous (take � = r1 and � = r2)
but not pp-ambiguous. Consider the grammar (00; g4) given by

0 : r1 : S �! ac; � : r2 : S �! bc; 0 : r3 : b �! a:

This grammar is pp-ambiguous (take � = r1 and � = r2r3) but not ga-
ambiguous.

Remark 3.1 (1) It follows directly from the de�nitions that pp- or pa-ambiguity
of (; g) implies the ambiguity of . The converse does not hold true as Exam-
ple 3.1 shows us: the grammar is ambiguous but (; g1) is not pa-ambiguous,
and (; g2) is not pp-ambiguous.

(2) Similarly, pp- or ga-ambiguity implies pattern ambiguity, but the converse does
not hold true: (; g2) in Example 3.1 is pattern ambiguous (take x = 0, � = r1,
and � = r1r3) but neither pp- nor ga-ambiguous.

(3) From Example 3.1 we can see that the ga-, pp- and pa-ambiguities are not
implying each others.

5

We will show that the ambiguity, pp- and pa-ambiguity are in general undecid-
able.

Lemma 3.1 It is undecidable whether an lPCF grammar is ambiguous.

Proof The proof is based on the recursive unsolvability of the Post Correspondence
Problem and it follows the same line as for context-free grammars (see for example
[3]). 2

Lemma 3.2 pp-ambiguity is undecidable for alPCF grammars.

Proof We will reduce the ambiguity problem for lPCF grammars to the pp-
ambiguity problem for alPCF grammars.

Let be an lPCF grammar. Consider (0; g), where 0 is obtained from by
adding a new symbol S0 and a new production 0 : p : S0 �! S; for the other
productions r of 0, we will set g(r) = �. We show that is ambiguous i� (0; g) is
pp-ambiguous.

If � and � are two distinct control words of such that S
�

=);l y
�
(=;l S then

�0 = p� and �0 = p� are two distinct control words of (0; g) with g(�0) = 0 = g(�0)

and S0 �0

=)0;l y
�0

(=0;l S
0. Therefore, the ambiguity of leads to the pp-ambiguity

of (0; g).
The converse can be easily obtained observing that any non-empty control words

of (0; g) is of the form p�, where � is a control word of . 2

Before showing that the pa-ambiguity is undecidable we consider the concept of
2-branched grammar.

De�nition 3.1 An lPCF grammar is said to be 2-branched if, for any symbol a
in , there exist at most two productions with a in the left hand side.

Lemma 3.3 pa-ambiguity is undecidable for alPCF grammars.

Proof We will reduce the ambiguity problem for lPCF grammars to the pa-
ambiguity problem for alPCF grammars.

Let be an lPCF grammar. Transform �rst into a new 2-branched lPCF

grammar 0 as follows: assume a �! u1; : : : ; a �! uk are all the productions
with a in left hand side and k > 2. Consider the new symbols a1; : : : ; ak�2 and
replace the above productions by the new productions a �! u1; a �! a1; a1 �!
u2; : : : ; ak�3 �! uk�2; ak�3 �! ak�2; ak�2 �! uk�1; ak�2 �! uk. By iterating this
procedure we �nally get a 2-branched lPCF 0.

Claim is ambiguous i� 0 is ambiguous.

Proof of Claim Assume �rst is ambiguous. That is, there exist two distinct

control words � and � such that S
�

=);l y and S
�

=);l y for some y. If these
control words use rules of the form a �! ui with i > 1 (as above) then they will
be replaced by the sequence of rules a �! a1; a1 �! a2; : : : ; ai�1 �! ui, for i < k,
or by the sequence a �! a1; a1 �! a2; : : : ; ai�2 �! uk, for i = k. Finally, we will

6

get two distinct control words of 0, �0 and �0, such that S
�0

=)0;l y and S
�0

=)0;l y.
Hence, 0 is ambiguous.

Conversely, let us assume that 0 is ambiguous, and let � and � be two distinct
control words producing the same word y from the axiom S. First, we may assume
that both � and � do not end by rules x �! z, where z is a new symbol. Indeed, if
we suppose � = �0r1, � = � 0r2, r1 : x1 �! z1, r2 : x2 �! z2, and z1 and z2 are new
symbols, then we may write

S
�0

=)0;l y1 = y11x1y
2
1 =)0;l y

1
1z1y

2
1 = y

S
�0

=)0;l y2 = y12x2y
2
2 =)0;l y

1
2z2y

2
2 = y.

Both x1 and x2 are the leftmost symbols that are rewritten and therefore y1
1
= y1

2

and x1 = x2. Since both derivations produce the same string, y, it follows that
z1 = z2, y12 = y22, and so r1 = r2 and �0 6= �0. Since z1 is a new symbol, there must
exist a rule having z1 in its left hand side. As a result, we can add a new rule with
z1 = z2 in the left hand side, to the end of � and �. Continuing this process as long
as it is necessary we �nally get two new control words with the desired property.

If a is the leftmost symbol in a string w = w1aw2 produced by 0, and the rule
a �! a0 is used, where a0 is a new symbol, then the leftmost symbol to be rewritten
in w1a

0w2 is a0. Consequently, if � and � contain rules with new symbols in their
right hand sides then these rules come in sequences of the form:

a �! a1; a1 �! a2; : : : ; ai �! uj;

where i = j � 1 or i = j � 2, a1; : : : ; ai are new symbols, and a �! uj is a rule
in . This fact permits us to \pack" such sequences of rules into one rule, namely

a �! uj. Finaly we will get two control words of , �0 and �0, such that S
�0

=);l y

and S
�0

=);l y.
The proof of the Claim is complete if we can show that �0 6= �0. We know that

� = �. So, we can write � = �r1�1 and � = �r2�1, where r1 6= r2. As r1 and r2
rewrite the leftmost symbol (� being a common pre�x of � and �) it follows that r1
and r2 have the same left hand side, say x. The above remarks lead to the fact that
� and � contain two subsequences w1 = �2r1�

1
1
and w2 = �4r2�

1
1
such that:

� � = �1�2 = �3�4 and �1 = �1
1�

2
1 and �1 = �1

1�
2
1, for some �1; �3; �2

1; �
2
1;

� these two sequences have the form:

a �! a1; : : : ; r1; : : : ; ai �! uj;

and respectively
a �! a1; : : : ; r2; : : : ; as �! ut;

where a �! uj and a �! ut are rules in , and uj 6= ut (r1 or r2 may be the
�rst rules of these sequences).

7

The \packing operation" (described above) applied to � and � will replace these
two subsequences by the rules a �! uj and a �! ut, respectively. Consequently,
�0 and �0 will be distinct control words.

The Claim is proved.

Consider now the alPCF (0; g), where 0 is obtained from as described above
and g is given by the following setting: for any a, if there is at most one production
with a in the left hand side then label it by 0; otherwise (there are at most two
productions with a in the left hand side) label one of them by 0 and the other one
by 1. We show that 0 is ambiguous i� (0; g) is pa-ambiguous.

If � and � are two distinct control words of 0 such that S
�

=)0;l y
�
(=0;l S then

g(�) 6= g(�) because there must exist a branching symbol for these control words
(note that the derivation is leftmost). Therefore, the ambiguity of 0 leads to the
pa-ambiguity of (0; g).

The converse follows from de�nitions. 2

4 A Su�cient Criterion for the Decidability of

pp-ambiguity

As mentioned in the previous sections the non-ppa property would be useful both for
sender and receiver in order to strenghten the cryptosystem. Unfortunately, we have
seen that this property is in general undecidable. In what follows we shall derive a
su�cient criterion for the decidability of pp-ambiguity. The PCF grammars that we
will consider have no �-productions or renamings (that is, productions of the form
a �! b with a; b 2 V), and they are production-complete.

De�nition 4.1 Let = (G; �) be an lPCF grammar, au 2 V + (a 2 V), b 2 V and
� 2 Lab+. We say that � minimally covers au with respect to b if one of the next
two properties is satis�ed:

1. if u = � then � 2 Lab and b
�

=);l cv, for some c 2 V and v 2 V �;

2. if u 6= � then � = r1 � � � rn (n � 1), b
r1���rn�1

=) ;l cv1
rn=);l dv2, u is a su�x of

v2 but not of v1 (for n = 1 we have cv1 = b�).

Hence, we may informally say that � minimally covers au with respect to b if �
is \a minimal sequence" such that the string yielded from b by � "covers" the string
au, excepting the �rst letter.

De�nition 4.2 Let be an lPCF grammar and �; � 2 Szl(). We say that �
and � are compatible control words if � minimally covers bv with respect to S or �

minimally covers au with respect to S, where S
�

=);l au and S
�

=);l bv.

For an alphabet V denote by �pref the pre�x (partial) order on V , that is u �pref

v i� u is a pre�x of v. Let u and v words over V . We say that u and v are comparable
(with respect to the pre�x order) if u �pref v or v �pref u. If u and v are comparable

8

we say that the pair (u0; v0) is obtained from (u; v) by left maximal cancellation if
u0 and v0 are respectively obtained from u and v by deleting the common maximal
pre�x of them.

Let T � V . By #(T; �) we denote the number of occurrences of letters a 2 T in
�. Then the balance of � and � over T is de�ned by:

BT (�; �) = j#(T; �)�#(T; �)j:

De�nition 4.3 An alPCF grammar (; g) is balance k-bounded, k � 1, if the
next property is satis�ed: for all �; � 2 Szl() such that g(�) = g(�) and S

�
=);l

�
�
(=;l S, and for all �0 �pref � and �0 �pref � such that �0 and �0 are compatible,

it follows that Bf0;1g(�
0; �0) � k.

Theorem 4.1 It is e�ectively decidable whether or not a given balance k-bounded
alPCF grammar (; g) is pattern preserving ambiguous.

Proof Let (; g) be a balance k-bounded alPCF grammar. We shall generate a
graph G = (X;E) whose nodes are of the form

(au; b; x1; x2) or (a; bu; x1; x2)

where

� a; b 2 V ;

� u 2 V � such that juj � maxfjwjj9a �! w 2 Pg;

� x1; x2 2 f0; 1g�.

The arcs of G will be labelled by couples (�; �) where �; � 2 Lab� and either � = �

or � = �. The next procedure generates this graph:

1. generate the node (S; S; �; �). This node is called the initial node of G and it
is marked as an open node;

2. while there are open nodes left choose one of them, say �, close it and perform
one of the next three steps (if both the steps 2.1 and 2.2 can be performed
with respect to � then choose 2.1):

2.1 if � = (au; b; x1; x2) then

- for any minimal covering sequence � 2 Lab+ of au with respect to b,

b
�

=);l cvu;

generate (provided that it does not yet exist) the node (a; cv; y1; y2),
where y1; y2 are obtained from x1; x2g(�) by left maximal cancella-
tion. If y1 6= � and y2 6= �, or Bf0;1g(y1; y2) > k then mark the node
(a; cv; y1; y2) as a �nal node; otherwise, mark it as an opened node;

9

- the arc (�; (a; cv; y1; y2)) will be labelled by (�; �);

2.2 if � = (a; bv; x1; x2) then

- for any minimal covering sequence � 2 Lab+ of bv with respect to a,

b
�

=);l cuv;

generate (provided that it does not yet exist) the node (cu; b; y1; y2),
where y1; y2 are obtained from x1g(�); x2 by left maximal cancella-
tion. If y1 6= � and y2 6= �, or Bf0;1g(y1; y2) > k then mark the node
(cu; b; y1; y2) as a �nal node; otherwise, mark it as an opened node;

- the arc (�; (cu; b; y1; y2)) will be labelled by (�; �);

2.3 if no node can be generated from � as described in 2.1 or 2.2 then mark
� as a �nal node;

The graph G is �nite and can be e�ectively constructed. Indeed, as the grammar is
production-complete and it has no �-productions or renamings, it follows that there
are �nitely many minimal covering sequences of a string au with respect to b, and
these sequences can be e�ectively computed. Moreover, the use of such sequences
lead to the fact that for any node (u; v; x1; x2) the next two properties hold:

(1) juj; jvj � maxfjwjj9a �! w 2 Pg;

(2) jx1j; jx2j � k +maxfjwjj9a�! w 2 Pg
(each rule of the grammar add at least one new symbol, and therefore every
minimal covering sequence of a string au0 with respect to b has the length at
most ju0j. Now, the statement follows from (1)).

Let �1; : : : ; �n = (u; v; x1; x2) (n � 2) be a path in G such that �1 is the initial node.
Consider the sequence of arc labels determined by this path,

(�1; �1) � � � (�n�1; �n�1);

where �i = � for i odd and �j = � for j even, and let � = �1 � � ��n�1; � = �1 � � ��n�1.
The next properties hold true:

(3) � and � are compatible control words;

(4) Bf0;1g(�; �) = Bf0;1g(x1; x2);

(5) if �n is a �nal node then there is no �0; �0 2 Szl() such that � �pref �0,

� �pref �0, g(�0) = g(� 0), S
�0

=);l �
�0

(=;l S. Indeed, if this is not the case
then:

a) if x1 6= � and x2 6= � then g(�0) 6= g(�0); a contradiction;

b) if Bf0;1g(x1; x2) > k then (; g) would not have the balance k-bounded; a
contradiction;

10

(6) if u = v 2 V and x1 = x2 = � and � 6= � then (; g) is pattern preserving
ambiguous; the converse holds also true (that is, if (; g) is pp-ambiguous then
there is a node � satisfying (6)).

Finally, to decide whether (; g) is pattern preserving ambiguous or not we have
to generate the graph G and to verify whether (4) holds true or not. The theorem
is proved. 2

One can easily notice that the graph in the proof of the above theorem is a
version of a domino graph introduced in [10], [11]. By a rough approximation we
can say the complexity of our algorithm is exponential because the graph has an
exponential number of nodes (it is enough to count the sequences of 0 and 1's in the
last two components of the nodes).

11

References

[1] M. Andra�siu, A. Atanasiu, Gh. P�aun, A. Salomaa. A New Cryptosystem Based
on Formal Language Theory, Bull. Math. Soc. Sci. Math. Roumanie, Tome
36(84), nr.1, 1992, pp. 1-15.

[2] M.A. Harrison. Introduction to Formal Language Theory, Addison-Wesley 1978.

[3] J.E. Hopcroft, J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

[4] E. M�akinen. (0; 1)-Totality is Undecidable for Arbitrary Context-Free Gram-
mars,Fundamenta Informaticae (to appear).

[5] C. Matei, F.L. T� iplea. (0; 1)- Total Pure Context-Free Grammars, in Proc. of
2nd Conference on Development in Language Theory, Magdeburg, 1995.

[6] H.A. Maurer, A. Salomaa, D. Wood. Pure Grammars, Inform. and Control 44
(1), 1980, pp. 47-72.

[7] E. Moriya. Associate Languages and Derivational Complexity of Formal Gram-
mars and Languages, Inform. and Control 22, 1973, pp. 139-162.

[8] M. Penttonen. On Derivation Languages Corresponding to Context-free Gram-
mars,Acta Inform. 3, 1973, pp. 285-291.

[9] A. Salomaa. Formal Languages, Academic Press, New York, London, 1973.

[10] A. Weber, T. Head. The Finest Homophonic Partition and Related Code Con-
cepts, in Proc. of the 19th Symposium on Mathematical Foundations of Com-
puter Science, Kosice, Slovakia, 1994.

[11] A. Weber. Computing Deciphering and Synchronization Delays of a Code by
means of Dominoes, J.W. Goethe-Universit�at, Frankfurt am Main, 1995.

12

