

A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

SCED: A TOOL FOR DYNAMIC
MODELLING OF OBJECT SYSTEMS

Kai Koskimies, Tatu Männistö, Tarja
Systä, and Jyrki Tuomi

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF TAMPERE

REPORT A-1996-4

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A
A-1996-4, JULY 1996

SCED: A TOOL FOR DYNAMIC MODELLING OF OBJECT
SYSTEMS

Kai Koskimies, Tatu Männistö, Tarja Systä, and Jyrki Tuomi

University of Tampere
Department of Computer Science
P.O. Box 607
FIN-33101 Tampere, Finland

ISBN 951-44-4003-X
ISSN 0783-6910

SCED: A Tool for Dynamic
Modelling of Object Systems

Kai Koskimies1, Tatu Männistö2, Tarja Systä1, and Jyrki Tuomi1

1Department of Computer Science, University of Tampere
Box 607, FIN-33101 Tampere, Finland

{koskimie@cs.uta.fi}

2Laboratory of Software Engineering, Tampere University of Technology
Box 526, FIN 33101 Tampere, Finland

Abstract

Dynamic modeling of object-oriented software makes use of scenario diagrams,
i.e. descriptions of particular uses of a system in terms of message flow between
the objects belonging to the system. Such diagrams help the designer to specify
the general behavior of objects as state machines or as collections of methods.
Several techniques are discussed for building automated tool support for the
dynamic modeling aspects of object-oriented software development. The dis-
cussed techniques include synthesis of state machines and method descriptions
on the basis of scenario diagrams, constructing scenario diagrams with the
support of existing state machines, visualizing the run-time behavior of an object
system, extracting state machines of objects from running systems, consistency
checking between scenario diagrams and state machines, automated simplifi-
cation of state machines using OMT notation, and automated layout for state
machines.

1 Introduction

The basic problem of any software design is how to derive executable software
components from the requirements specification, and how this process could be
supported by the computer. The object-oriented approach provides a common
paradigm throughout the software development process from analysis to
implementation. This allows smooth shift from one phase to another and makes
it possible to use wide-spectrum tools for software development.

Current object-oriented CASE tools support drawing various graphical notations
for modeling the application from different perspectives, consistency checking
between the models, storing the models in a repository, and generating
documents and code from the models. Although these tools facilitate the
construction of graphical models and the transformation of these models into

2

code, the level of built-in automation is relatively low as far as the actual
development process is concerned.

In object-oriented analysis and design, dynamic modeling aims at the description
of the dynamic behavior of objects using some variant of a finite state machine.
For example, in OMT [Rum91] the dynamic model is one of the three models
employed in software development; the other models are the object model
describing the static relations of objects and the functional model describing the
data flow between the processes of the system.

In this paper we study raising the level of automated support for the dynamic
modeling part of object-oriented software development. We use the OMT
method as a guideline and notational basis, but in principle our approach is not
tied to any particular design methodology. All the facilities discussed here have
been implemented in a working tool called SCED [MST94a, MST94b]. This system
is running under MS-Windows and implemented in C++.

We assume that the requirements concerning the dynamic behavior of a system
are expressed as scenarios, describing how the system responds to a particular
sequence of external events (e.g. user interactions). A scenario is close to the
concept of a use case of Jacobson [Jac92]: a use case is a specific way of using a
system to accomplish an identifiable task, consisting of possibly several scenarios.
A scenario diagram (event trace diagram, message sequence chart, interaction
diagram) is a graphical formulation of a scenario, specifying how objects commu-
nicate with each other and external actors during the scenario. Each object
participating in a scenario is represented by a vertical line; an event is shown as a
horizontal arc from the sender object to the receiver(s). Time flows from top to
bottom.

SCED demonstrates how ideas discussed in this paper can be incorporated in a
practical tool. SCED consists of two conventional CASE components, a scenario
editor and a state machine editor, and of a more intelligent component
integrating scenarios and state machines with various mechanisms. The main
principles of the latter component are the central topic of this paper. The scenario
notation employed in SCED has been extended from that of OMT for reasons
discussed in the sequel; the state machine notation is taken from OMT (which is
in turn strongly influenced by Harel's Statecharts [Har87]). The overall logical
structure of SCED is depicted in Fig. 1.

3

We proceed as follows. Section 2 introduces our graphical notation for scenario
diagrams. Next two sections discuss techniques for transforming a set of scenarios
into a state machine, and, reversely, for using existing state machines to generate
new scenarios. Section 5 discusses some implications useful for reverse
engineering. In section 6 we briefly study the problem of keeping scenario
diagrams and state machines consistent. In section 7 we discuss simplification
algorithms for state machines making use of the special graphical notation of
OMT. Finally, in section 8 we discuss automatic layout algorithms for state
machines. Some concluding remarks are presented in section 9.

scenario diagram state machine

SCED
integrator

SCED
state machine

editor

SCED
scenario diagram

editor

designer

Fig. 1. General structure of SCED

2 Scenario diagram notation

For practical purposes we have extended the rather rudimentary scenario
diagram notation of OMT in various ways (see figure 2). First, a comment can be
drawn as a rounded box stretching over (and concerning) selected partipants.

It is often necessary to present other actions than events: an object may perform
arbitrary computations without sending messages. For such actions we use an
action box drawn at the vertical line of the object executing the action. Some
techniques dicussed later require that the designer can express conditions that are
known to hold at certain positions in a scenario for a particular object. Normally
such a condition is given in terms of the attribute values of an object. This kind
of a condition is drawn as an assertion box with a form following the CCITT
scenario notation standard [CCITT92] (see the symbols in figure 2).

4

We introduce also a third type of box associated with a single participant, a state

box. A state box gives a name to a particular situation in a scenario from the point
of view of a certain participant; i.e. the name of the state of an object at that
situation. Although this is needed primarily for technical reasons rather than as a
design aid, it is sometimes convenient for the designer to express her assumption
that an object should be in an identifiable state in a particular time position of a
scenario. Technically, state boxes are necessary for expanding conditional and
repetition constructs discussed below. Note that a state box is different from an
assertion box: a condition may hold in many states.

Fig. 2. Elements of SCED scenario notation

To support the presentation of a use case as a single scenario diagram, the sce-
nario notation must be extended with algorithmic constructs like conditionality
and repetition. We call a scenario diagram having such constructs an algorithmic

scenario diagram. Note, however, that a certain object may be involved in
several use cases; hence algorithmic scenarios are full specifications for use cases
but (usually) not for objects. In general, algorithmic scenario diagrams can be
used as full specifications of multi-object functions, i.e. functions defined in

5

terms of several interacting objects. A restricted form (conditional construct) of
algorithmic scenario notation has been applied e.g. in [Por95]; Jacobson [Jac92]
associates textual pseudocode to ordinary scenario diagrams to achieve the same
effect.

SCED supports algorithmic scenario diagrams by providing structured graphical
notation for conditionality and repetition (see figure 3) with arbitrary nesting.
Algorithmic scenarios can be interpreted as sets of ordinary scenarios. The
interpretation is shown in figure 3. Note that in the case of repetition the number
of iterations (and therefore the number of scenarios) is potentially infinite, but
the repetition construct can nevertheless be represented by two scenarios making
use of the state box: after evaluating the loop expression and executing the body,
the object will be in the same state as before entering the loop; hence the object
will be able to re-execute the loop infinitely.

Fig. 3. Dissolving if- and repeat-constructs into simple scenarios.

6

Analogously to subroutines, a scenario may consist of parts that have their own
aims and characterizations. For instance, a scenario for using an ATM might
include event sequences like "checking a valid card" or "giving a correct
password" for which one can give separate scenarios. To make the scenario
diagrams easier to both read and write we have adapted the notion of a
subscenario in SCED: a rectangle stretching over all the participants denotes a
named subscenario diagram given elsewhere. To obtain a complete scenario
diagram, all the subscenario boxes are simply considered to be replaced by
corresponding scenario diagrams. The participants of the subscenario can be
different of those of the host scenario. Hence a subscenario is especially useful if
the subscenario requires objects that are not needed for the rest of the scenario:
then the host scenario becomes smaller both in vertical (event sequence) and in
horizontal (participants) direction.

3 Synthesizing state machines: design-by-example

Since both scenarios and state machines describe dynamic aspects of a system,
they necessarily share common information. However, it should be emphasized
that a scenario is not an instance of a state machine: it is an instance (trace) of a
set of collaborating state machines. A state machine gives the complete behavior
of a single object, while a scenario gives a single behavior (trace) of a complete set
of objects. Consequently, a scenario contains information not included in a state
machine, and vice versa. Hence, scenarios and state machines are
complementary notions, and they should be constructed in concert, rather than
one after the other. In this and the following section we will show how the fact
that they share same information can be exploited in developing design tools.

In [BiK76], Biermann and Krishnaswamy presented an algorithm for
synthesizing programs from their example traces. The algorithm was used in an
actual system that was able to synthesize programs on the basis of examples of
sequences of primitive actions (like assignments) and assertions given by the
programmer using a partly graphical interface. For example, the programmer
could give examples of sequences of actions and assertions for a sorting
algorithm, and the system generated the complete code for the algorithm. The
assertions were employed by the algorithm as conditions for branching the
execution.

7

We have applied the Biermann-Krishnaswamy (BK) algorithm for synthesizing
state machines from scenarios. Since both the algorithm and its adaptation have
been discussed in detail already in an earlier paper [KM94], we will here only
summarize the main ideas. A trace is extracted from a scenario by selecting an
object (i.e. the object for which the state machine will be synthesized) and
traversing the vertical line of that object from top to bottom. Each received event
is regarded as an assertion ("event e has occurred") and each sent event is
regarded as a primitive action ("cause event e") in terms of the BK-algorithm.
First, a lower bound N for the number of states of the resulting state machine is
required. For this we use the number of different actions: since each state can
have at most one action, this is clearly a lower bound. The algorithm maps
actions to states and assertions to transitions, starting from the beginning of the
trace. If a nondeterministic state results, the algorithm backtracks to a previous
position where there was some freedom in associating an action with a state, and
takes another untried choice. If at some point N+1 states are needed, the
algorithm backtracks again. If backtracking is no more possible, a state machine
with N states cannot be achieved. Then the whole process is repeated for the
allowed number of states N+1 etc. The algorithm is completed when all actions
have been associated with states. The BK-algorithm works incrementally, too: a
scenario can be fused into an existing state machine using the algorithm.

It follows directly from a theorem given in [BK76] that the algorithm produces a
minimal (with respect to the number of states) state machine capable of acting in
the role of the selected object in the scenarios. Due to potential backtracking, the
algorithm has exponential time complexity in the worst case, but this is not a
problem in practice: real-life state machines seldom require heavy backtracking.
In vast majority of the practical examples we have encountered, the synthesis
time is less than a second. In fact, the automatic layout algorithm discussed in
section 7 is usually more time-consuming although it has linear time complexity.

The original BK-algorithm makes use of assertions that are known to hold
between primitive actions of the trace. When this algorithm is applied to
scenario diagrams, some aspect of the diagrams must be interpreted as those
assertions. Above we viewed the received events (with respect to a selected
object) as assertions, which is appropriate for active objects using incoming
events as the basis of the control. However, scenarios are useful (and used) also
for passive objects whose dynamic behavior is characterized by a set of operations
rather than as a state machine. In the sequel we show how operation descriptions
can be automatically synthesized from scenarios.

8

First, note that the algorithm of an operation can be presented as a state machine,
when transitions are associated with guards (conditions) rather than with events
- this is in fact close to a conventional flow chart. In each state, the guards
associated with leaving transitions must be nonoverlapping and cover all
possible cases (since the algorithm must be able to continue deterministically in
all cases). For passive objects, event arcs in a scenario diagram correspond to
operation calls and returns.

Consider a particular object in a scenario. An operation call for this object is
shown with an arriving call arc. All the leaving arcs between the call arc and the
corresponding leaving return arc are internal calls of operations of other objects,
and all the arriving arcs are returns of these calls (for simplicity we ignore the
possibility that the same object is called during the execution of its own
operation). Hence the trace of the operation call consists of the internal calls
shown by the leaving arcs. The arriving (return) arcs within the call are
insignificant (indeed, return arcs are omitted in some scenario diagram
variations, e.g. [Gam95]).

Since received events cannot act as assertions when synthesizing operations for
passive objects, the control information must be provided by assertion boxes.
Other primitive statements than operation calls are presented as action boxes.
Both assertion boxes and action boxes can be incorporated in the synthesis
algorithm described above in a simple way: an assertion is regarded as an event
without a sender, an action is regarded as an event without a receiver. This
results in the natural representation of an assertion as a label for a transition, and
of an action as a state activity.

The other extensions to the scenario diagram notation cause no major problems
for synthesizing state machines, either. A state box is taken into account by using
the state identifier as a name for the corresponding state in the state machine.
Further, the algorithm refuses to join two states that have different names. A
subscenario is simply expanded before synthesis. Condition and repetition
constructs are likewise dissolved according to the rules in figure 3.

In SCED, state machines can be synthesized both for active objects and for the
operations of passive objects. In the former case the designer selects a participant
of an open scenario diagram; in the latter case she selects a call arc of the
operation in the scenario diagram. When the synthesis command is given, the

9

system generates a state machine either for the object or for the operation,
showing it in a separate window. The designer can determine whether the traces
are extracted from the active scenario, from all open scenarios, from all scenarios
of the current project, or from selected scenarios (containing the object in
question).

Fig. 4. Scenario diagrams and a synthesized state machine in SCED

The synthesis algorithm is the cornerstone of the design-by-example approach
supported by SCED. The designer can describe the expected behavior of the
application in some typical example cases using scenario diagrams, and
synthesize automatically state machines for interesting objects. If these state
machines are not satisfying, the designer can draw a few other scenarios and fuse
them (automatically) into the existing state machines, and finally tune the state

10

machines by hand using the state machine editor. The same technique can be
used for operations of passive objects: with a single command the designer can
see the synthesis of various executions of a particular operation appearing in
scenarios in the form of a state machine. This synthesis can be used as a basis for
implementing the operation, for checking purposes, or simply as a summary of
the operation's requirements (as expressed by the scenarios) so far.

Figure 4 illustrates the synthesis of a state machine. A set of scenarios have been
given describing the use of an automatic teller machine (ATM), and a state
machine for the control unit has been synthesized. The shown state machine is
exactly in a form generated by SCED (including the layout).

Fig. 5. Synthesizing operation descriptions from scenarios.

The generation of a description of an operation from its traces is demonstrated in
a simple case in figure 5: the operation computes the value of a postfix expression
using a stack in the conventional way, assuming that the operands and operators

11

are provided by object Postfix through operation get(). The shown state machine
on the right is produced by SCED on the basis of the example call appearing in the
scenario on the left. The layout of the state machine is also automatically
produced. The scenario is in this case the smallest one that can produce the
correct state machine; further readings of operands and operators can be added to
the scenario without affecting the resulting state machine. Note that a special
initial state has been generated whose name is the same as the name of the
operation.

Another type of synthesizing information obtained from scenarios is an event

flow diagram [Rum90] in which nodes and arcs represent classes and events,
respectively. The fact that an instance of class A sends an event e to an instance of
class B is represented by an arc from A to B. An event flow diagram gives a useful
global view of the possible interactions between classes, without referring to
particular executions of the system. Hence an event flow diagram is a synthesis of
all participants in a set of scenarios, while a state machine is a synthesis of a
particular participant only. SCED produces an event flow diagram automatically
by request.

4 Generating scenario diagrams: design-by-animation

In this section we show how existing state machines can be used to support the
construction of scenarios, and hence - using the methods of the previous section -
the construction of new (or more complete) state machines. We call this
approach design-by-animation , because it is based on animating a partial
specification of a system consisting of a set of state machines, employing scenarios
as the runtime system representation. Using scenario diagrams for visualizing
the behavior of running object systems is an idea proposed recently by several
authors ([LN95], [EiW96], [KM96]).

Assume that there is a set of state machines describing a complete system. As
long as someone provides the required external stimuli to the system when
needed, the state machines can simulate the behavior of the system, sending
events to each other and changing states according to received events. The result
of the execution can be shown as a scenario diagram.

However, suppose that one of the state machines of the objects in the system is
either incomplete or missing, and that the objective is to specify this state

12

machine. We call the corresponding object Unknown. Consequently, at some
point the execution of the system is stuck because some state machine is waiting
for the response of the state machine of Unknown. The designer can now act in
the role of Unknown : she can select the object that should react upon the re-
sponse of Unknown, and indicate which state transition will be applied for the
former object. After that the execution proceeds normally until Unknown is
again needed. As a result, a complete scenario diagram with Unknown can be
generated, and the designer can ask the system to either synthesize the first
approximation for the state machine of Unknown, or augment the incomplete
state machine of Unknown with the new scenario. The design process can
continue making use of the resulting state machine, too: only if some new
behavior (i.e. a new path in the state machine) is required for Unknown , the
designer has to intervene.

This method can be generalized to an arbitrary number of unknown objects if the
designer can specify which object is the receiver of an unidentified message sent
by some state machine. Then the designer can start with an empty set of state
machines, construct the first scenario diagram by hand, synthesize the initial state
machines on the basis of this scenario, construct a new scenario with the support
of these state machines, fuse the scenario into the state machines etc. until
satisfactory state machines are obtained.

The significant advantage of this approach is that the designer need not recall the
behavior of the existing state machines: those parts of the scenario concerning
known behavior are produced automatically. Furthermore, it is guaranteed that
these parts of the scenario are consistent with the existing state machines. The
approach works well if the design is based on existing components with known
behavior (say, GUI library components), but also if the design is made from
scratch. The more complete the designed system gets, the less the designer needs
to intervene.

Note that the external interface (e.g. end-user) is normally represented by an
"unknown" participant in a scenario. The design-by-animation approach is
particularly attractive when the interactions concerning such a participant can be
given through a simulated graphical interface (instead of drawing events in a
scenario): the software designer can explore all the possibilities of the actual
interface, observe the response of the system in the form of a scenario, and extend
the behavior when necessary.

13

In SCED, design-by-animation is supported by so-called tracing mode. In this
mode scenario diagrams are constructed with the support of existing state
machines. First, the participating state machines are opened by the designer.
Activating the tracing mode creates a scenario with participants bound to these
state machines. If desired, the designer can add new participants (with unknown
behavior). The designer can enter events normally, but whenever the state
machine bound to the target object is able to respond to the event in its current
state, a state transition takes place and the action part of the new state is executed,
causing possibly a new event to be sent to another object. This may in turn cause
a state transition in the state machine bound to the new target object etc. As a
result, a cascade of events is created, and these events are immediately shown in
the scenario diagram.

The generation of a scenario gets stuck in two situations: either a state machine
has sent an event but there is no unique receiver, or an event appears with a
target object whose (incomplete or missing) state machine is unable to recognize
the event. In the former case the designer can select the receiver simply by
clicking on the receiver object in the scenario. Those objects that are able to
recognize the event (at least two) are shown with a hollow circle; those objects
that do not recognize the event but whose behavior can be extended (i.e. they are
not defined to be frozen objects) are shown with a black spot (see figure 6). As a
result of selecting one of these objects, the event is drawn, and the receiver may
respond to the event, causing new events to appear in the scenario. If the receiver
is unable to respond, the latter case applies. In the latter case the designer can see
the events each object is able to receive in its current state by clicking on the
object bar in the scenario. Selecting one of these events from the popup menu
creates an event arc from the currently active object to the selected object, labeled
with the event. Consequently, the receiver object can respond to the event,
change its state, and execute the possible event sending actions in the new state,
thus continuing the scenario.

The execution may also get stuck when waiting for external stimuli, e.g. the
response of the end-user of the animated system. In that case the designer can
either give the end-user's reaction as a normal event (manually or selected from
the popup menus giving the currently recognizable events), or use a simulated
interface. To facilitate the latter, SCED provides an interface for other applications
to insert events using the Windows clipboard as a buffer: SCED polls this buffer
regularly and automatically appends found events to the end of the scenario. If
the end-user is the only participant whose behavior is not known (as a state

14

machine), applying the tracing mode of SCED essentially means animating and
testing the existing dynamic model of the system.

Note that any intervention of the designer in the animated execution of the
system implies new behavior not exhibited by the current state machines. For
some participants, a state machine is not even interesting or sensible (e.g. an end-
user of the system). For others, the new behavior should be added to the existing
state machines after an appropriate scenario diagram has been produced. This can
be done in SCED simply by selecting the desired object in the diagram and giving
a synthesis command. As a result, the new scenario is fused into the state
machine of the object using the BK-algorithm (see section 3).

Fig. 6. Design-by-animation: specifying the behavior of ATM with the support of
a simulated ATM interface and existing state machines.

In figure 6, SCED is used in concert with a simulated graphical user interface of
an ATM. The latter simply emits user input events (in ascii form) to the
clipboard, to be picked up by SCED. The designer has already constructed state
machines for Consortium and Bank, and frozen them (freezing is shown with

15

coloring that is not visible in the figure). For ATM only a preliminary state
machine exists, and the designer strives for the specification of its complete
behavior. The figure corresponds to a situation in which (1) the designer has
inserted a card through the simulated interface, (2) the (so far incomplete) ATM
state machine has responded by requesting a password, (3) the designer has given
a password (through the graphical interface), and (4) the ATM responds by
sending "verify account" message. However, since by accident both Consortium
(CONS) and Bank are able to recognize this message, the receiver is not unique;
hence the designer must select the desired receiver among the potential receivers
indicated by blinking circles and spots. In this case only the first and the third
event in figure 6 are generated automatically, but in principle generated event
sequences can be arbitrarily long.

The session in figure 6 could continue as follows: (1) The designer selects
Consortium (as a result, event "verify account" is drawn from ATM to Consor-
tium, and Consortium responds by sending the same event). (2) The designer
selects this time Bank as the receiver of the event. The event is drawn, and Bank
responds by sending event "invalid password" to Consortium. Consortium
responds by sending event "account not ok"). Since event "account not ok" is so
far not recognized by any object, the system again asks for the receiver. (3) The
designer selects ATM, and an event is drawn from Consortium to ATM. (4) Since
ATM is unable to respond, the designer inserts by hand event "invalid access"
from ATM to the User. Note that steps 3 and 4 represent an extension to the
behavior of ATM, and when the resulting scenario is synthesized into ATM's
state machine, the extension becomes part of ATM's behavior.

5 Reverse engineering with SCED

Using the interface for externally generated events, it is also possible to employ
SCED as an animator of any object-oriented system. The system to be animated
must be instrumented with calls for generating textual event descriptions at the
site of each event sending. Since the events are transmitted via ascii text (in the
Windows clipboard), the system to be animated can be written in any language.
One can run SCED and the (instrumented) animated system simultaneously and
observe how new events appear as a result of using the animated system. This
kind of program visualization comes close to Scene [KM96]. However, in contrast
to Scene, we have not tried to solve the scaling problem with event compression

16

techniques but instead we rely only on vertical and horizontal scrolling of a
scenario. In practice this implies that the instrumentation should select a
relatively small set of objects which give rise to events; otherwise the resulting
scenario becomes too large for sensible examination. The call compression
technique used in Scene is not applicable in SCED where events are not
necessarily method calls.

When combined with state machine synthesis, the animation capability of SCED
becomes a powerful reverse engineering tool. Recall that SCED is able to
synthesize the general behavior as a state machine from any scenarios,
independently of how the scenarios are produced. If the synthesis algorithm is
applied to scenarios produced by running existing (instrumented) applications,
one can - after running the application for a while - see the general behavior of
some of the objects belonging to the application in the form of a state machine.
With additional test runs, the state machines describing the general behavior
become more and more complete. Hence, as long as an application can be
instrumented for SCED, it is possible to extract the state machines for selected
objects from executions of the application - a property which can be highly useful
for understanding complex legacy systems. It is remarkable that this property is
essentially a consequence of other features in SCED, rather than a separate facility.

The reverse engineering aspect of SCED can be demonstrated with the ATM
example as follows. Assume that a simulator for the ATM system has been
implemented from scratch. In addition to the ATM interface simulator (see
above), the system simulates the behavior of the ATM control unit and the
central bank computer. The system is instrumented such that each message
sending between the user interface, the control unit and the bank computer is
associated with a call of an operation that inserts the corresponding event
descriptor to the SCED event buffer (Windows clipboard). This is sufficient for
using SCED as program visualizer. The ATM interface can be used in arbitrary
ways, and the resulting object interactions can be observed in the scenario
displayed by SCED. If desired, new scenario windows can be opened, splitting the
generated event sequence into meaningful parts. After a while the user can ask
SCED to synthesize a state machine for the control unit. Depending on which
parts of the ATM system have been used, a more or less complete state machine
will be generated.

Various tools have been developed for supporting program comprehension;
traditionally these tools rely on static or dynamic analysis of the source code.

17

Based on the result of such analysis, graphical representations of some relations
of the source entities can be produced. Typical systems of this kind make use of
program slicing, data dependencies, call graphs etc. (see e.g. [Oma90]). The
essential difference with such tools and SCED-based reverse engineering is that
SCED produces an abstract description of the behavior of an object (in terms of a
state machine): this description is completely independent of the way this
behavior is implemented in the source code. The drawback is that it is hard to tell
when this description is complete, that is, when all the possible ways of using the
system have been exercised. To accomplish this, the target system should be
instrumented with dynamic statement execution counters.

6 Consistency between scenario diagrams and state machines

The fact that both scenarios and state machines can be edited independently
makes it possible to create inconsistencies. Suppose that a state machine has been
synthesized according to a set of scenarios, and that one of the scenarios is
changed. Clearly the state machine may become invalid in the sense that it is no
more able to execute the scenario. The same holds reversely: if a state machine is
changed, there may be one or more scenarios that are no longer executable by the
state machine. The system should maintain consistency in the sense that the state
machine of an object can always execute all the scenarios in which the object
participates.

Note that it would be possible to require even stronger consistency, namely that a
state machine is always exactly the result of applying the BK-algorithm to the set
of scenarios in which the object participates. However, this would have some
unnatural consequences: if a state machine is edited e.g. by adding a transition, a
small artificial scenario causing this transition should be generated. Eventually
there would be a large set of such fragmental scenarios without any sensible
context, which would confuse the designer rather than help her.

Assume that a scenario is edited after it has been synthesized into a state
machine. We can update the state machine incrementally using the following
technique. Each transition is associated with an integer giving the number of
scenarios using this transition; we call this the scenario counter of the transition.
When a scenario is changed, it is removed from the state machine: the scenario is
run through the state machine, and each transition it uses is marked. Then the
scenario counters of the marked transitions are decremented by one. If some

18

scenario counter becomes zero, the corresponding transition is removed. If some
state becomes in this way isolated from the other states, it is removed as well.
After the effect of the original scenario is removed from the state machine in this
way, the new version of the scenario can be added to the state machine using the
(incremental) BK-algorithm.

Assume now that an existing state machine is edited, and that there is a set of
scenarios contributing to this state machine. As long as one adds new states and
transitions to the state machine, no inconsistencies may be created: these changes
cannot prevent the state machine from executing the scenarios. However, if a
state or a transition used by a scenario is removed (modification can be viewed as
removing and adding), a conflict arises: a scenario cannot be run through the
state machine any more. In contrast, transitions whose scenario counter is zero
(i.e. they have been added by direct state machine editing) can be removed
without problems, as well as states which are associated only by such transitions.
We call the other transitions and states scenario-sensitive.

Editing scenario-sensitive parts of a state machine gives rise to problems that are
hard to solve in general. Note that the reverse problem was relatively easy to
solve because there was an incremental algorithm for updating the general
description (set of state machines) with the information contained by a new
instance (scenario). However, revising scenarios automatically on the basis of
state machine editing is much more questionable: scenarios can be viewed as
requirements that should hold after any state machine modifications, rather than
as plain implications of state machines.

SCED supports the consistency between scenarios and state machines according to
the principles presented above. The designer can ask the system to remove a
particular scenario from a state machine; after this the scenario can be edited and
resynthesized into the state machine. The updating of the state machine could be
easily made fully automatic, but we have preferred an environment in which the
designer has a selection of useful commands rather than a fixed working model
imposed by various implicit mechanisms. At any time the designer can check the
validity of current scenarios by running them through the state machines.

19

7 Synthesizing OMT state diagram notation

The result of the BK-algorithm is a state machine consisting of states associated
with at most one action and transitions usually associated with a label
(unlabelled transitions are called automatic transitions in OMT: they fire
automatically after the action of the state is completed). Such a state machine is
called a plain state machine. However, OMT provides auxiliary means to make a
state machine more compact and readable. These include entry actions, exit
actions, internal actions, and transition actions1. Entry actions are executed when
arriving at the state, exit actions are executed when leaving the state, internal
actions are executed as a response to an event without changing the state, and a
transition action is executed whenever the transition it is associated with fires.
These extensions do not increase the expressive power of the formalism, but they
serve to make the state machine simpler and more readable: in many cases one
can reduce the number of states and transitions using these extensions. We will
call state machines making use of these features extended state machines.

When state machines are produced automatically in OMT context, it would be
highly desirable to generate directly extended state machines; otherwise the
designer may have to edit the resulting state machine by hand just to improve
the presentation. In the sequel we will discuss automated techniques to
transform plain state machines into extended ones with fewer states and
transitions. All the discussed techniques are implemented in SCED.

Usually a plain state diagram can be transformed to several mutually different
extended states machines depending on the chosen extensions and the order they
are introduced. The ones with minimal number of states and transitions are
called optimized state machines. We consider here transformations aiming at
optimized state machines. In practice it is often sensible to apply these trans-
formations only locally, without the goal of global optimization; this is possible
in SCED but not discussed here.

We require that the transformation of a plain state machine into an extended one
is behavior-preserving, i.e. the transformed state machine responds in the same
way to a particular sequence of events as the original one. Further, we do not
allow the association of an action of a state to several states or transitions if the

1In addition, OMT allows nested states in the style of [Har87]. Since nested states are currently not
fully supported by SCED, we ignore them in this discussion.

20

state is removed: an action may be moved but not copied. This rule guarantees
that the state machine is not optimized at the cost of increased actions. Hence we
have the following basic rules for the transformation:

Rule 1: The external behavior of the state machine is preserved.

Rule 2: No action is duplicated.

We say a state machine is minimally deterministic when there are no two states
with the same action that could be joined without making the state machine
non-deterministic. The characteristic property of the BK-algorithm is that the
resulting state machine is minimally deterministic. In the following we assume
that a state machine is minimally deterministic. We also assume that every state
in a state machine is reachable from the initial state.

To prevent automatic transitions from causing nondeterminism we require that
a state cannot have both automatic and labeled leaving transitions. Further, we
exclude the possibility that the state machine contains a loop with automatic
transitions only. Both of these situations are prevented in our adaptation of the
BK-algorithm.

The only way to reduce the number of states using special OMT actions in a plain
state machine is to remove an automatic transition. Assume that the source state
of an automatic transition is state 1 with action a1 and the target state is state 2
with action a22 . Further, assume that there is a transition e entering state 1.
Under certain circumstances it is then possible to simplify the state machine by
removing state 1 and (1) making a1 an entry action of state 2, (2) making a1 an
exit action of the source state of e, (3) making a1 an internal action of state 2, (4)
associating a1 with a new transition from the source state of e to state 2, or (5)
merging state 1 and state 2 with action a1; a2.

The order in which the transformations (1) - (5) are applied in a plain state
machine affects the result. Since the different transformations compete for the
same automatic transitions, the various action types should be applied in the
order of preference of these actions. Since we wish to emphasize the role of states
rather than transitions, we attach as much information to states as possible.

2state 1 and state 2 are regarded as identifiers of states, rather than state names. Actions of states
with real state names can only be moved to similarly named states.

21

Hence we allow transformations introducing transition actions (4) only when
other transformations are not possible. On the other hand, we prefer trans-
formations of type (3) to transformations (1) and (2) because the former are more
specific: an internal action deals with a single event, while entry and exit actions
are not directly associated with particular events. It can be shown that the order
(3) -> (5) -> (2) -> (1) -> (4) - which satisfies the preferences above - results in an
optimized state machine [Sys96].

For each type of transformation one can determine the conditions that must hold
before the transformation can be carried out. As an example, consider internal
actions. Assume again that there is state 1 with action a1, state 2 with action a2, an
automatic transition from state 1 to state 2, and a transision e entering state 1. If
state 1 had any entering transitions leaving a state other than state 2, action a1
couldn't be placed as an internal action to state 2 without violating either rule 2
or rule 1. Hence, we require that the source state of e must be state 2. If there were
several transitions from state 2 to state 1, internal actions could be formed
corresponding to each of these transitions but only by violating rule 2. Hence, we
require that e is the only transition entering state 1. The fact that state 1 cannot
have any other leaving transitions besides the automatic transition follows from
our assumptions above. The synthesis algorithm also ensures that transition e
must be labeled, and hence that also all other leaving transitions of state 2 have
to be labeled (recall our restrictions on automatic transitions above). So, it can be
concluded that other leaving or entering transitions of state 2 have no influence
in forming an internal action 'e/a1' for state 2, since they cannot be attached to
state 1 under our assumptions.

We can generalize this discussion and infer the smallest patterns (with respect to
the number of states and transitions) which can be optimized by adopting OMT-
type actions; this means determining the choices for the source state of e. As
concluded above in the case of internal actions, the source state of e can be state 2.
However, it cannot be state 1 according to the restrictions on automatic
transitions. The third possibility is that it is some other state, say state 3. Noticing
that state 1 and state 2 must indeed be different states (otherwise there would be a
loop of automatic transitions), we conclude that there are two possible patterns in
plain state machines that are potential candidates for simplification using OMT
actions; these patterns are shown in figure 7. However, each type of action may
introduce additional restrictions.

22

Fig. 7. Plain state machine patterns for special OMT-actions

The transformations discussed above are implemented in SCED. The designer
can ask the system to optimize a plain state machine, and the system will produce
an equivalent state machine in OMT extended notation, with (hopefully) less
states and transitions. For example, when this command is applied to the state
machine of figure 4, three states (and transitions) are removed. Another example
of the transformation is shown in figure 8. In the upper window, a minimal
plain state machine describing the behavior of a vending machine is given. In
the lower window, the result of the optimization algorithm is shown; this form
is roughly the same as the one given in the OMT book [Rum91, p. 96] (actually
the algorithm has removed one more state (and transition) appearing in
[Rum91]).

8 Automated layout for state machines

Producing the logical contents of a state machine is not enough: the result must
be displayed in an aestethically satisfactory form. Even for a state machine of
modest size, arranging the states and transitions manually into reasonable form
is a laborious task - for a large state machine the task can be truly trying. A state
machine should be visualized optimizing the layout with respect to alignment,
symmetry, balance, crossing edges, number of bends of transitions etc.

23

Fig. 8. Transforming a state machine into OMT notation.

24

We have applied an existing linear-time layout algorithm for directed graphs in
SCED [Num91]: a state machine is interpreted as a directed graph in which states
are the vertices and transitions are the edges of the graph. The advantage of this
algorithm is its capability to handle arbitrary sized vertices. Although the states in
a state machine are normally of small size, there are no fixed limits to the width
and height of the state box: the actions written inside the box can take an arbitrary
amount of space.

Unfortunately, the basic layout algorithm is far from sufficient, mostly because of
the special features of OMT-type state machines. In addition to making some
general improvements concerning e.g. horizontal centering of vertices, vertical
alignment of vertices and edges, vertical packing of vertices, and bend
elimination (for details, see [MST94b]), we had to solve some problems specific to
state machines. These problems are discussed below.

When the designer adds manually parts of a state machine with automatically
produced layout, or constructs the whole state machine from scratch, automatic
layout should be applied very carefully: the designer would be completely lost if
the whole state machine were rearranged after some editing actions. Hence the
designer should be able to specify which parts of the state machine have
satisfactory layout. To accomplish this, SCED allows the designer to select a
rectangular area from the state machine and freeze it for future layout. During
the layout process, the internal states of a frozen rectangular area are invisible: a
frozen area is treated as a single state. After layout has been created for the state
diagram, the transitions between internal states and the external states are routed
properly.

The original layout algorithm accepts only simple graphs, that is graphs that do
not contain multiple edges between any two nodes and self-loops. Since these are
perfectly valid constructs in state machines, the layout algorithm has been
modified accordingly. Multiple edges and self-loops are effectively hidden during
the layout algorithm and added to the diagram while making final completing
operations.

Often a practical state diagram has cyclic character: the behavior of an object can
be described as a cycle of states and transitions, possibly augmented with short-
cuts and auxiliary paths for exceptional cases. Since such a "main cycle"
dominates the object behavior, it should be clearly visible in the state machine

25

layout. In the current implementation we try to keep the main cycle relatively
free of excessive bends. While doing basic layout optimization (horizontal and
vertical alignment of vertices) those choices are preferred resulting in better
visibility of the main cycle.

9 Concluding remarks

SCED has been in extensive use at Nokia, our industrial research partner, for
about two years. Many of the facilities of SCED and extensions to the OMT
scenario diagram notation were motivated by the needs emerging during this
practical evaluation. Consequently, SCED fits nicely with the OMT++ design
methodology [AJ94] developed at Nokia: this methodology relies heavily on
scenarios as a basic instrument for extracting design information from
requirements. However, some of the features discussed here (particularly the
design-by-animation facility) have been implemented only recently and so far
lack proper practical validation.

We feel that scenarios are a natural means to present expectations of the dynamic
characteristics of a system at early stages of design, to be exploited throughout the
software development process. As demonstrated by SCED, it is possible to apply
existing machine learning techniques for inferring general dynamic specifications
from scenarios; this opens up new directions not only for tool support but also
for OO design methodologies. The tight coupling of scenarios and state diagrams
becomes even more apparent when animated simulation of the dynamic model
is combined with automatic state machine synthesis: this approach bridges the
gap between an easily obtainable example and a full specification.

Automatic generation of state machines gives rise to new research problems. It is
highly desirable to display the generated state machine in a form which is reason-
ably close to a hand-written one. Improving the representation of a state machine
both in a syntactic and in an aesthetic sense is therefore necessary. We have
shown that plain state machines can be systematically converted into (more
compact) OMT notation, and that existing graph layout algorithms can be applied
with some modifications for state machine layout.

Besides using SCED in real-life applications, our future work concerns relating
the scenario-directed dynamic modeling technique supported by SCED with the
broader context of object-oriented design. This includes methodological aspects as

26

well as tool support. We feel that SCED should not be used as a separate tool, but
rather as a part of an integrated OO development environment. We are currently
building the functionality of SCED into a commercial integrated OO CASE tool
(Stone AF).

SCED is available for free via anonymous ftp from cs.uta.fi, under directory
/pub/sced.

Acknowledgements

SCED has been developed in a research project financed by the Center for
Technological Development in Finland (TEKES), Nokia Research Center, Valmet
Automation, Stonesoft, Kone and Insoft. Professors Ilkka Haikala and Erkki
Mäkinen have significantly supported our work. Some parts of SCED have been
implemented by Arto Viitanen, Juha Korhonen and Vesa Kauranen.

References

[AJ94] Aalto J-M., Jaaksi A.: Object-Oriented Development of Interactive
Systems with OMT++. In: Proc. TOOLS 14, Prentice-Hall 1994, 205-218.

[BiK76] Biermann A.W. and Krishnaswamy R.: Constructing Programs from
Example Computations, IEEE Trans. Softw. Eng. SE-2 (1976), 141-153.

[CCITT92] CCITT: Document COM X-R 33-E, New Recommendation Z.120,
Message Sequence Charts, July 1992.

[EiW96] Eick S.G., Ward A.: An Interactive Visualization for Message Sequence
Charts. In: Proc. 4th Workshop on Program Comprehension, IEEE
Computer Society Press, March 1996, 2-8.

[Gam95] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns:

Elements of Object-Oriented Software Architecture. Addison-Wesley
1995.

[Har87] Harel D.: Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming 8 (1987), 231-274.

27

[Jac92] Jacobson I.: Object-Oriented Software Engineering - A Use Case Drive

Approach, Addison-Wesley, 1992.

[KM94] Koskimies K., Mäkinen E.: Automatic Synthesis of State Machines
from Trace Diagrams. Software Practice & Experience 24,7 (July 1994),
643-658.

[KM96] Koskimies K., Mössenböck H.: Scene: Using Scenario Diagrams and
Active Text for Illustrating Object-Oriented Programs. In: Proc.
International Conference on Software Engineering (ICSE '96), Berlin,
March 1996, 366-375.

[LN95] Lange D.B., Nakamura Y.: Interactive Visualization of Design Patterns
Can Help in Framework Understanding. In Proc. OOPSLA '95, Sigplan
Notices 30, 10 (Oct 95), 342-357.

[MST94a] Männistö T., Systä T., Tuomi J.: SCED Report and User Manual.
Report A-1994-5, Department of Computer Science, University of
Tampere, February 1994.

[MST94b] Männistö T., Systä T., Tuomi J.: Design of State Diagram Facilities in
SCED. Report A-1994-11, Department of Computer Science, University
of Tampere, December 1994.

[Num91] Nummenmaa J.: Constructing Compact Rectilinear Planar Layouts
Using Canonical Representation of Planar Graphs. Theoretical

Computer Science 99 (1992), 213-230.

[Oma90] Oman P.: Maintenance Tools. IEEE Software 7, 3 (May 1990), 59-65.

[Por95] Portner N.: Flexible Command Interpreter: A Pattern for an Extensible
and Language-Independent Interpreter System. In: Coplien J., Schmidt
D. (eds.), Pattern Languages of Program Design, Addison-Wesley 1995,
43-50.

[Rum91] Rumbaugh J., Blaha M,, Premerlani W., Eddy F., Lorensen W.: Object-

Oriented Modelling and Design, Prentice-Hall, 1991.

28

[SuM91] Sugiyama K., Misue K.: Visualization of Structural Information:
Automatic Drawing of Compound Digraphs. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-21, 4 (1991), 876-892.

[Sys96] Systä T.: Synthesis of OMT State Diagrams. Internal Report, Depart-
ment of Computer Science, University of Tampere, May 1996.

