REMARKS ON THE THICKNESS OF A GRAPH

Isto Aho, Erkki Mäkinen and Tarja Systä

DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF TAMPERE

REPORT A-1996-2

SERIES OF PUBLICATIONS A

REMARKS ON THE THICKNESS OF A GRAPH

Isto Aho, Erkki Mäkinen and Tarja Systä

University of Tampere
Department of Computer Science
P.O. Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-3949-X
ISSN 0783-6910

Abstract

The thickness of a graph is the minimum number of planar subgraphs into which the graph can be decomposed. This note discusses some recent attempts to determine upper bounds for the thickness of a graph as a function of the number of edges or as a function of its maximum degree.

1. Introduction

One way to characterize the embeddability of a graph G is to determine its thickness, $\theta(G)$, i.e., the minimum number of planar subgraphs into which G can be decomposed. The thickness of complete graphs and complete bipartite graphs is known [1-4], but on the other hand, very little is known about the thickness of an arbitrary graph. (We consider simple graphs only.) Recently, Dean et al. [6], Halton [7] and Cimikowski [5] have studied the thickness of a graph as a function of the number of edges or as a function of its maximum degree. The present note continues this study. A somewhat different line of research is followed by Jünger et al. [9].

2. Halton's theorem

We say that a graph has degree d, if d is the maximum degree of its nodes. Halton [7] has shown that any graph G of degree d has $\theta(G) \leq\lceil d / 2\rceil$. Halton's proof is based on Petersen's theorem. (If a graph is regular and of even degree, then it is 2factorable [8, p. 90].) Hence, in order to prove the theorem, Halton first constructs a regular graph containing the given graph as a subgraph. The result then follows by Petersen's theorem. Next we give a new simple proof for Halton's theorem using only the most elementary concepts of graph theory.

We first need a little lemma. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a (connected) graph and let T be a spanning tree of T . A node in V is said to be an end-node with respect to T if it has degree one in T .

Lemma. Let $G=(V, E)$ be a (connected) graph of degree d, and let V^{\prime} be the set of nodes having degree d . Then each biconnected component of G has a spanning tree T such that at most two nodes of V^{\prime} are end-nodes with respect to T .

Proof. (Induction on $|\mathrm{V}|$.) If G has two nodes, then the only spanning tree has two end-nodes. Suppose now (the induction hypothesis), that the lemma holds for all graphs having $\mathrm{m}(\mathrm{m}<\mathrm{n})$ nodes. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be of degree d and have n nodes. Suppose first that $\left|\mathrm{V}^{\prime}\right|<|\mathrm{V}|$, i.e., there is at least one node x in V having degree less than d . We can apply the induction hypothesis to the graph G-x. The node x can be joined to the spanning tree in question with any edge adjacent to x . Otherwise $\left(\mathrm{V}^{\prime}=\mathrm{V}\right), \mathrm{G}$ is regular. In each biconnected component there is a simple path containing all the nodes of the component. The first and the last node of the path are end-nodes, the others are not. \boxtimes

Theorem (Halton). If $G=(V, E)$ has degree d, then $\theta(G) \leq\lceil d / 2\rceil$.
Proof. (Induction on d.) If d is 1 or 2 , then G is planar and its thickness is 1 . Suppose (the induction hypothesis) that the theorem holds for all degrees $\mathrm{k}(\mathrm{k}<\mathrm{d})$. Consider now a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with degree d . According to the lemma, each biconnected component $\mathrm{G}_{\mathrm{i}}=\left(\mathrm{V}_{\mathrm{i}}, \mathrm{E}_{\mathrm{i}}\right)$ has a spanning tree $\mathrm{T}_{\mathrm{i}}=\left(\mathrm{V}_{\mathrm{i}}, \mathrm{E}_{\mathrm{i}} \cap \mathrm{V}^{\prime}\right)$ with at most two end-nodes having degree d in G . Let H be the graph obtained as the union of all T_{i} 's and all the bridges of G . Let x and y be the end-nodes in T_{i} having degree d in G. (The cases in which we have one or zero such end-nodes are treated analogously.) If x (respectively y) is an end-node of a bridge, then its degree in H is at least two. Otherwise we can add to H one edge e adjacent to x (resp. adjacent to y) from $\mathrm{E}-\mathrm{E}_{\mathrm{i}}$ without losing the planarity. Such an edge always exists, since x (resp.
$y)$ is of degree d and not adjacent to a bridge. The planar graph so obtained is denoted by $\mathrm{H}^{*}=\left(\mathrm{V}, \mathrm{E}^{*}\right)$.

Now the graph $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}-\mathrm{E}^{*}\right)$ is of degree at most d-2. This holds because all nodes of V^{\prime} have decreased their degree by at least 2 and all other nodes by at least 1 compared with the original graph G . We can apply the induction hypothesis to G^{\prime}. Hence, $\theta\left(\mathrm{G}^{\prime}\right) \leq\lceil(\mathrm{d}-2) / 2\rceil$, and further, $\theta(\mathrm{G}) \leq \theta\left(\mathrm{G}^{\prime}\right)+\theta\left(\mathrm{T}^{\prime}\right) \leq\lceil(\mathrm{d}-2) / 2\rceil+1=$ $\lceil\mathrm{d} / 2\rceil$. \boxtimes

3. Dean et al.'s proof technique

Dean et al. have proved that if $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a graph with e edges (and n nodes), then $\theta(G) \leq\lfloor\sqrt{\mathrm{e} / 3}+3 / 2\rfloor$. The proof is an induction on $n+e$. The induction step proceeds as follows. If the degree of each node is more than $\sqrt{\mathrm{e} / 3}$, then it is sufficient to approximate $\theta(G)$ by the thickness of the complete graph having n nodes. Otherwise (there is a node v with degree at most $\sqrt{\mathrm{e} / 3}$), we can apply the induction hypothesis to G-v. Hence, G-v can be decomposed into $k=\lfloor\sqrt{\mathrm{e} / 3}+3 / 2\rfloor$ planar subgraphs $\mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{k}}$. The node v and one of its adjacent edges can now be inserted to each of the $\mathrm{H}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{k}$, without breaking the planarity of the subgraphs. Hence, G has thickness at most $\lfloor\sqrt{\mathrm{e} / 3}+3 / 2\rfloor$.

Cimikowski [5] has later proposed another proof using the above technique ending up in a new bound $\lfloor\sqrt{2 e} / 3+3 / 2\rfloor$. We shall show that such an improvement is not possible, i.e., Cimikowski's proof is not valid.

We aim at a bound $\lfloor\sqrt{\mathrm{xe}} / 3+3 / 2\rfloor$, where x is a positive real number to be minimized in order to obtain as sharp bound as possible. Note that Dean et al. have $x=3$ and Cimikowski has $\mathrm{x}=2$. The approximation using the thickness of complete graphs is possible when $\lfloor(n+9) / 6\rfloor \leq\lfloor\sqrt{\mathrm{xe}} / 3+3 / 2\rfloor$. This holds when G does not have a node
of degree $\sqrt{e / x}$ or less (the sum of the degrees (2e) is now more than $n \sqrt{e / x}$). In order to complete the proof, the boundary degree $\sqrt{\mathrm{e} / \mathrm{x}}$ cannot be bigger than the bound to be obtained. Hence, we must have $\sqrt{\mathrm{e} / \mathrm{x}} \leq\lfloor\sqrt{\mathrm{xe}} / 3+3 / 2\rfloor$. If we now set x $=2$ (as Cimikowski suggested) we notice that the inequality does not hold when e > 35. Only a marginal improvement over Dean et al.'s $x=3$ is possible. This shows that Cimikowski's choice $\mathrm{x}=2$ cannot be proved by using this technique.

Dean et al. have conjectured that $\theta(\mathrm{G}) \leq \sqrt{\mathrm{e} / 16}+O(1)$ for any graph G.

References

[1] V.B. Alekseev and V.S. Gonchakov, The thickness of an arbitrary complete graph. Math. Sbornik 101 (143): 212-230 (1976). In Russian.
[2] L.W. Beineke, The decomposition of complete graphs into planar subgraphs. In: F. Harary (ed.), Graph Theory and Theoretical Physics, Academic Press, London, 1967, 139-154.
[3] L.W. Beineke and F. Harary, The thickness of the complete graph. Canadian J. Math. 17:850-859 (1965).
[4] L.W. Beineke, F. Harary, and J.W. Moon, On the thickness of the complete bipartite graph. Proc. Camb. Phil. Soc. 60:1-5 (1964).
[5] R. Cimikowski. On heuristics for determining the thickness of a graph, Info. Sci. 85:87-98 (1995).
[6] A.M. Dean, J.P. Hutchinson, and E.R. Scheinerman. On the thickness and arboricity of a graph. J. Comb. Theory (B) 52:147-151 (1991).
[7] J.H. Halton. On the thickness of graphs of given degree. Info. Sci. 54:219-238 (1991).
[8] F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.
[9] M. Jünger, P. Mutzel, T. Odenthal, and M. Scharbrodt. The thickness of a minor-excluded class of graphs. Tech. Report 95-201, Center for Parallel Computing (ZPC) at the University of Köln, 1995. To appear in Discrete Math.

