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Abstract: The thickness of a graph is the minimum number of planar subgraphs

into which the graph can be decomposed. This note discusses some recent attempts

to determine upper bounds for the thickness of a graph as a function of the number

of edges or as a function of its maximum degree.

1. Introduction

One way to characterize the embeddability of a graph G is to determine its thickness,

q(G), i.e., the minimum number of planar subgraphs into which G can be

decomposed. The thickness of complete graphs and complete bipartite graphs is

known [1-4], but on the other hand, very little is known about the thickness of an

arbitrary graph. (We consider simple graphs only.) Recently, Dean et al. [6], Halton

[7] and Cimikowski [5] have studied the thickness of a graph as a function of the

number of edges or as a function of its maximum degree. The present note continues

this study. A somewhat different line of research is followed by Jünger et al. [9].

2. Halton's theorem

We say that a graph has degree d, if d is the maximum degree of its nodes. Halton

[7] has shown that any graph G of degree d has q(G) £ éd/2ù. Halton's proof is

based on Petersen's theorem. (If a graph is regular and of even degree, then it is 2-

factorable [8, p. 90].) Hence, in order to prove the theorem, Halton first constructs a

regular graph containing the given graph as a subgraph. The result then follows by

Petersen's theorem. Next we give a new simple proof for Halton's theorem using

only the most elementary concepts of graph theory.
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We first need a little lemma. Let G = (V,E) be a (connected) graph and let T be a

spanning tree of T. A node in V is said to be an end-node with respect to T if it has

degree one in T.

Lemma. Let G = (V,E) be a (connected) graph of degree d, and let V' be the set of

nodes having degree d. Then each biconnected component of G has a spanning tree

T such that at most two nodes of V' are end-nodes with respect to T.

Proof. (Induction on |V|.) If G has two nodes, then the only spanning tree has two

end-nodes. Suppose now (the induction hypothesis), that the lemma holds for all

graphs having m (m < n) nodes. Let G = (V,E) be of degree d and have n nodes.

Suppose first that |V'| < |V|, i.e., there is at least one node x in V having degree less

than d. We can apply the induction hypothesis to the graph G-x. The node x can be

joined to the spanning tree in question with any edge adjacent to x. Otherwise

(V' = V), G is regular. In each biconnected component there is a simple path

containing all the nodes of the component. The first and the last node of the path are

end-nodes, the others are not. $

Theorem (Halton). If G = (V,E) has degree d, then q(G) £ éd/2ù.

Proof. (Induction on d.) If d is 1 or 2, then G is planar and its thickness is 1.

Suppose (the induction hypothesis) that the theorem holds for all degrees k (k < d).

Consider now a graph G = (V,E) with degree d. According to the lemma, each

biconnected component Gi = (Vi,Ei) has a spanning tree Ti = (Vi,Ei Ç  V') with at

most two end-nodes having degree d in G. Let H be the graph obtained as the union

of all Ti's and all the bridges of G. Let x and y be the end-nodes in Ti having degree

d in G. (The cases in which we have one or zero such end-nodes are treated

analogously.) If x (respectively y) is an end-node of a bridge, then its degree in H is

at least two. Otherwise we can add to H one edge e adjacent to x (resp. adjacent to y)

from E-Ei without losing the planarity. Such an edge always exists, since x (resp.
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y) is of degree d and not adjacent to a bridge. The planar graph so obtained is

denoted by H* = (V,E*).

Now the graph G' = (V,E-E*) is of degree at most d-2. This holds because all

nodes of V' have decreased their degree by at least 2 and all other nodes by at least 1

compared with the original graph G. We can apply the induction hypothesis to G'.

Hence, q(G') £ é(d-2)/2ù, and further, q(G) £ q(G') + q(T') £ é(d-2)/2ù + 1 =

éd/2ù.  $

3. Dean et al.'s proof technique

Dean et al. have proved that if G = (V,E) is a graph with e edges (and n nodes), then

q(G) £ ëÖ̀̀ è/3 + 3/2û. The proof is an induction on n + e. The induction step

proceeds as follows. If the degree of each node is more than Ö̀̀ è/3, then it is

sufficient to approximate q(G) by the thickness of the complete graph having n

nodes. Otherwise (there is a node v with degree at most Ö̀̀ è/3), we can apply the

induction hypothesis to G-v. Hence, G-v can be decomposed into k = ëÖ̀̀ è/3 + 3/2û

planar subgraphs H1,..., Hk. The node v and one of its adjacent edges can now be

inserted to each of the Hi, i = 1,..., k, without breaking the planarity of the

subgraphs. Hence, G has thickness at most ëÖ̀̀ è/3 + 3/2û.

Cimikowski [5] has later proposed another proof using the above technique ending

up in a new bound ëÖ̀̀2e/3 + 3/2û. We shall show that such an improvement is not

possible, i.e., Cimikowski's proof is not valid.

We aim at a bound ëÖ̀̀xe/3 + 3/2û, where x is a positive real number to be minimized

in order to obtain as sharp bound as possible. Note that Dean et al. have x = 3 and

Cimikowski has x = 2. The approximation using the thickness of complete graphs is

possible when ë(n+9)/6û £ ëÖ̀̀xe/3 + 3/2û. This holds when G does not have a node
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of degree Ö̀̀ è/x or less (the sum of the degrees (2e) is now more than nÖ̀̀ è/x). In

order to complete the proof, the boundary degree Ö̀̀ è/x cannot be bigger than the

bound to be obtained. Hence, we must have Ö̀̀ è/x £ ëÖ̀̀xe/3 + 3/2û. If we now set x

= 2 (as Cimikowski suggested) we notice that the inequality does not hold when e >

35. Only a marginal improvement over Dean et al.'s  x = 3 is possible. This shows

that Cimikowski's choice x = 2 cannot be proved by using this technique.

Dean et al. have conjectured that  q(G) £ Ö̀̀ `̀e/16 + O(1) for any graph G.
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