

A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

TTTTiiiimmmmGGGGAAAA ---- AAAA GGGGEEEENNNNEEEETTTTIIIICCCC

AAAALLLLGGGGOOOORRRRIIIITTTTHHHHMMMM FFFFOOOORRRR DDDDRRRRAAAAWWWWIIIINNNNGGGG

UUUUNNNNDDDDIIIIRRRREEEECCCCTTTTEEEEDDDD GGGGRRRRAAAAPPPPHHHHSSSS

Timo Eloranta and Erkki

Mäkinen

DDDDEEEEPPPPAAAARRRRTTTTMMMMEEEENNNNTTTT OOOOFFFF CCCCOOOOMMMMPPPPUUUUTTTTEEEERRRR SSSSCCCCIIIIEEEENNNNCCCCEEEE

UUUUNNNNIIIIVVVVEEEERRRRSSSSIIIITTTTYYYY OOOOFFFF TTTTAAAAMMMMPPPPEEEERRRREEEE

RRRREEEEPPPPOOOORRRRTTTT AAAA----1111999999996666----11110000

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1996-10, DECEMBER 1996

TTTTiiiimmmmGGGGAAAA ---- AAAA GGGGEEEENNNNEEEETTTTIIIICCCC AAAALLLLGGGGOOOORRRRIIIITTTTHHHHMMMM FFFFOOOORRRR

DDDDRRRRAAAAWWWWIIIINNNNGGGG UUUUNNNNDDDDIIIIRRRREEEECCCCTTTTEEEEDDDD GGGGRRRRAAAAPPPPHHHHSSSS

Timo Eloranta and Erkki Mäkinen

University of Tampere

Department of Computer Science

P.O. Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-4142-7

ISSN 0783-6910

1

Abstract: The problem of drawing graphs nicely contains several computationally

intractable subproblems. Hence, it is natural to apply genetic algorithms to graph

drawing. This paper introduces a genetic algorithm (TimGA) which nicely draws

undirected graphs of moderate size. The aesthetic criteria used are the number of edge

crossings, even distribution of nodes, and edge length deviation. Although TimGA

usually works well, there are some unsolved problems related to the genetic crossover

operation of graphs. Namely, our tests indicate that TimGA's search is mainly guided by

the mutation operations.

Key Words and Phrases: genetic algorithm, graph drawing.

CR Categories: I.2.8, E.1, G.2.2

1. Introduction

The problem of drawing graphs nicely is completely solved only in some very special

cases [7]. Irrespective of the aesthetic criteria used, the problem usually contains several

computationally intractable subproblems [2]. This motivates the use of methods such as

simulated annealing and genetic algorithms. For earlier works following this line of

research, see e.g. [5,9,11,12,13].

This paper introduces a genetic algorithm TimGA (Timo's Genetic Algorithm) for

drawing undirected graphs. TimGA owes some of its basic data structures to Groves et

al.'s algorithm [9]. However, since undirected edges instead of directed ones are

considered, most decisions differ from those made by Groves et al. TimGA outputs grid

drawings with straight line edges.

We start by giving a short description of genetic algorithms. The general principle

underlying genetic algorithms is that of maintaining a population of possible solutions,

which are often called chromosomes. In our problem a population is a set of graph

layouts. The population undergoes an evolutionary process which imitates the natural

biological evolution. In each generation better chromosomes have greater possibilities to

reproduce, while worse chromosomes have greater possibilities to die and to be replaced

by new individuals. To distinguish between "good" and "bad" chromosomes we need an

evaluation function. In graph drawing the evaluation function depends on the aesthetic

criteria used; our evaluation function is discussed in greater detail in the next chapter.

2

The general structure of a genetic algorithm is as follows:

procedure ga

begin

t:= 0;

create the initial population P0;

evaluate the initial population;

while not Termination-condition do

t:= t + 1;

select individuals to be reproduced;

recombine (i.e. apply genetic operations to create the new population Pt);

evaluate(Pt)

od

end;

There are several parameters to be fixed. First, we have to decide how to represent the set

of possible solutions. In "pure" genetic algorithms only bit string representations were

allowed, but we allow any representation that makes efficient computation possible.

Hence, in the terminology of [14] TimGA is an "evolution program". Second, we have to

choose an initial population. We use initial populations created by random selection.

Third, we have to design the genetic operations which alter the composition of children

during reproduction. The two basic genetic operations are the mutation operation and the

crossover operation. Mutation is an unary operation which increases the variability of the

population by making pointwise changes in the representation of the individuals.

Crossover combines the features of two parents to form two new individuals by

swapping corresponding segments of parents' representations. It turns out that the main

problem in genetic graph drawing algorithms is to find efficient crossover operations.

TimGA's genetic operations are introduced in the next chapter.

In what follows we assume that the reader is familiar with the basics of genetic algorithms

and graph theory as given e.g. in [14] and [10], respectively.

2. Selection and the evaluation function

TimGA draws graphs in an N ´ N matrix. Each node is located in a square of the matrix

and all edges are drawn as straight lines. To represent a graph with n nodes and m edges

we use a 2 ´ n matrix to indicate the positions of the nodes and a 2 ´ m matrix to indicate

the edges by storing pairs of nodes. The corresponding end points are then found from

the node matrix. Figure 1 shows a simple example of the representation used. Groves et

al. [9] have used similar representation for nodes.

3

1

2

3

4

5

6
7

8

2 4 5 6 7 81n
x
y

3
1

1 2

2 3

3

3

3

4

44

4

5

56

6

1

8 5

5 6

6

4

7

8

85

2

7

73

6

Edges

Nodes

Figure 1. The representation of a sample graph.

One of the crucial points of a genetic algorithm is the method of selecting chromosomes to

the genetic operations. TimGA uses the linear normalization suggested by Davis [6]

together with elitism. The linear normalization works as follows. The chromosomes are

sorted in decreasing order by their evaluation function values. The best chromosome gets

a certain constant value (e.g. 100) and the other chromosomes get stepwise decreasing

constant values (e.g. 98, 96, 94,...). Chromosomes are then selected to the genetic

operations proportionally to the values so obtained. Depending on the length of the step

(the difference between the consecutive constant values; two in the above example), this

method can be parametrized to give a desired emphasis to the best chromosomes. TimGA

allows the user to set the length of the step. By default, TimGA uses elitist selection, i.e.,

the best chromosome is always chosen as such to the next generation.

The aesthetic criteria used are imported to genetic graph drawing algorithms in the form of

the evaluation function (also called the fitness function). TimGA tries to minimize the

number of edge crossings, to distribute the nodes evenly over the drawing area, and to

minimize the deviation of edge lengths.

The positive terms (to be maximized) in the evaluation function are

• Minimum Node Distance Sum (Min. Node Dist. Sum): The distance of each node

from its nearest neighbour is measured, and the distances are added up. The bigger

the sum the more evenly the nodes are usually distributed over the drawing area.

• Minimum Node Distance (Nbr of Nodes * Min. Node Distance2): This term helps

in distributing the nodes. The square of minimum node distance is multiplied by the

number of nodes.

The negative terms (to be minimized) in the evaluation function are

4

• Edge Length Deviation: The length of each edge is measured and compared to the

"optimal" edge length, which is little more than the minimum edge length found

from the present layout.

• Edge Crossings: The number of edge crossings is multiplied by the size of the

drawing grid. (The grid is always a square.)

TimGA spends most of its computation time in evaluating the chromosomes. One of the

problematic issues is the counting of the number of edge crossings. There is a well-

known method based on cross productions to check whether two line segments intersect

[4, pp. 889-890]. More advanced methods are introduced by Bentley and Ottmann [1]

and Chazelle and Edelsbrunner [3]. Unfortunately, the method of Chazelle and

Edelsbrunner, though asymptotically time optimal, is too complicated for the present

application. On the other hand, the Bentley and Ottman's algorithm is too slow. Thus, we

have to use a method of our own for counting the number of edge crossing. We keep

track of the movements of the nodes, and update the number of edge crossings only when

a node is moved. This method outperforms the Bentley and Ottman's algorithm in the

present situation.

3. The genetic operations

The crossover operation transforms two chromosomes into two new chromosomes.

TimGA has two types of crossover operations. RectCrossover works as follows. First it

randomly chooses a rectangle from the drawing area of the parent chromosomes. Then a

rectangle of equal size is chosen from the drawing area of the child chromosomes. The

parent chromosomes exchange the positions of the nodes inside the chosen rectangles.

The rest of the nodes are kept unchanged, if possible. A sample RectCrossover is shown

in Figure 2.

The sample RectCrossover operation of Figure 2 uses rectangles of size 3 ´ 3; these are

painted grey in the figure. The parents change the positions of the nodes 3 and 6 (from

Parent-1) and nodes 1 and 3 (form Parent-2). The nodes 1 and 3 keep their relative

positions in the grey area when it is moved from Parent-2 to Child-1. Moreover, since the

chosen rectangle in Child-1 is empty, the rest of the nodes in Child-1 can keep their old

positions, i.e. the positions they have in Parent-1. On the other hand, in Child-2 there are

two nodes in the chosen 3 ´ 3 rectangle (nodes 2 and 7). These must be moved outside

the area. The first possible place is the square where the corresponding node is in the

other parent. Since node 2 of Parent-1 is in the square (2,5), this is the new position of

the node in Child-2. This method does not work with node 7, since the square (8,4) is

5

2

1

4

8

5

7

6

3

Child-2

2

4

5

6

7

8

1

3

Child-1

2

5

4

6

7

8

1

3

Parent-2

1

2

3

7

4

5

6

8

Parent-1

Figure 2. A sample RectCrossover.

already occupied by node 8. So, we have to place node 7 to an randomly chosen free

square (8,8). RectCrossover closely resembles the Cont-Crossover operation of [9].

The other crossover operation in TimGA is called ThreeNodeCrossover. A connected

subgraph consisting of three nodes is chosen. The parents then exchange the positions of

the three nodes in question. If some of the new positions are already occupied, the nodes

in question are kept unchanged. A sample ThreeNodeCrossover is shown in Figure 3.

Groves et al. [9] introduced about a dozen different mutation operations. In our tests we

have used 16 different mutations of which 11 are from [9] and the five rest are new. Our

tests indicate that mutation operations applied to edges usually have better performance

than those applied to nodes. The following eight mutation operations performed best in

our tests:

6

1

2

35

4

6

7

Child-2

7

4

5

6

2

1

3

Child-1

5

4

6

7

2

1

3

Parent-2

1

7

4

5

6

2

3

Parent-1

Figure 3. A sample ThreeNodeCrossover.

• SingleMutate: Choose a random node and move it to a random empty square [9].

• SmallMutate: Choose randomly two squares from the drawing area such that at

least one of them contains a node. If both contain a node, exchange the nodes. If

only one of them contains a node, then move the node from the present location to

the empty square [9].

• LargeContMutate: Choose two areas of equal size and shape from the grid.

Exchange the contents of the chosen areas [9].

• EdgeMutation-1: Choose a random edge and move it to a random new position.

• EdgeMutation-2: Like EdgeMutation-1, but the length and angle of the edge is kept

unchanged, if possible.

• TinyEdgeMove: Like EdgeMutation-2, but the edge is moved only at most one

square both horizontally and vertically.

• TwoEdgeMutation: Like EdgeMutation-2, but two edges incident with a same

node are moved.

7

• TinyMutate: Like SingleMutate, but the node is moved only at most one square

both horizontally and vertically.

The probability of using a certain mutation type depends on its performance in our tests.

The operations introduced above have the following relative probabilities (the bigger the

probability the better performance in our tests):

TwoEdgeMutation 12/65

EdgeMuation-2 10/65

SingleMutate 10/65

EdgeMutation-1 5/65

LargeContMutate 5/65

SmallMutate 5/65

TinyMoveEdge 5/65

TinyMutate 5/65.

Moreover, eight additional mutation operations introduced in [9] are used with relative

probability 1/65. Note that the mutation operations clearly have different roles: some of

them are more suitable for tentative searching and some others for fine tuning.

5. Parameters

This chapter deals with the test runs which were done to fix the various parameters of

TimGA. We did over 4000 runs using mainly the following test graphs:

• a cycle with 48 edges

• a triangular grid with 28 nodes and 63 edges

• a complete binary tree with 63 nodes.

The number of edge crossings was the only criterion used in evaluating the results. This

naturally follows from straightforwardness of measuring the criterion in question. We

believe that despite of the small number of test graphs used, the results can be generalized

also to other graphs of approximately the same size.

The size of the grid. What is the optimal size of the drawing area for our test graphs?

This was tested for grids from 10 ´ 10 to 70 ´ 70. The optimum size was 40 ´ 40, and

this size was used in all the tests to be reported. There were only small differences

between all the grid sizes from 20 ´ 20 to 70 ´ 70; grids smaller than 10 ´ 10 were

clearly inferior (for obvious reasons).

The size of population. Population size should be large enough to give an unbiased

view of the search space. On the other hand, too large population size makes the

algorithm inefficient, if not intractable. Surprisingly, TimGA seems to works best with

8

very small populations. Figure 4 shows the number of edge crossings with different

population sizes after the running time of 15 seconds on a Power Macintosh with our

complete tree test graph. (All the tests were executed on a 100 MHz Power Macintosh.)

population size

0

10

20

30

40

50

60

70

0 10 20 30 40 50

ed
ge

 c
ro

ss
in

gs

Figure 4. The number of edge crossings as a function of the population size.

These results suggest that the population size should not exceed 10. We use the

population size 10 in the rest of our tests. Such a small population size might not fit the

Schema Theorem, the Building Block Hypothesis [14], and other theoretical principles of

genetic algorithms. However small populations give us the best results! We interpret this

phenomenon so that the crossover operations used are unable to sift the good properties

(called schemata in [14]) of the chromosomes from parents to children, and the search is

mainly guided by the mutation operations.

Selection. Our tests advice to use large steps in the linear normalization. This means

that the best chromosomes are strongly favoured. This can be considered as a further

evidence for the fact that our crossover operations do not help. (Michalewicz [14, p. 57]

has noted that the use of selection methods neglecting the actual relative differences

between the fitness of chromes is also against the theoretical basis of genetic algorithms.

The linear normalization is one of these methods.)

Crossover and mutation rates. As already mentioned, our crossover operations

seem to have no positive effect to the search process. On the other hand, increasing the

mutation rate makes the search more efficient all the way to the level 40 - 45%. Still

increasing the mutation rate over 45 % again makes the results worse. The crossover rate

5 % and mutation rate 45 % are TimGA's default values.

9

6. Example layouts

In this chapter we present the results of applying TimGA to some typical graphs. All the

drawings (and their computation times) reported in this chapter are produced on a Power

Macintosh. The computation times given in this chapter are not averaged over several runs

as was done in the results reported in the previous chapters. This means that randomly

selected initial populations may distort the results.

Our first example demonstrates the aesthetic criteria used. In Figure 5(a) a set of separate

edges is shown. From this input TimGA outputs the drawing shown in Figure 5(b).

There are no edge crossings, the edges are distributed evenly over the drawing area, and

the edges are of about the same length. The drawing of Figure 5(b) was created in 20

seconds; eliminating all the edge crossings took about a second.

(a) (b)

Figure 5. A sample input and the corresponding output.

Figure 6 shows how TimGA tends to draw a cycle. Since evaluation function has no

component aiming at symmetric drawings, the nodes of the output graph are not drawn in

a round shape.

Figure 7 demonstrates the effect of the grid size. The same graph (the cubic graph) is

drawn using the grid sizes 12 ´ 12 (Figure 7(a)) and 20 ´ 20 (Figure 7(b)). The Figure

7(b) suffers from the tendency of drawing graphs with edges of equal length. This

tendency is more easily realized in a grid with more squares.

10

Figure 6. An output for a cycle.

(a) (b)

Figure 7. The effect of the grid size.

Figure 8 shows three drawings for square grid graphs of different sizes. The graph of

Figure 8(a) is drawn in a drawing area of size 22 ´ 22, while the other two are drawn in a

drawing area of size 40 ´ 40. Figure 8(a) was produced in 8 seconds using less than

5000 generations. Figure 8(b) took almost 90 seconds although the result is not

completely symmetric. Even worse is the situation with Figure 8(c): after the running time

of 10 minutes TimGA was still unable to find a planar drawing. The evaluation function

does not "understand" that moving the top right node of the grid graph upwards would

only temporarily cause more edge crossings.

Figure 9 shows a nice drawing of a triangular grid graph with 35 nodes and 135 edges.

The computation time was about three and a half minutes (5400 generations).

11

(a)

(b)

(c)

Figure 8. Three sample drawings of grid graphs.

Figure 9. A layout for a triangular grid graph.

12

We end this chapter with some remarks concerning the Edge Crossing Problem (ECP).

Given an undirected graph G, ECP is the problem of determining the minimum number of

edge crossings (denoted by n(G)) among layouts of G. ECP is known to be NP-complete

[8]. The following approximation is known for the crossing number of complete bipartite

graphs [10, p. 123]

v(Km,n) £ ë__
2
m û ë __

2
m-1û ë__

2
n û ë __

2
n-1û.

TimGA easily reaches the above bound for graphs Km,m, where m £ 12. Figure 10

shows a drawing for K8,8.

Figure 10. A layout for K8,8.

7. Conclusions

TimGA nicely draws most graphs of moderate size. However, it suffers from the lack of

a proper crossover operation which would speed up TimGA's computations by

decreasing the number of generations needed.

TimGA is available with full source code in ftp://cs.uta.fi/pub/TimGA/.

13

References

[1] J. L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric

intersections. IEEE Trans. Comput. C-28 (1979), 643-647.

[2] F. J. Brandenburg, Nice drawings of graphs and trees are computationally hard. Tech.

report MIP-8820, Fakultät für Mathematik und Informatik, Univ. Passau, 1988.

[3] B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line segments

in the plane. J. ACM 39, 1 (1992), 1-54.

[4] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms. The

MIT Press, 1990.

[5] R. Davidson and D. Harel, Drawing graphs nicely using simulated annealing. The

Weizmann Institute of Science, Dept. of Applied Mathematics and Computer

Science, Revised version of Tech. Report CS-89-13, July 1993 (to appear in

Comm. ACM).

[6] L. Davis, A genetic algorithms tutorial. Handbook of Genetic Algorithms, L. Davis

(ed.), Van Nostrand Reinhold, 1991, 1-101.

[7] G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Annotated bibliography on

graph drawing algorithms. Comput. Geom. Theory Appl. 4 (1994), 235-282.

[8] M. R. Garey and D. S. Johnson, Crossing number is NP-complete. SIAM J. Alg.

Disc. Meth. 4, 3 (September 1983), 312-316.

[9] L. Groves, Z. Michalewicz, P. Elia and C. Janikow, Genetic algorithms for drawing

directed graphs. Proceedings of the Fifth International Symposium on

Methodologies for Intelligent Systems, Elsevier North-Holland, 1990, 268-276.

[10] F. Harary, Graph Theory. Addison-Wesley, 1969.

[11] C. Kosak, J. Marks, and S. Shieber, A parallel genetic algorithm for network-

diagram layout. Proc. 4th Int. Conf. on Genetic Algorithms, 1991.

[12] E. Mäkinen and M. Sieranta, Genetic algorithms for drawing bipartite graphs. Intern.

J. Computer Math. 53 (1994), 157-166.

[13] A. Márkus, Experiments with genetic algorithms for displaying graphs. Proceedings

of the 1991 IEEE Workshop on Visual Languages, IEEE Computer Society Press,

1991, 62-67.

[14] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, 1992.

