
A

UN
V

E
R

IT
S

I

S

P
R

E
E

S

M
I

AT

S
N

ON THE ROLE OF SCENARIOS IN

OBJECT-ORIENTED SOFTWAREDESIGN

Kai Koskimies, Tatu M�annist�o, Tarja Syst�a

and Jyrki Tuomi

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF TAMPERE

REPORT A-1996-1

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A

A-1996-1, JANUARY 1996

ONTHEROLE OF SCENARIOS IN OBJECT-ORIENTED

SOFTWAREDESIGN

Kai Koskimies, Tatu M�annist�o, Tarja Syst�a

and Jyrki Tuomi

University of Tampere

Department of Computer Science

P.O.Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-3920-1

ISSN 0783-6910

On the Role of Scenarios in Object-Oriented

Software Design

Kai Koskimies1, Tatu M�annist�o2, Tarja Syst�a1, Jyrki Tuomi1

1 Department of Computer Science, University of Tampere, Box 607, FIN-33101 Tampere,
Finland

2 Laboratory of Software Engineering, Tampere University of Technology, Box 526, FIN-33101
Tampere, Finland

Abstract

Scenario diagrams are a graphical notation for describing the interaction of a set
of collaborating objects. We study the relationships between scenarios and other
models used in object-oriented software development, in particular dynamic model
and static object model. These relationships are signi�cant for improving vari-
ous consistency checks between the di�erent models and for developing automated
support for model synthesis.

1 Introduction

A fundamental problem of software development is how to derive design information
from the requirements of a software system. Object-oriented design methods address
this problem by identifying conceptual objects in the system's speci�cation, and by rep-
resenting these with classes. The di�erent aspects of objects are captured with special
notations; in particular, the static relations of the classes are described using some vari-
ant of entity-relationship diagrams, the dynamic behavior of (active) objects is described
using �nite state machines, and the information
ow of the system is presented with data

ow diagrams. A popular object-oriented design method is OMT [12] which we will use
as the basis in this paper as far as the notation is concerned.

Although the object-oriented approach supports the shift from analysis to design by pro-
viding a common paradigm for analysis and design phases, the step from externally ob-
servable properties of the application to the description of software units (classes) remains
problematic. This is particularly re
ected in the di�culties to specify the functionality of
objects. As noted e.g. by Rumbaugh [13], the conventional dynamic description vehicle
| a state machine | is relevant only for a minority of the objects, since most objects do
not undergo signi�cant state changes. Instead, usually the behavior of the object should
be speci�ed as a set of operations (messages) the object accepts. A common weakness of
most object-oriented methods | including OMT | is that they do not clearly express
how such sets of operations can be found.

An attractive approach to object-oriented design is to consider descriptions of the expect-
ed responses of the system to certain logical event sequences caused by the environment

1

(e.g. user actions), and to analyze these descriptions to �nd out various properties of the
objects involved. Such descriptions are usually presented in a graphical notation called
an event trace diagram [12] or an interaction diagram [7]; we will use here the term sce-
nario (diagram). Design methods making extensive use of this idea include OMT++ [1]
and OOSE [7]. The advantage of such a method is that the required functionality of the
objects can be observed in the scenarios and expressed either as a set of operations or as
a state machine.

A scenario diagram describes the interaction of a set of objects in terms of message
passing. For each participating object there is a vertical line. A message sent from one
object to another is presented as a horizontal arrow from the sender object to the receiver
object. Time
ows from top to bottom. An example of a scenario is shown in �gure 1.

There are many variants and extensions of this basic form (see e.g. [4, 7, 9]). When

Figure 1: A scenario diagram

scenarios are used as an essential part of the design methodology, their relations to oth-
er design documents and techniques become important. These relations play a crucial
role when some design documents are derived (possibly automatically) from the others,
or when the consistency of the various design documents should be preserved (possibly
automatically). Hence these issues are relevant for the design of any kind of CASE tool
intended to support an object-oriented software development method relying on scenar-
ios.

In this paper we will consider the relations of scenario diagrams to other design docu-
ments used in the OMT method. With the exception of choosing OMT as the notational
basis, we will analyse the relations of the various design documents without making as-
sumptions of the nature of a design method or of a particular tool making use of the
relations. In the next section we discuss the relations between scenarios and state ma-
chines, which obviously are the strongest and also the most useful. In section 3 we will
study the relationships between scenarios and the static object model. In section 4 we
show how the implementation of the operations can be derived from scenarios. Finally
in section 5 we present some concluding remarks.

We assume familiarity with the OMT graphical notation. This work is part of the SCED
project aiming at automated support for dynamic modeling in object-oriented software
development. Many of the ideas discussed here have been exploited in the current SCED
system [9, 11].

2

2 Scenarios and dynamic model

2.1 General relationships between scenarios and state machines

Since both scenarios and state machines describe the dynamic aspects of a system, they
necessarily share much in common. In its basic form a scenario describes a particular
event sequence occurring among a set of objects, wheras a state machine desribes the com-
plete behavior of a single object in terms of responses to received events. Hence neither
a scenario is completely implied by a state machine nor a state machine is completely
implied by a scenario. If all objects are assumed to have a state machine, a scenario
represents a trace of a collection of collaborating state machines. The events related to
a particular object in a scenario represent a trace through the state machine of the object.

Sometimes the scenario diagram notation is extended with algorithmic constructs like
conditionality and repetition ([1, 9, 3]). In �gure 2, the notation for conditionality used
in [9] is shown. With special notations for conditionality and repetition, a scenario

Figure 2: Conditionality in SCED scenario

diagram has the full power of an algorithmic language, and it can be used to describe a
complete function with multiple executing objects, rather than only one example trace.
We call such descriptions multi-object functions. Clearly, a conventional scenario is an
instance of a multi-object function. Still, one object can take part in several multi-object
functions; therefore multi-object functions have in principle the same relation with state
machines as conventional scenarios. One can view a multi-object function as a short-
hand notation for a (possibly in�nite) set of scenarios. The relationships between the
various concepts are depicted in �gure 3.

2.2 Deriving state machines from scenarios

As demonstrated in [8], it is possible to synthesize automatically a minimal state machine
which is able to execute all the given scenarios with respect to a certain object. This
algorithm essentially realizes the instance-of relation (1) in �gure 3: a state machine is
generated from a set of scenarios taking into account only the role of a particular object
in the scenarios. We will not discuss this algorithm here in detail (see [8]).

3

Figure 3: Relationships between the concepts. The arrows (1), (2), and (3) denote
\instance-of" relations.

The use of multi-object functions as the basis of state machine synthesis gives rise to some
additional problems. A conditional structure in a scenario can be simply interpreted as
a shorthand for two variants of the scenario: one in which the condition holds and one in
which it does not hold. Hence a set of scenarios containing conditional structures can be
expanded into an equivalent (but larger) set of scenarios without conditional structures.
However, the presenting of the condition in the resulting \pure" scenarios is less obvious.
A natural representation of a conditional structure in a state machine is a state with two
outgoing transitions associated with guards (OMT term for a condition associated with a
transition). This e�ect is achieved if the controlling object receives an event labelled with
the condition in a scenario. Since this kind of an event has no actual sender object, an
expanded scenario should include special \condition" boxes representing events without
sender. This kind of special event will be necessary also for operation code generation,
as discussed in section 4.

However, it is not clear which object should take the responsibility of checking the condi-
tion; i.e. which object will have the condition box in the expanded scenario. This problem
is avoided if the notation for conditionality in a scenario speci�es the responsible object,
like in [3]. On the other hand, especially in the analysis phase it is useful to allow con-
dition expressions which do not need to specify the responsible object; this has been the
motivation for the more general notation of SCED in �gure 2.

If the system is based on fully synchronous message passing (i.e. there is always exactly
one object controlling the execution), a condition is sensible only if it is checked by the

4

object having the control at the point of the conditional structure. In particular, this
is the case if the events correspond to conventional method calls. However, in a system
consisting of concurrently executing objects there may be several objects which could
in principle be responsible for checking the condition. Even in such a case there is one
object which is most likely the responsible one, namely the object which is the sender of
the �rst event within the if-construct. Only in that case it is possible that the condition
forks the future execution; otherwise the condition could serve only as an assertion. The
handling of an if-construct is depicted in �gure 4.

Figure 4: Expanding conditional construct.

To allow the user to clearly specify the object which is responsible for checking the con-
dition, the \structured" if-construct of SCED should be augmented with the possibility
to mark one of the objects as the \owner" of the condition. If the mark is missing, the
default owner should be the sender of the �rst event within the if-construct.

SCED also allows a repetition construct which has appearance similar to the if-construct,
except that the keyword \If" is replaced with \Repeat". However, the handling of a repe-
tition construct is somewhat di�erent, because it is not possible to unravel this construct
into a �nite number of \pure" scenarios. Hence a repetition must be viewed as a state
machine fragment rather than as a set of scenarios. The fragment contains a loop state
which has two outgoing transitions: one associated with a guard identical to the con-
dition, leading to the body of the repetition construct, and the other, identical to the
negation of the condition, leading to the continuation of the construct. Nevertheless, the
problem of �nding the object responsible for controlling the loop is exactly the same as
for the if-construct, and it can be solved using the same principles.

2.3 On the consistency of scenarios and state machines

Since any new scenario can be fused with an existing state machine using the algorithm
of [8], it is not possible to write a \wrong" scenario with respect to an existing (so far
incomplete) state machine. However, if scenarios and state machines can be edited inde-
pendently of each other, various kinds of inconsistencies can be created.

5

Assume �rst that an existing scenario is edited, and that there is a state machine of an
object that is able to execute the object's role in that scenario. Since the scenario is
edited explicitly by the user, we must assume that the new version of the scenario is
correct information. Hence the state machine should be updated according to the new
version of the scenario.

A non-incremental update of the state machine would be trivial, if the state machine has
been generated automatically from the scenarios using e.g. the algorithm of [8]: one can
simply regenerate the state machine using the revised set of scenarios. However, it may
be possible that the state machine has been manually extended after the generation, so
that the state machine contains genuine new information in addition to the information
synthesized from the scenarios. That is, the state machine may execute traces that can-
not be inferred from the scenarios, and this ability should be retained. A regeneration
would destroy manual extentions of the state machine: it would be in general hard to
restore the e�ects of editing in the new state machine. Moreover, a non-incremental
approach for updating the state machine has one important di�erence when compared
to an incremental approach: a non-incremental method gives no opportunity for the user
to examine how changed scenarios in
uence the state diagram scenario by scenario. If
several scenarios have been changed, it may be useful at least to have the possibility not
to update all changes at the same time.

An incremental update of the state machine can be obtained, if one keeps track of the
scenarios contributing to a state transition. This can be implemented simply as follows:
each transition is associated with an integer giving the number of scenarios using this
transition; we call this the scenario counter of the transition. When a scenario is changed,
it is removed from the state machine: the scenario is run through the state machine, and
each transition it uses is marked. Then the scenario counters of the marked transitions
are decremented by one. If some scenario counter becomes zero, the corresponding tran-
sition is removed. If some state becomes in this way isolated from the other states, it
is removed as well. After the e�ect of the original scenario is removed from the state
machine, the new version of the scenario can be added to the state machine using the
(incremental) algorithm in [8].

Assume now that an existing state machine is edited, and that there is a set of scenarios
contributing to this state machine. As long as one adds new states and transitions to
the state machine, no inconsistencies may be created: these changes cannot prevent the
state machine from executing the scenarios. However, if a state or a transition used by a
scenario is removed (modi�cation can be viewed as removing and adding), or new actions
are attached to it, a con
ict arises: a scenario cannot be run through the state machine
any more. Transitions whose scenario counter is zero (i.e. they have been added by direct
state machine editing) can be edited without problems, as well as states which are associ-
ated only by such transitions. We call the other transitions and states scenario-sensitive.

The problem of having invalid scenarios after editing the state machine is more di�-
cult than the reverse problem. Note that the reverse problem was relatively easy to
solve because there was an incremental algorithm for updating the general description
(state machine) with the information contained in a new instance (scenario). Howev-

6

er, we feel that revising scenarios automatically on the basis of state machine editing
is much more questionable: scenarios can be viewed as requirements that should hold
after any state machine modi�cations, rather than implications of the state machine. A
straightforward approach to solve this problem is therefore simply to consider changing
the scenario-sensitive parts of a state machine illegal. Since the scenario-sensitive parts
can be recognized using scenario counters, this is easy to implement. An actual system
might either give a warning or refuse to perform the editing action. In all cases it would
be useful to show the con
icting scenarios to the user. To implement this, all the sce-
narios must be executed by the state machine, and those scenarios making use of the
removed transitions are marked.

However, sometimes the user might actually want to edit the scenarios \automatically"
through the state machine. That is, the user may wish to enforce a desirable general be-
havior, and to adjust the existing scenarios according to this view. Hence the principle of
considering scenario-sensitive editing of a state machine simply illegal should perhaps be
relaxed: an optional mode of operation allowing the automatic adjusting of the scenarios
could be provided. Note that we consider here only scenario-sensitive editing: modifying
a state machine otherwise causes no revisions in the scenario set.1 For instance, editing
names of transitions, states, and actions globally through a state diagram might be de-
sirable. The implementation of such glogal editing property is straightforward.

Assume that the user removes a scenario-sensitive transition in a state machine. This
can be regarded as a collective editing action: \remove all events causing this transition
in all scenarios". Accordingly, this can be implemented as follows: we again run all
the scenarios through the state machine, and mark all events in scenarios that traverse
along the removed transition. All scenarios that have marked events are removed from
the state machine, as described above. Then the marked events are removed from the
scenarios, and the revised scenarios are added to the state machine using the incremental
algorithm of [8].

However, in spite of its logical basis this approach has a serious
aw from the practi-
cal point of view. The problem is that the state machine obtained as the result of the
above algorithm is not the same as the state machine that would appear as the result of
the editing action itself. For example, assume that the only transition connecting two
states is removed. If this transition was caused by an event in a scenario, this event
will be removed. This in turn implies that the situation after the event automatical-
ly follows the situation before the event. Consequently, a so-called automatic transition
will appear in the place of the removed transition | an e�ect the designer hardly expects.

Hence any sensible collective editing of scenarios through the state machine should guar-
antee that the total e�ect on the state machine is equivalent to the e�ect of the pure
editing action. Some special kinds of editing actions have this property. For example,
one can edit transitions by detaching their target or source states. Sensible updating

1A possible approach would be to require full consistency in the sense that a state machine is always

exactly the result of the synthesis algorithm, when applied to the current set of scenarios. However, this

approach seems unrealistic because it would imply that some arti�cial scenarios are generated after each

adding of new transitions or states. Such scenarios would only distract the user since they have no other

meaning except that of preserving the full consistency.

7

of the scenarios is in this case easier: If the new target/source state lies on the path of
a scenario, events between corresponding points in a scenario are replaced by a single
arriving event named as the transition. If the new target/source state doesn't lie on
the path, events after/before the transition are all removed and events corresponding
to the new target/source state are added to replace them. E�ects of an addition of
new actions to scenario-sensitive parts of a state diagram can also be updated to scenar-
ios without causing any side e�ects as long as the receiver object of each action is de�ned.

2.4 Using state machines for creating scenarios

Animation is a powerful way to analyze, debug, and visualize interactions between ob-
jects. A scenario is a natural and descriptive way to document animation steps. Several
CASE tools have been developed for animating the dynamic behavior of systems com-
posed of objects. In [14] Salmela introduces a framework in which animation techniques
to visualize object communication, dynamic instantiation, dynamic binding and execu-
tion of both functional and dynamic models are described. The animation framework
is based on OMT notation and uses highlighting, token placing, and token moving as
visualization techniques. The highlighting technique is also applied, e.g. in Statemate [6],
in which it is used in animation of statecharts (see [5]) and activity charts. In Scene [10],
object-oriented programs are visualised using scenarios produced automatically during
the execution of a target system.

We will discuss here the generation of (parts of) scenarios using existing state machines
during the design of the dynamic model. This is in fact close to animating a system
represented by a set of state machines and displaying the result as a scenario. However,
in contrast to conventional animation systems one can add new behavior to the system
during the animation process. This kind of technique could be characterized as design-
by-animation.

When synthesizing a state machine for a participant on the basis of information given
in scenarios, sent events are interpreted as actions and received events as transitions
([8, 11]). The same interpretation applies to interacting state machines used when syn-
thesizing a scenario from a state machine set. We will call the process of synthesizing a
scenario using existing state machines tracing.

For example, let SD1 and SD2 be two state machines being in states A and B, respec-
tively. If state A has an action, say act, and state B has an outgoing transition also
labeled act, then execution of action act of state machine SD1 is interpreted as event
act sent by SD1 and received by SD2. Further, it causes state machine SD2 to change
states from B to the target state of the transition with label act. All actions in SCED
state machines are considered to be instantaneous events, sent to one object only. In
addition, they are regarged to be synchronous; next action won't be executed before the
previous action is completed.

The designer can start to trace a scenario after constructing state machines for the ob-
jects she wants to take part in the scenario. By guiding the tracer to select desired paths

8

through these state machines, the designer gets an example sequence of interactions be-
tween the corresponding objects, i.e. a scenario. This tracing process is basically handled
in the following way: the designer selects either a state or a transition at a time when
guiding the tracer. As a result, the selected state (or the target state of the selected
transition) becomes the current state of the state machine. The possible event sending
action associated with the state is executed. This means that all the other state machines
are examined to �nd out if one of them is able to respond to the event in its current
state (that is, there is a leaving transition for the current state with the event). If such a
state machine is found, the event is sent to this machine which changes its current state
accordingly. The possible event sending action in the new state is again executed etc.

Proceeding in this way the tracer activates states and transitions automatically, showing
the activated paths in the state machines by highlighting, until it cannot �nd an explicit
path to continue. If the underlying collection of state machines is a complete system,
the fact there is no path to continue can only mean that the system expects input from
the user of the system. Automatic tracing continues as soon as the designer has made
it possible by guiding the tracer with her state/transition selections specifying the user's
response. A log of the animation is shown in a form of a scenario. The scenarios thus
synthesized do not make use of the more advanced SCED concepts (e.g. comments, sub-
scenarios, if- and repeat-structures etc.), but otherwise they are normal scenarios that
can be further edited if desired.

Note that OMT kind of state machines can have several actions attached to states and
transitions. The role of these actions has to be taken into account. E.g., if a state is
activated, the tracer goes through entry and normal actions of that state. When a tran-
sition is selected, the e�ects of exit actions of the source state as well as actions attached
to the transition have to be enforced before activating the target state.

Above we discussed the animation of a complete state machine system and the presen-
tation of the log of the animation as a scenario. However, this technique becomes more
interesting when we assume that the system to be animated is not a complete one, i.e.
there is one object whose behavior is unknown (besides the user of the system). It is then
the task of the designer to act in the role of the unknown object during the tracing pro-
cess. That is, when the animated set of state machines is not able to continue because
it is waiting for an event sent by the unknown state machine, the designer intervenes
and speci�es the response of the unknown object by showing which transition should be
activated next. As an example, such an unknown object might be a new GUI compo-
nent making use of existing ones with known behavior. Note that it must be possible
to distinguish the situations requiring the response of the user from those requiring the
response of the unknown object.

More precisely, in the current SCED the tracing with an unknown object proceeds as
follows. The tracer gives the unknown object name Untitled. A scenario with partici-
pants for all open state machines, and with participant Untitled is created. The names
for the other participants are taken from the �le names of the corresponding state ma-
chines. Object Untitled is considered to take part in the tracing process as a sender or
a receiver of an event if no other (prede�ned) object can do it. Hence, this object is

9

regarded as a sender of an event every time the designer has to help the tracer to con-
tinue by selecting a transition, and as a receiver of an event when the designer activates
an action for which no responding state diagram can be found. If there are names of
sender participants (written after a keyword \FROM") attached to transitions or receiver
participants (written after a keyword \TO") attached to actions in a state machine, the
sender or receiver participants are determined accordingly. These participants can also
be manually inserted ones. It should also be noted that the designer may freely edit the
traced scenario any time during the tracing process.

The �rst scenario traced in this way can be used for synthesizing a skeleton of a state
machine for the object Untitled using the normal state machine synthesis algorithm. This
state machine is added to the state machine set and can be used to make the subsequent
tracing process more powerful: some of the events that were added as a result of the
designer's selections can be automatically inserted in the next scenarios. In other words,
paths need to be constructed only once; after that they can be followed automatically.
The cycle of tracing scenarios and synthesizing them to the existing state machine Un-
titled is repeated until a satisfying scenario set (or state machine) has been achieved.

While tracing a scenario there might be several objects that could respond to a sent
event. In that case the designer may continue the tracing process after selecting the
right (desired) object from a given dialog box.

While being in a certain state, the object may receive events which may be:

1. accepted causing a change of state and/or an action to be performed or

2. ignored.

Received events may be ignored, because:

1. the object does not recognize the event or

2. the object recognizes the event but it is not allowed to respond to it while being in
the current state

Constructing scenarios correctly requires that the designer knows which events can be
accepted by an object and when. To prevent the designer from using events that should
be ignored, the former case is not a problem in OMT methodology: the designer can
check from the object model which events can be recognized by the object. However, the
latter case is more di�cult to ensure.

It is much easier for the designer to see from a state machine if the current state is allowed
to accept the event or not, than from a scenario. Assume that the designer has a set of
correctly constructed state machines, perhaps after some modi�cations, and she starts
to trace a scenario. As far as she selects transitions or states attached to the currently
active state, it is impossible for her (unless she makes manual modi�cations) to trace
a scenario in which a participating object accepts an event even though it should be
ignored. Hence the support for constructing scenarios correctly is much better than if
scenarios are constructed from scratch; in addition to avoiding events that ought to be

10

ignored, the designer can be more certain that objects react to received events correctly.

The most important advantages of the scenario tracing property are:

1. scenarios are easy to construct; only few (if any) events need to be drawn and
labeled manually, other events will be constructed either automatically or as a
result of selecting a state or a transition;

2. support for avoiding the use of events which are recognized by the object but not
allowed in the current state;

3. support for describing objects' reactions to received events correctly; object's reac-
tion may depend on its state;

4. support for animating the behavior of the system in example cases;

5. early visibility of intended features;

6. changing the dynamic modeling process smoothly from the \water fall" type of
modeling (�rst scenarios, then state machines) to more spiral way of modeling.

Scenario tracing property seems especially useful in following cases:

1. modeling the use of prede�ned classes, e.g. GUI library classes;

2. checking the correctness of modeled behavior of objects.

If the object to be modeled (Untitled) inherits a prede�ned class, the object is able to use
the methods and variables (in C++: public and protected ones) of the class. In that case
it may be possible to form a skeleton of the state machine on the basis of the inherited
class before tracing any scenarios.

Some problems arise in this approach, too. First, visualizing animation steps is not a
trivial problem. Currently, the tracing process is visualized by highlighting the current
states and automatically followed paths after previous designer's selection in all the in-
volved state machines. However, state machine windows are typically large. This makes
it di�cult and in most cases impossible to show all the state machines at the same time;
if these windows do not overlap, the designer is able to see only a small corner of them
and is at least forced to scroll them a lot.

Perhaps the biggest problem of scenario tracing results from the fact that all events for
which a sender/receiver object cannot be found are attached to the Untitled participant.
In a traced scenario there might be several manually inserted participants with no cor-
responding state machine, e.g. participants that represent the system border. Events
that should be attached to them can be concluded during the tracing process only if
the receiver names are used with actions (e.g. SendOkMessage() TO User) and sender
names with transtions (e.g. PushButton() FROM User). However, that is not always
the case. If one is not careful, there is a high possiblity that some events will be attached
to the Untitled participant although they should be attached to some other participants.
The same problem will be faced if the state machines used are not complete. It should
be emphasized that the tracing process is bene�cial wrt security and usefulness only if

11

there is at most one participant taking part to the example run with no corresponding
state machine. Otherwise, participantUntitled represents a fusion of all such participants.

3 Scenarios and object model

3.1 Classes and operations

Although the participants of scenarios are objects rather than classes (since a scenario
describes a run-time event sequence), in practice the objects in scenarios usually rep-
resent their classes. Hence the normal practice is to denote the participants with class
names. If there is a need to have more than one instance of a certain class in the same
scenario, the class name should be augmented with an appropriate characterization of
the individual object. In any case we conclude that each participant of a scenario should
have a class in the object model.

An event in a scenario is something an object reacts upon. For a passive object this
can only be an operation call. For an active object (i.e. an object having its own logical
thread of control) an incoming event can be some external stimulus (e.g. from the mouse),
a message or signal sent from another object, or a remote operation call activated by
another object. We assume that the distinction between passive and active objects can
be made by the designer, and possibly marked in the scenarios using some appropriate
notation. In the sequel we focus on passive objects. Recall that Section 2 deals with
specifying the dynamic behavior of active objects.

Hence, an event p from object (class) A to object (class) B corresponds to a public op-
eration p of B called by A. If an object calls its own operation (some scenario notations
allow events from an object to itself), the operation is private unless it is also called
publicly.

The signatures of operations should also be derivable from the scenarios. Events can
have parameters, which naturally correspond to parameters of the operations. If the
types (or classes) of the parameters are known, the parameter part of the signature can
be determined.

In the case of function call the return value is denoted usually as the label of the return
event. If there is no return event, the identi�er denoting the return value is usually as-
sociated with the call event. In every case the fact that the call returns a value is visible
in the scenario. If the type of the return value is known as well as the parameter types,
the full signature of the operation can be determined.

Since the types of parameters or return values are usually not included in scenarios, an
automatic tool deriving object model information would fail in determining the signa-
tures of operations. A practical solution would be to assume that every identi�er X in a
scenario denoting a value (or object) has the type (class) TypeOfX. Such arti�cial type
identi�ers are assumed to be replaced by the actual type identi�ers manually at a later

12

stage.

Since the participants of scenarios are objects rather than classes, the classes appearing
in scenarios are normally concrete. Hence all the abstract classes should be found in some
way on the basis of the concrete ones appearing in the scenarios. If the intersection of the
sets of operations and attributes of two participating classes turns out to be nonempty,
an abstract class consisting of the intersection features could be constructed. If the
intersection is exactly one of the classes, no new abstract class needs to be created, but
a subclass relation can be established directly between the classes. This procedure is
based on the names (and signatures) of operations and attributes only, and may lead to
undesirable results.

3.2 Attributes

Consider again the parameters of events in a scenario. As noted above, these correspond
to the actual parameters of operation calls. If the actual parameter is given as a single
identi�er, there are two possibilities: either the identi�er denotes an attribute of the
caller or another parameter passed to the caller by an enclosing call.

We assume that the return point of an operation call can be seen in the scenario; this
can be shown with a special return arc or with a control bar ([7, 4]). Then the nested
operation calls can be easily recognized in a scenario. This makes it possible to locate the
enclosing call whose body contains the call with a parameter identi�er. If the enclosing
call contains the same identi�er as a parameter, the parameter in the nested call can be
ignored | it simply passes on the previous parameter. Otherwise the parameter denotes
an attribute of the caller.

Besides as parameters, identi�ers denoting values (or objects) may appear as return val-
ues of functions. Such an identi�er may denote an attribute of the owner of the function
(i.e. the receiver of the call event). The attribute may either be de�ned in the owner class
or inherited from its superclass. This is the case if the purpose of the function is to read
one of the attributes of the host object; such functions are typical in OO programming
because of the principle of data abstraction. A call of such a reader function can be rec-
ognized with some certainty by examining the events occurring inside the call: if there
are no internal events, the function is likely a reader function. A shorter expression for
successive call and return events might be useful. E.g., the return value could be written
after the operation name separated with a semicolon or written under the event arc. In
addition to making scenarios shorter, it would help distinguishing attributes from other
events.

3.3 Associations

The fact that one object sends a message to another object implies that there is an
association between the objects. At the implementation level, the caller must know the
identity of the callee, which usually means that the association is implemented by a link
from the caller to the callee. On the other hand, from the functional point of view, an

13

association is necessary only if it is used by some operation (assuming that objects are
manipulated only through their operations). Hence an association that is not used is at
least highly suspect. We conclude that if the caller-callee relationships are known (which
can be recognized from scenarios), the association relationships between classes can be
approximated with reasonable preciseness. It may be, however, that these associations
di�er from the analysis level associations.

The names and kinds (aggregate or general, multiplicity) of associations are more di�-
cult to extract from scenarios. A system which creates associations automatically on the
basis of scenarios might give the associations arti�cial initial names which are assumed
to be changed later by the designer. A possible name could be e.g. \usesForP", where
P is the name of an operation exploiting the association. If there are di�erent operation
calls between the same pair of objects, the name of the association could be chosen on
the basis of the most frequent operation. If there are di�erent operation calls between
the same pair of classes (but between di�erent objects), they should give rise to separate
associations.

To distinguish a general association from an aggregate one could look for propagated op-
erations, i.e. chains of nested successive calls of the same operation in the scenarios. The
existence of such a chain hints that the callees are parts of the callers (excluding the �rst
call). On the other hand, a non-nested repetition of the same operation with the same
caller and callee classes but with di�erent callee objects suggests that the corresponding
association between the classes should allow multiplicity at the callee end (black circle
in OMT). However, deciding whether objects are in a general association relationship
or one is an aggregate of the other, is very di�cult by examing only their interactions.
Therefore, conclusions based on nested operation calls shouldn't be made automatically.
Instead, such calls should be seen as a hint to the designer.

4 Scenarios and operation code

Let us assume that all events concern operation calls, and that both the call events and
the return events are shown in the scenarios. Then the slice of the scenario starting
from the call event and ending at the return event corresponds to the execution of the
operation. Since this is essentially a trace through the operation, and since there may
be several such traces for the same operation in the same scenario or in other scenarios,
it seems sensible to conjecture that the implementation code of the operation could be
synthesized in the same way as a state machine can be synthesized for an entire object
using the algorithm of [8] (see section 2).

Consider the call of operation p of object x in a scenario. The portion of the line of
x between the call of p and the return of p containing all leaving call arrows is called
the call trace of the call of p. Note that the execution of a nested call may call another
operation of x, but the call trace of this operation will not be included in the call trace of
p. The call trace of p represents the actions executed directly in the body of p. Figure 5
illustrates the concept of a call trace. In fact, the algorithm [8] is a variant of another
algorithm [2] which was originally developed for synthesizing programs rather than state

14

Figure 5: The call trace for p of x is shown with a thick line.

machines. Using a convenient interpretation of an event as a condition this algorithm
could be applied to state machines. The problem is that if events in a scenario correspond
to operation calls, they cannot act in the role of conditions any more. A return event
arriving at the object line has no control aspects at all as far as the receiving object
is concerned; it cannot represent a condition. This means that an essential part of the
original algorithm, conditions, is completely missing.

Another problem is that operation calls are usually not su�cient as primitive actions of
operation implementations. Primitive internal actions like computations or assigments
are either ignored or sometimes brie
y described as comments in scenarios.

On the basis of [2], it is clear that operations cannot be synthesized using call traces
only. For sensible operation synthesis, primitive actions and conditions must be added
to call traces and therefore to the scenario notation. This need not introduce substantial
modi�cations: primitive actions are in fact included already e.g. in [9] as boxes in object
bars (action box). A condition can be represented by a similar box; the condition ex-
pression is assumed to be given in terms of the attributes of the object and parameters
of the enclosing operation.

Condition boxes are essential: they replace the incoming events in the conventional state
machine synthesis algorithm (recall that a call trace has no incoming events). In a sense
a condition box is a dual concept with respect to an action box: an action box can be
viewed as an event without a receiver, a condition can be viewed as an event without a
sender.

We illustrate the synthesis of operations with an example. Consider the scenario frag-
ments on the left hand side in �gure 6 describing possible event sequences during bank
account withdrawal. These fragments are assumed to be parts of larger scenarios. Inter-
preting conditions as incoming events the result of the state machine synthesis algorithm
is shown on the right hand side in �gure 6. Note that the state machine in �gure 6 could
easily be transformed into pseudo code, if desired.

15

Figure 6: Two scenarios making use of condition (rounded rectangles) and action (rect-
angle) boxes on the left, and speci�cation of the operation Withdraw on the right

5 Conclusions

We have studied the relationships of scenarios with other models used in object-oriented
software development. Especially dynamic modeling can obviously bene�t signi�cantly
from scenarios. If the dynamic behavior of an object can be modeled as a state machine,
this state machine can be automatically derived from a set of scenarios in which the
object is involved. It is possible to maintain sensible consistency between scenarios and
state machines. We have also shown that scenarios and state machines can be construct-
ed in concert, supporting each other.

The relationships between the static object model and scenarios is weaker, but neverthe-
less we could �nd several useful dependencies. From the point of view of tool development,
these observations can be used either for automated consistency checking between the
di�erent models, or for generating at least partially the object model from the scenarios.
In both cases the level of intelligence and automated support of the OO CASE tools can
be improved.

From a methodological point of view these observations suggest that scenarios could be
used as the basis of object-oriented design to larger extent than is usually done. Since the
construction of scenarios is based on known objects, the �rst phase of the development
method must be �nding an initial set of objects. However, after that phase the design
can proceed using scenarios as a central technique.

References

[1] Aalto J-M., Jaaksi A.: Object-Oriented Development of Interactive Systems with OMT++.
In: Proc. TOOLS 14, Prentice-Hall, 1994, pp. 205{ 218.

16

[2] Biermann, A.W. and Krishnaswamy, R.: Constructing programs from example computa-
tions, IEEE Trans. Software Engeneering, SE-2, 1976, pp. 141{ 153.

[3] Coplien J., Schmidt D.: Pattern Languages of Program Design, Addison-Wesley, 1995

[4] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of Object-

Oriented Software Architecture, Addison-Wesley, 1995.

[5] Harel D.: Statecharts: A Visual Formalism for Complex Systems, Science of Computer

Programming, 8, 1987, pp.231{ 274.

[6] Harel D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-Tauring,
A., and Trakhtenbrot, M.: STATEMATE: A Working Environment for the Development
of Complex Reactive Systems, IEEE Transactions of Software Engineering, Vol. 16, no. 4,
1990, pp.403{414.

[7] Jacobson, I., et al: Object-Oriented Software Engineering - A Use Case Driven Approach.
Addison-Wesley, 1992.

[8] Koskimies, K. and M�akinen, E.: Automatic Synthesis of State Machines from Trace Dia-
grams, Software Practice & Experience, 24, 7, 1994, pp. 643{658.

[9] Koskimies K., M�annist�o T., Syst�a T., Tuomi J.: SCED | An Environment for Dynam-
ic Modeling in Object-Oriented Software Construction. In: Proc. Nordic Workshop on

Programming Environ ment Research '94, Lund. Department of Computer Science, Lund
Institute of Technology, Lund University, June 1994, pp. 217{230.

[10] Koskimies, K. and M�ossenb�ock H.: Scene: Using Scenario Diagrams and Active Text for
Illustrating Object-Oriented Programs. In: Proc. ICSE '96, March 1996, Berlin. To appear.

[11] M�annist�o T., Syst�a T. and Tuomi J.: Design of State Diagram Facilities in SCED, Uni-
versity of Tampere, Report A-1994-11.

[12] Rumbaugh, J., et al: Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[13] Rumbaugh, J.: OMT: The dynamic model, Journal of Object-Oriented Programming, A
SIGS Publication, vol. 7, No. 9, Feb 1995, pp. 6{12.

[14] Salmela M.: A framework for graphical animation of object-oriented models of embedded

real-time software, VTT Publications 207, VTT, Espoo, 1994.

17

