

Development of Program Visualization
Systems 1

Aulikki Hyrskykari

Department of Computer Science
University of Tampere
P.O. Box 607
SF-33101 Tampere
Finland
E-mail: ah@cs.uta.fi

The last decade has been a very active period of designing systems
for program visualization. Without proper means for describing and
evaluating both existing and new systems further develoment may be
delayed. Recently, several researchers have been working for creating
taxonomies for program visualization systems. During the active period
of system development benefits of visualization were often praised without
criticism, and scientific references were rarely presented. What do we
really know about usefulness of program visualization?

We first present the state of the work with the terminology and taxonomy
in the dicipline. Moreover, we review the existing empirical studies on the
benefits of graphical presentation of programs. We also give a reference
list to the existing program visualization systems.

Keywords: Program visualization, Algorithm animation, Software visualization,
Graphical presentations

1 Development span of program visualization

The creation of various visualizations of programs is almost as old of an idea as programming
itself [15]. Many different graphical methods have been developed. Along with the
development of graphical terminals, computer aided methods for producing some of those
visualizations appeared starting from the late fifties [2, 17]. The systems used computers
to automatically produce static diagrams from programs. Most of those systems illustrated
program code. Automation of the visualization of the program data is a more strenuous task,

1Presented as an invited talk at the 2nd Czech British Symposium of Visual Aspects of Man-Machine,
Systems, March 27 1993, Praha

2 Aulikki Hyrskykari

but a few attempts to that direction were made also quite early [18, 20]. By using the means of
cinematography those program illustrations were brought to life. However, not until the late
seventies was the technology mature enough for producing real-time graphical illustrations
of program runs. One of the cinematisations [3] produced with the assistance of computer is
generally considered to have launched serious research in the area.

The eighties was a very active decade (see the reference list for the program visualization
systems in the end) for the design of program visualization systems, and the development of
systems is still going strong. The possibility of bringing program executions into graphical
multidimensional space caused enthusiasm to the extent that the benefits of visualizations
were often uncritically praised. It was often stated that human senses are more suitable for
adopting visual information (e.g.[24]), or that graphical representation makes better use of
human brains because it taps brain’s both hemispheres [30]. Graphics was considered to be a
panacea for problems varying from programming education to software project management.
During the recent years the superlativism has slowly settled down [16] and there has even
been some quite sharp utterances in the other direction (e.g. [12], p. 1043]). To get a bit more
profound picture of what is really known of the possible usefulness of program visualizations,
we will review the related empirical studies.

Before that, we will make a summary of the taxonomies developed for evaluating program
visualization systems, with which we want to give the reader an impression of the current state
of the dicipline. The construction of new systems has this far been somewhat uncoordinated.
The terminology is just getting stable and theories and taxonomies are under development.

2 Characterising program visualization

The enclosed reference list of visualization systems contains references to the systems that
have gained considerable public attention. In addition to the ones listed there must be many
noteworthy visualization systems and hundreds of more simple tools and procedure libraries
created around the world to assist program visualization and animation. Considering the
amount of systems, there has so far been remarkably few analytical studies of the principal
ideas on which the systems are built.

Until the mid-eighties the terminology associated with program visualization was obscure.
The terms visual programming and program visualization were used to describe nearly anything
that had something to do with computer graphics together with programs. Myers pioneered in
clarifying the basic terminology by defining first the separation between visual programming
and program visualization [24]:

“Visual programming refers to any system that allows the user to specify a program in a two
(or more) dimensional fashion”, while “. . . in program visualization, the program is specified
in the conventional, textual manner, and the graphics is used to illustrate some aspects of the

Development of Program Visualization Systems 3

program or its run-time execution.”

Furthermore, Myers divided program visualizations along two axes, depending whether
they illustrated code or data of the program, and whether the illustration was static or
dynamic. Later, in a review article [25] of visual programming and program visualization he
updated the taxonomy by adding a new element, algorithm, to the object axis with code and
data.

Along with program visualization the terms software/algorithm visualization or animation
is also occasionally used. When the object of the visualization is software, one emphaszises
the role of the whole programming process starting from the specification of the requirements.
If the emphasis of the visualization is on high level abstractions, not regarding the
implementation details, we are talking about algorithm visualization. As Myers defines, the
visualizations may be either static or dynamic illustrations. Dynamic visualizations change
in time reflecting the state of a program in execution. The changes on the view take place
instantly from one state of a program to another. The authors of program visualization
systems that are able to do dynamic visualizations often claim their system to be an animation
system. However, we are justified in using the term ‘animation’ only if smooth transitions
are used in graphical changes in the visualizations, giving the spectator time to internalize
the connection between the two stages. As a matter of fact, if we use Myers’ taxonomy for
classifying the program visualization systems, we should add animation as an additional level
of dynamics (see Figure 1).

Static Dynamic Animated
Code
Data

Algorithm

Figure 1: Taxonomy of program visualization systems based on the taxonomies presented by
Myers. Animation is added as a third level of dynamics [24]. [25]

Even though Myers did a significant task in stabilizing the basic terms, his taxonomy is
not powerful enough to describe the rich collection of potential characteristics of program
visualization systems. Individual visualizations may still well be described by using the
taxonomy, but for characterizing program visualization systems a more versatile taxonomy
had to be developed.

As one of the pioneers in the field, Brown characterised program visualizations along three
axes ([7] p.15):Content, Transformation and Persistence (see Figure 2). The Content-axis
describes the tightness of connection between the implementation of the program and its
visualization. In other words, at the synthetic end of the dimension, we have an algorithm
visualization, and the further left we proceed the more the visualization resembles program
monitoring. If the value of the Transformation -axis is high then the visualization may be
considered animation. The third axis describes Persistence of the displayed information.
The displays on the current side of the dimension contain less historical information of the

4 Aulikki Hyrskykari

6

-
�
�
�
�
�	

�

?

�
���

increment

synthetic

current

direct

discrete

history

T
C

P

Figure 2: Attributes of dynamic program visualization displays along three axes: T =
Transformation, C = Content and P = Persistence ([7] p. 15).

program or algorithm executed. At the other end displays constantly show the complete
history of each change in the visualized object.

Two more recent papers [29, 34] suggest a characterisation scheme with four dimensions.

The four properties Roman and Cox [29] consider important when classifying program
visualization systems are

• Scope,

• Abstraction,

• Specification method,

• Technique,

while the ”four big As” considered by Stasko and Patterson [34] are

• Aspect,

• Abstractness,

• Animation,

• Automation.

The first two dimensions of both papers match quite well. With the first ones both describe
which aspects of a program are visualised and the second ones are counterparts of Brown’s
content-axis.

Development of Program Visualization Systems 5

The analysis of Abstraction is more profound and interesting in the paper of Roman and
Cox. They have recognized five levels of abstractions in visualizing programs. Starting from
the most concrete level they are: direct, structural, synthesized, analytical and explanatory
representations. Surprisingly, Roman and Cox are the first ones to pay attention to a very
fundamental property, namely the method of specifying the visualization (third dimension).
The fact is that the flexibility and usability of a system depends to a great extent on the
ease of creating new visualizations. The fourth dimension, Technique, characterises how the
graphical representation is used to convey the information. It contains animation that is the
fourth dimension of Stasko and Patterson [34]. Correspondingly, Automation of Stasko and
Patterson falls in to Specification method of Roman and Cox [29] as a part of it.

The taxonomies referred above are steps to the right direction towards clear criteria for
evaluation of program visualization systems, and they bring many points worth noticing up
for discussion. However, they are still a bit scattered. The first work that can be considered
comprehensive is the taxonomy created by Price, Baecker and Small (original ideas in [26]
and revised version [27]). They have gathered and analyzed thirthy-four properties (leaf-level
characteristics in the taxonomy) of program visualization systems, or software visualization
(SV) systems, as they call them. The taxonomy contains many system properties that have
almost totally been omitted in previous taxonomies. The characteristics have been organized
into hierarchical branches of six broad categories as follows (see Figure 3):

• Scope contains characteristics that defining which programs a system is able to visualize.

• Content includes the characteristics that define what information about the software a
system is able to visualize.

• Form defines attributes of the visualization itself.

• Method defines characteristics of a system facilities for specifying the visualization.

• Interaction includes characteristics of a system’s interface.

• Effectiveness contains characteristics that describe how well does a system communicate
information to the user.

The adaptibility of the taxonomy is tested by applying it to twelve systems. We believe
that this taxonomy will evolve to be an important tool for the discipline, both for designing
new systems and for evaluating the existing ones.

There are some points in the existing taxonomies that we don’t find satisfying. Our
point of view is, that a visualization system has two functions. On the other hand it acts
as an execution environment for visualizations, and on the other hand as an specification
environment for them. The characteristics of a program visualization system acting in the
two roles should be recognized. This vision rises undeniably from the algorithm animation
point of view, because in the systems that are able to visualize higher level abstractions,
some kind of specification of the visualization is a necessity. The systems that aim at more
to program monitoring type of visualization may not require any additional work for the
sake of the visualization. Also the characteristics of the system and of the visualization (the

6 Aulikki Hyrskykari

A: Scope

a.1 Generality

��
��

a.1.1 Hardware
��
�

a.1.2 Operating system(((
a.1.3 Language

hhh a.1.3.1 Concurrency
a.1.4 Applications

HHH

a.2 Scalability

HHHH a.2.1 Program���
a.2.2 ApplicationsXXX

B: Content

b.1 Program

#
#
#

b.1.1 Code��� b.1.1.1 Control flow
b.1.2 Data

XXX b.1.2.1 Data flow

b.2 Algorithm���
b.2.1 Instructions��� b.2.2.1 Control flow
b.2.2 Data

XXX b.2.2.1 Data flow

b.3 Fidelity and
HHH

completeness
b.3.1 Invasiveness

b.4 Data gathering

@
@
@

time

b.4.1 Temporal control
mapping

�

b.4.2 Visualization
generation time

cc

C: Form

c.1 Medium

�
�
�

c.2 Presentation��� style

c.2.1 Graphical
vocabulary��� c.2.1.1 Colour

c.2.1.2 Dimensions
XXX

c.2.2 Animation
Q
QQ

c.2.3.Sound

@
@@c.3 Granularity

aaa

c.4 Multiple views

Q
Q
Q

c.5 Program

@
@
@@

synchronization

D: Method

d.1 Visualization
�
�� specification

style

d.1.1 Intelligence��
d.1.2 Tailorabilityaa

d.2 Connection
technique

Q
QQ d.2.1 Code ignorance

allowance!!
!

d.2.2 System - code
coupling

PPP

E: Interaction

e.1 Style
� e.2 Navigation e.2.1 Ellision control��

e.2.2 Temporal controlXX e.2.2.1 Direction��
e.2.2.2 SpeedXXe.3 Scripting

facilities
@

F: Effective-
ness

f.1 Purpose

�
�� f.2 Appropriateness

and clarity���

f.3 Empirical evaluation
HHH

f.4 Production use

@
@@

Figure 3: Price-Baecker-Small -taxonomy of program visualization systems.

Development of Program Visualization Systems 7

output of the system) are often mixed. It is true that the characteristics of a visualization
do also characterize the system, because the system is evaluated through the quality of the
visualizations that can be produced by it. Nevertheless, this often leads to unclear situations,
when you can not decide if the property refers to the system or to the visualization. That
happens especially when dealing with attributes associated with the user interface. The Price-
Baecker-Small -taxonomy does contain that separation explicitly, but the separation could be
clearer.

3 Do visualizations really assist in understanding

programs - empirical studies

Pictures do have many attributes that potentially make them an efficient means for conveying
information. Attributes like the reduced need for indirect references, graphical means for
expressing relationships, random access, multiple dimensions of a picture, possibility to use
metaphors and possibility to change picture in time, to animate, are discussed in many papers.

Picture is more concrete than text. Visualizations make it possible to concretize abstract
concepts. Concrete models may help a learner in the process of learning. They assist in
connecting the new material to the old knowledge that already exists in memory ([4] p.
213-244). Mayers [22] deliberates widely upon the meaning of concrete models in learning,
especially in learning programming. He concludes that there is “clear and consistent evidence
that a concrete model can have strong effect on the encoding and use of new technical
information by novices”, and that “allowing the novices ‘to see works’ allows them to encode
information in a more coherent and useful way”. Some of the experiments referred in [22]
suggest that quality of learning is better when concrete models were used. For example, the
students that were taught substraction algorithm with bundles of sticks succeeded better to
apply the algorithm to more complicated tasks, than the students who were taught without
concrete objects (experiment made by Brownell and Moser 1949, [22]). In addition to potential
improvement of the quality of learning visualizations may make learning more appealing. In
his dissertation on the attraction of computer games [21] Malone discovered that close coupling
of a physical metaphor and the game structure is an important factor.

These general aspects can be used to defend graphical representations of programs, but
what kind of evidence do we have? Are there any empirical studies concerning potential
benefits of pictures and diagrams if used to illustrate specifically programs? There exists quite
a lot of experiments which compare advantages and disadvantages arising when representing
static programs either textually or graphically. The graphical representations illustrate
program’s structure and usually they are different forms of flowcharts. Some experiments
do also test the effects of representing program’s data structures with static pictures, but
there are almost no tests on possible advantages gained from dynamic visualizations.

8 Aulikki Hyrskykari

3.1 Graphical representation of the structure of a program

A well-known experiment investigating the utility of flowcharts [33] did not find evidence on
the advantage of flowchart representations over program listings. The test was conducted
by Shneiderman, Mayer, McKay and Heller, and they considered flowcharts useless as being
only an alternative representation of the syntax of a program. They carried out five separate
experiments. The number of the subjects in experiments varied from 43 to 70. They were
divided into separate groups, that were provided with materials containing Fortran or/and
flowchart presentations of small programs (from 24 to 147 lines). In order to assess the
influence of the flowcharts each subject was asked to fill a questionnaire or assigned tasks
that were designed to reveal the ability to either design, understand, debug or modify a
program. None of the tests indicated statistically significant differences between the groups.
Even though the experiments tested only the use of detailed flowcharts these results have
been referred in textbooks on documentation and development of programs in order to judge
the flowcharts complitely useless. As Scanlan points out [30] it should always be remembered
that missing to find significant difference between things does not entitle to conclude that the
difference does not exist. The results should only be considered inconclusive. One essential
factor whose influence was ignored in the Shneiderman et al. experiment, was the use of time
needed for the test. The subjects were given either all time they needed or equal amounts
of time. Still, most of the potentially beneficial picture attributes are in connection with the
increased human transfer rate of information, which suggests in these experiments the needed
time should be measured. When using time as a measure we must remember to exclude the
irrelevcant behaviour [6].

There are also some other empirical studies that support the above mentioned results that
do not favour graphical representation of a program structure. Sheppard, Kruesi and Curtis
[31] compared comprehension of several different forms of program descriptions including a
program design language, flowcharts with different spatial arrangements and natural language.
Ramsey, Atwood and Doren [28] tested the effects of the use of flowcharts during program’s
design phase on the quality of a program. Two groups of students were to design a two-pass
assembler. The first group used a program design language (PDL), pseudocode, for the design
of the first pass and flowcharts for the design of the second pass. The other group used the
design methods other way round (the first pass with flowcharts and the second with PDL).
The researhers judged the programs that were designed using PDL to be of better quality than
the programs that were designed with the aid of flowcharts. Besides the admittedly subjective
criteria used for assessing the quality of the designs, the reliability of the results suffer also
from the inexplicable differences between the two groups. Quality differences between the
PDL and flowchart designs were found only in the first group. The conclusions were drawn
from that difference. The groups were reported to have a clear skill differencies for the benefit
of the second group, which may have had some effects on the results as well. When the
comprehension of a program was tested, no significant differences were found between the
two forms of representations. The time given for the 20 subjects in comprehension test to
study the program was 45 minutes for everyone.

Development of Program Visualization Systems 9

However, there are several experiments that support the utility of flowcharts in
programming [5, 10, 19, 30, 37]. Wright and Reid [37] studied flowchart as an aid to
decision-making. They found out that flowcharts outperform textual representation when
the complexity of the algorithm got high enough. With simple algorithms they did not find
differences between comprehension of graphical and textual representations. Kamman [19]
compared prose instructions and flowcharts for guiding telephone dialing. Speed and accuracy
were increased when flowcharts were used. Brooke and Duncan [5] found the flowcharts more
useful for tracing and debugging a program compared to using only listing of the program. The
experiments conducted by Cunniff and Taylor [10] support the claim that time is an important
factor when the usefulness of graphical and textual representation is compared. Cunniff and
Taylor used a graphically formed FPL-language to test their hypothesis that comprehension
of programs coded graphically would be faster and more accurate than comprehension of the
same programs represented in a traditional textual language. FPL-language is functionally
and instructionally a Pascal-like language, but its syntax is represented with graphical
symbols and spatial arrangements. In the experiment 23 subjects were presented eight
program segments in random order. The segments were presented both in Pascal and in
FPL, i.e. there were sixteen program segments altogether. After each program segment the
subjects were posed three questions, one about the structure of the segment, one testing
comprehension of the control flow and one requiring evaluation of the value of a variable.
The results strongly supported the hypothesis of the comprehension times. They indicated
that graphically represented FPL program segments were comprehended more rapidly than
their textually represented Pascal counterparts. Support for the other part of the hypothesis
concerning accuracy also existed, but it was not so clear. An interesting hypothesis, that
high visual aptitude of a subject would speed up comprehension of graphically represented
segments was also tested. A moderate inverse correlation between visual aptitude and FPL
reaction time was indeed found, but inverse correlation also existed between visual aptitude
and Pascal reactions time, so the hypothesis was not confirmed. The findings suggested that
comprehension of graphical representations was faster regardless of subject’s visual aptitude.

Scanlan [30] carried out experiments comparing the use of structured flowcharts and
pseudocode in understanding algorithms. He tried to avoid the flaws of the criticized
Shneiderman et al. experiment [33]. The 83 subjects were provided with flowchart and
pseudocod versions of three algorithms of different levels of complexity. The experiment
showed that subjects made significantly fewer errors, had significantly more confidence, spent
significantly less time answering questions and looked at the algorithms significantly fewer
times when viewing structured flowcharts. The experiment also supported the finding of
Wright and Reid [37] that the more complex the algorithm the more beneficial structured
flowcharts are. Scanlan’s test programs contained deep hierarchies of conditional statements,
structures that we consider to be favourably disposed towards flowcharts. Despite of that
we are still inclined to believe that graphical representation does in many cases have positive
effects on the comprehension time.

After all these experiments reveal only little scientific information of the characteristics that
may affect the usefulness of visualizations. In order to achieve more applicable result Curtis
et al. [11] analyzed the properties of different software documentation formats that might

10 Aulikki Hyrskykari

have impact on the programmers’ ability to adopt information. They recognized two primary
dimensions for characterizing program documents: symbology and spatial arragement. The
three types of symbology they found are natural language, constraint language and ideograms
and the three types of spatial arrangement are sequential, branching and hierarchical
arrangements. In the extensive and most carefully executed series of experiments Curtis et al.
tested effectiveness of nine different documentation formats, one from each of these categories.
The effecs of different formats were tested in four tasks that comprise a programmer’s job:
comprehension, composition, debugging, and modification of a program. The primary variable
used to measure effectiveness in these tests was the response time. The most clear but also
quite plausible result was that natural language was less effective form of symbology than
the other two in every task. Clear difference between constraint languages and ideograms
could not be found, but the perceivable tendency seemed rather favour constraint languages.
However in the tasks where the control flow issues were important, the flowchart-like formats
using branching arrangements appeared to be significantly better than other arrangements.

Even though the above described experiments on graphical representation of programs
result into partially contradictory conclusions, it is important to gather empirical information
to support the design decisions. However, the results should always be applied to the object
context, unsubtle use of results should be avoided. If we want to get more generalized results
the experiments should get more analytical in the direction pointed out by Curtis et al[11].

3.2 Graphical representation of the data structures of a program

Interesting experiments from the program visualization point of view are the Shneiderman’s
experiments on the effects of illustrated data structures on program comprehension [32]. He
compared how the subjects succeeded in understanding, debugging and editing of a program
if they only got a listing of a program or if they also were provided with either program’s
pseudocode presentation or graphical presentations of program’s important data structures.
The comprehension was tested with 15 questions. There were 51 subjects in the experiment.
The program listing only’ -group had the least right answers: their mean of correct answers
was 5,06. The second group that was provided with listing and pseudocode scored 6,06: the
difference to the first group was not significant. The third group that was provided with
listing and data structure illustrations scored 8,47, that was significantly better result than
those of the other two groups.

This experiment gives us permission to assume that the benefit was gained either from the
graphical representation of data structures or maybe not from the graphical representation
but generally from the description of data structures. In order to find out which was the
case Shneiderman organized another experiment, in which 32 subjects were divided into four
groups. All subjects got the listing of a program. The subjects from groups one and two got
also descriptions of the program’s structure, group one textually and group two graphically.
The subjects from groups three and four got descriptions of the program’s data structures,
group three textually and group four graphically. Fifteen questions were asked in order to

Development of Program Visualization Systems 11

mean scores
(and standard deviations)

of correct answers
Format

Content Textual Graphical
Data Structures 7.75 8.37

(4.49) (4.40)
Control Flow 4.50 3.87

(3.50) (4.05)

Figure 4: Mean scores of correct answers out of 14 questions in four groups. Each group was
provided with a program listing and one of the following supplements: a textual description
of the program’s data structures, diagram of the program’s data structures, pseudocode of the
program or flowchart of the program [32].

test the subjects’ capabilities for understanding, debugging and editing the program. As
in his earlier experiments [33] Shneiderman ignored the time spent, and as before he did
not find graphical representations beneficial (see Figure 4). However, data visualization is
one part of program visualization, especially important in visualizations that are referred
algorithm animation. That’s why it is interesting that the differences between the groups
using descriptions of a program’s structure compared to the groups using descriptions of the
data structures were strongly significant.

3.3 Dynamic visualization of a program

Since the early eighties dynamic visualizations have been used in teaching programming,
data structures and algorithms. To give some examples, the Baecker’s film [3] is still used
some places in teaching sorting algorithms, in mid-eighties BALSA was systematically used
in teaching algorithms [8] and the Amethyst visualization tool [23] that has been integrated
to the MacGNOME programming environment [9] is being used in teaching programming
in many universities and colleges in the United States. However, evaluations of the gained
benefits have this far been mostly mere anecdotal observations.

The use of MacGNOME in teaching programming is assessed by Goldenson and Wang
[14], but the evaluation contains just a short part that specifically evaluates the use of the
visualization tool. They noticed that the usage of visualization tool depends in a great
extend on the teacher’s way to use it during lessons. That seems to be quite obvious.
Outside the evaluation itself the teachers gave positive comments about experiences in using
visualizations [14]:

“. . . some teachers have used the multiple program views and/or data visualizations heavily
in their class demonstrations and/or assignments, and report that their students often rely

12 Aulikki Hyrskykari

heavily on these tools as well.”

One of the first reported attempts for an empirical experiment on benefits of real-time
dynamic visualizations is the work of Badre et al. [1]. Eleven subjects participated the
experiment and only three questions were made to test understanding of a Shellsort algorithm.
The subjects were introduced with the algorithm either on a traditional lecture or they were
given an animation of the algorithm. The results were inconclusive, which is not surprising
considering the conciseness of the experiment.

To our knowledge the first serious attempt to empirically assess the possible advantages of
algorithm animation is the experiment conducted by Stasko, Badre and Lewis in the Georgia
Institute of Technology [35]. In this experiment there were 20 subjects, who were taught
an implementation of the pairing heap algorithm [36]. They were divided into two groups,
no one did not know the algorithm before. The first group received a textual description
of the pairing heap algorithm, and the other received the same description supplemented
with an opportunity to interact with an animation of the algorithm. After using 45 minutes
for inspecting the material (and interacting with the animation) the subjects were asked
24 questions, which tested how they learned the algorithm. According to their nature the
questions were grouped into six major sections. The hypothesis tested was that the benefit of
the animation group would become more clear with questions requiring procedural knowledge,
like how certain operations would affect to the data structure, than with the questions testing
more declarative or factual understanding. Nor evidence for this hypothesis or any other
expectations in favour of the animation group could be found. Even though the animation
group succeeded better (see Figure 5) the differences were not statistically significant.

There are couple of points that diminish the value of the experiment. After analyzing the
test material the researchers themselves found out that the information needed to complete the
test was not easily procuceable from the given material. Another open question is the previous
experience of the subjects. Were they familiar with using animations and the animation
system? If not, the use of an animation not only demanded an additional effort from the
subjects but they also did not have ability to benefit from the animation. Moreover the way
of using an animation in the experiment is not recommendable. Usually animations are not
used alone but sychronous with verbal instruction.

4 Concluding remarks

The results of the reviewed empirical experiments vary a lot, many of them are even
contradictory. That arises from the fact that this kind of empirical experiments are very
sensitive. The equality of test groups and test materials is very hard to obtain. It may
become unbalanced with small changes in any of the three participants of the experiment: in
object material used in the experiment, in characteristics of subjects used in the experiment
or in the organization of the experiment.

Development of Program Visualization Systems 13

Mean scores of correct answers
and the time used for answering

Mean values
Content Score Time
Text-only 11.2 41.0
Text + Animation 13.6 37.6

Figure 5: Mean scores of correct answers out of 24 questions in two groups and of the
times the subjects used answering the given questions. The first group was provided with
written description of the pairing heap -algorithm, and the other group was given additionally
possibility to interact with an animation of the algorithm. All subjects had 45 minutes to
spend investigating the given material [35].

A substantial share of the variations in the results derive from the nature of the visualized
object. For example, if the program we choose for visualization contains deep hierarchies
of conditional statements, we probably are able to create a clearer visual than a textual
presentation of the program. On the other hand we certainly are able to find structures that
are more easily and precisely presented with text than with graphics. From practical reasons
students are often used as subjects in experiments studying programmer behaviour and it is
often heavily critized [6, 11]. When assessing the effectiveness of learning this is not a problem.
In spite of this relief there are many problems with choosing the subjects. Subjects’ ability to
utilize different presentations depends heavily on the prior education and experience. Usually
the subjects have learned their original programming skills with a text based language and
the effects of that can not be wiped out. Also the individual differencies are a problem in
these experiments, because they easily obscure validation of the tested hypothesis. Brooks
[6] notifies that the found ability differencies of subjects may imply a need for hundreds of
subjects in order to obtain significant results. The experiment arrangements are usually very
laborous even with small test groups, so this demand is often immpossible to fullfill. One
possible solution to this problem is the use of within-subject experimental designs [11].

Most of the experiments reviewed above that did consider time as an evaluation criteria
found graphical presentations better. However, Green, Petre and Bellamy [16] made also in
that case an contradictory observation when they compared micro-structure comprehension
of a visual dataflow language and of a text-based language. Obviously the usability of
graphical representations of programs can not generally be certificated. As the matter of
fact, graphical presentations as such are not valuable, but we should talk about the quality
of the presentation. A poor animation of an algorithm is not beneficial; on the contrary, it
may obscure understanding of the algorithm. On the other hand, with animations we can
emphasize essential characteristics and thus undoubtedly create animations that significantly
help in understanding the algorithm.

In any case, we think that merely the positive attitudes of students entitle the use of
visualizations in teaching. A comprehensive (554 students in 42 classes) questioning executed
by Scanlan [30] strongly supports the frequent informal observations of the favourable

14 Aulikki Hyrskykari

reception of program visualizations and animations. Even after the fascination of a new
method has vanished animations give variety to lessons. If we consider the quality of
learning the experiments suggest that concrete models help in meaningful learning, but on
the other hand animations may lead to the possibility of too easy learning by imitation [?].
This is one of the qualitative things that should be remembered when a visualization, or
animation is designed. Visualization systems are tools for designing visualizations. To give
the system designers better knowledge of the desired potentials of systems they should be
given information what kind of visualizations are useful. This leads us to a conclusion that
we should change the question ”are graphical representations beneficial?” to the question
”what kind of graphical representations are beneficial?”.

Acknowledgements

I wish to thank Kari-Jouko Räihä, Erkki Mäkinen and Pentti Hietala who provided valuable
comments on a draft of this paper.

References

[1] Badre Albert, Beranekm Margaret, Morgan Morris J. & Stasko John T.: ’Assessing
program visualization systems as instructional aids’. Lecture Notes in Computer Science,
602,Tomek I. (ed.), Springer, 1992, 87-99.

[2] Baecker Ronald M.: ’Experiments in on-line graphical debugging: The interrogation of
complex data structures’ (summary only). Proceedings of the First Hawaii International
Conference on the System Sciences. 1968, 128-129.

[3] Baecker Ronald M.: ’Sorting out sorting’. 16 mm color, sound film, 25 minutes, presented
at ACM SIGGRAPH ’81, commercially available from Morgan Kaufman.

[4] Bransford John D.: Human Cognition: Learning, Understanding and Remembering.
Wadsworth, 1979.

[5] Brooke J. B. & Duncan K. D.: ’Experimental studies of flowchart use at different stages
of program debugging’. Ergonomics. 23(11), 1980, 1057-1091.

[6] Brooks Ruven E.: ’Studying programmer behaviour experimentally: the problem of
proper methodology’. Communications of ACM. 23(4), 1980, 207-211.

[7] Brown Marc H.: ’Algorithm Animation’. Ph.D. Dissertation, Brown University,
Department of Computer Science, Providence, RI, 1987, published also by MIT Press,
1988.

[8] Brown Marc H. & Sedgewick Robert: ’A system for algorithm animation’. Computer
Graphics. 18(7), 1984, 177-186.

[9] Chandhok et.al.: ’Programming environments based on structure editing: The Gnome
approach’.Proceedings of the National Computer Conference 1985. AFIPS.

Development of Program Visualization Systems 15

[10] Cunniff Nancy & Robert Taylor: ’Graphical vs. Textual Representation: An empirical
study of novices’ program comprehension’. Empirical Studies of Pprogrammers: Second
Workshop. Ablex, 1987, 114-131.

[11] Curtis Bill, Sheppard Sylvia B., Kruesi-Bailey Elisabeth, BaileyJohn & Boehm-Davis
Deborah A.: ’Experimental evaluation of software documentaion formats’. The Journal
of Systems and Software. 9, 1989, 167-207.

[12] Dijkstra Edsger W.: ’On the cruelty of really teaching computing science’. Communica-
tions of ACM. 32(12), 1989, 1398-1404.

[13] Gilmore D. J. & Smith H. T.: ’An investigation of the utility of flowcharts during
computer program debugging’. International Journal of Man-Machine Studies. 20, 1984,
357-372.

[14] Goldenson Dennis R. & Wang Bing Jyun: ’Use of structure editing tools by novice
programmers’. Empirical Studies of Programmers: Fourth Workshop. Ablex, 1991, 99-
120.

[15] Goldstein H. H. & von Neumann J. : ’Planning and coding problems for an electronic
computing instrument’. 1947, Reprinted in von Neumann, J., Collected Works. A.H.
Traub (ed.), McMillian, 80-151.

[16] Green T.R, Petre M. & Bellamy R.K.E.: ’Comprehensibility of visual and textual
programs: a test of superlativism against the match-mismatch conjecture’. Empirical
Studies of Programmers: Fourth Workshop. Ablex, 1991, 121-146.

[17] Haibt L. M. : ’A program to draw multi-level flow charts’. Proceedings of the Western
Joint Computer Conference. San Francisco, CA, 1959, 131-137.

[18] Hopgood F. R. A.: ’Computer animation used as a tool in teaching computer science’.
Proceedings of the 1974 IFIP Conference. North-Holland, 889-892.

[19] Kammann J.: ’The comprehensibility of printed instructions and the flowchart
alternative’. Human Factors. 17(2), 1975, 183-191.

[20] Knowlton K. C. : ’L6: Bell Telephone Laboratories low-level linked list languages’. Black
and white sound films, Bell Laboratories, Murray Hill, 1966, NJ.

[21] Malone T. W.: What makes things fun to learn? A study of intrinsically motivating
computer games. Ph.D Thesis, Department of Psychology, Standford University (Xerox
PARC), Palo Alto, CA,1980.

[22] Mayer Richard E.: ’The psychology how novices learn computer programming’.
Computing Surveys. 13 (1), 1981, 127-141.

[23] Myers Brad. A., ’Chandhok R. & Sareen A.: Automatic data visualization for novice
Pascal programmers’. Proceedings of the 1988 IEEE Workshop on Visual Languages.
1988, 192-198.

[24] Myers Brad. A.: ’Visual programming, programming by example and program
visualization: a taxonomy’. Proceedings of the SIGCHI’86. 1986, 59-66.

[25] Myers Brad. A.: ’Taxonomies of visual programming and program visualization’. Journal
of Visual Languages and Computing. 1(1), 1990, 97-123.

16 Aulikki Hyrskykari

[26] Price Blaine A., Baecker Ronald M. & Small Ian S.: ’A taxonomy of software
visualization’. Proceedings of the 25th International Conference on System Sciences. Vol
II, 1992, 597-606.

[27] Price Blaine A., Baecker Ronald M. & Small Ian S.: ’A principled taxonomy of software
visualization’. Journal of Visual Languages. 4(3), 1993, 211-266.

[28] Ramsey H. Rudy, Atwood Michael E. & van Doren James R: ’Flowcharts versus program
design languages: an experimental comparision’. Communications of ACM. 26(6), 1983,
445-449.

[29] Roman Gruia-Gatalin & Cox Kenneth C.: ’Program visualization: the art of mapping
programs to pictures’. Proceedings of the 14th International Conference on Software
Engineering. 1992, 412-419.

[30] Scanlan David A : ’Structured flowcharts outperform pseudocode: an experimental
comparision’. IEEE Software. 6(5), 1989, 28-36.

[31] Sheppard Sylvia, Kruesi Elisabeth & Curtis Bill: ’The effect of symbology and spatial
arrangement on the comprehension of software specifications’. Proceedings of the 5th
International Conference on Software Engineering. 1981, 207-214.

[32] Shneiderman Ben: ’Control flow and data structure documentation: two experiments’.
Communications of ACM. 25(1), 1982, 55-63.

[33] Shneiderman Ben, Mayer Richard, McKay Don & Heller Peter : ’Experimental
investigations of the utility of detailed flowcharts in programming’. Communications
of ACM. 20(5), 1977, 373-381.

[34] Stasko John T. & Patterson Charles:’Understanding and characterizing sotware
visualization systems’. Proceedings of the 1992 IEEE Workshop on Visual Languages.
1992, 3-10.

[35] Stasko John, Badre Albert & Lewis Clayton: ’Do algorithm animations assist learning?
An empirical study and analysis’. Proceedings of INTERCHI’93. 61-66.

[36] Stasko John T. & Vitter Jeffrey Scott: ’Pairing heaps: Experiments and analysis’.
Communications of ACM. 30(3), 1987, 234-249.

[37] Wright P. & Reid F.: ’Written information: some alternatives to prose for expressing
the outcomes of complex contingencies’. Journal on Applied Psychology. 57(2), 1973,
160-166.

Development of Program Visualization Systems 17

Appendix A. Reference list for Program Visualization

systems

ALADDIN

• Hyrskykari Aulikki & Räihä Kari-Jouko: ’Animation of algorithms without program-
ming’. Proceedings of the 1987 IEEE Workshop on Visual Languages. 40-45.

• Helttula Esa, Hyrskykari Aulikki & Räihä Kari-Jouko: ’Graphical specification
of algorithm animations with ALADDIN’. Proceedings of the 22nd Annual Hawaii
International Conference on System Science. 1989, 892-900.

• Helttula Esa, Hyrskykari Aulikki & Räihä Kari-Jouko: ’Principles of ALADDIN and
other animation systems’. Visual Languages and Applications. T. Ichikawa et.al. (eds.),
Plenum Press, 1990, 175-187.

Amethyst

• Myers Brad. A., Chandhok R. & Sareen A.: ’Automatic data visualization for novice
Pascal programmers’. Proceedings of the 1988 IEEE Workshop on Visual Languages.
192-198.

Anim

• Bentley Jon L. & Kernighan Brian W: ’A system for algorithm animation’. Computing
Systems. 4(1), 1991, 5-30.

• Bentley Jon L. & Kernighan Brian W.: Anim. Available by anonymous ftp from
research.att.com in /netlib/research, AT&T Bell Laboratories.

Animus

• London Ralph L. & Duisberg Robert A.: ’Animating programs in Smalltalk’. IEEE
Computer. 18(8), 1985, 61-71.

• Duisberg Robert A.: ’Animated graphical interfaces’. Proceedings of the SIGCHI’86.
131-136.

• Duisberg Robert A.: ’Visual Programming of Program Visualizations’. Proceedings of
the 1987 IEEE Workshop on Visual Languages. 55-66.

18 Aulikki Hyrskykari

BALSA

• Brown Marc H. & Sedgewick Robert: ’A system for algorithm animation’. Computer
Graphics. 18(7), 1984, 177-186.

• Brown Marc H.: ’Algorithm Animation’. Ph.D. Dissertation, Brown University,
Department of Computer Science, Providence, RI, 1987, published also by MIT Press,
1988.

• Brown Marc H.: ’Exploring algorithms using BALSA-II’. IEEE Computer. 21(5), 1988,
14-36.

Field

• Reiss Steven P.: ’Interacting with the Field environment’. Software - Practice and
Experience. 20(S1), 1990, 89-115.

• Reiss Steven P.:’Connecting tools using message passing in the FIELD environment’.
IEEE Software. 7(4), 1990, 57-67.

LogoMotion

• Buchanan John W.: LogoMotion: a visually enhanced programming environment. M.Sc.
Thesis, Department of Computer Science, University of Toronto, Canada, 1988.

• Backer Ronald M. & Buchanan John W.: ’A visually enhanced and animated
programming environment’. Proceedings of the 23rd Annual Hawaii International
Conference on System Science. 1990, 531-540.

LogoMedia

• DiGiano C. J.: Visualizing program behavior using non-speech audio. M.Sc. Thesis,
Department of Computer Science, University of Toronto, Canada, 1992.

• DiGiano C. J.: LogoMedia. Available by anonymous ftp from hcrl.open.ac.uk in
/pub/software/logomedia, Department of Computer Science, University of Toronto,
1992.

Movie and Stills

• Bentley J. L. & Kernighan Brian W.: ’A system for algorithm animation; Tutorial and
user manual’. AT&T Bell Laboratories Computing Science Tech.Rep. No 132, 1987,
Murray Hill, NJ.

Development of Program Visualization Systems 19

Object-Oriented Diagramming

• Cunningham W. & Beck K.: ’A diagram for object-oriented programs’. ACM SIGPLAN
Notices. 21(11), 1986, 361-367.

PASTIS

• Müller Heinrich, Winkler Jorg, Grzybek Stefan, Otte Matthias, Stoll Bertram, Equoy
Frederic & Higelin Nicolas: ’The Program animation system PASTIS’. The Journal of
Visualization and Computer Animation. 2(1), 1991, 26-33.

ParVis

• Linden L.B.: ’Parallel program visualization using ParVis’. inPerformance Instrumen-
tation and Visualization. M. Simmons & R. Koskela (eds.), ACM Press, 1990, pp.
157-188.

Pavane

• Roman Gruia-Catalin, Cox Kenneth C., Wilcox C. Donald & Plun Jerome Y.: ’Pavane:
A system for declarative visualizations of concurrent programs’. Journal of Visual
Languages and Computing. 3(2), 1992, 161-193.

PECAN

• Reiss Steven P.: ’PECAN: program development systems that support multiple views’.
IEEE Transactions on Software Engineering. 11(3), 276-285.

PegaSys

• Moriconi Mark & Hare Dwight F.: ’PegaSys: A system for graphical explanation of
program designs’. Proceedings of the ACM SIGPLAN’85 Symposium on language issues
in programming. 148-160.

• Mark Moriconi & Dwight F. Hare: ’Visualizing program designs through PegaSys’. IEEE
Computer. 18 (8), 1985, 72-85.

20 Aulikki Hyrskykari

PIGS

• Pong M.C. and Ng N.: ’PIGS - A system for programming with interactive graphical
support’. Software - Practice and Experience. 13(5),1983, 847-855.

PROVIDE

• T. G. Moher: ’PROVIDE: A Process Visualization and Debugging Environment’. IEEE
Transactions on Software Engineering. 14(6), 1988, 849-857.

PV

• Christopher Herot Christopher F., Brown Gretchen P., Carling Richard T., Friedell
Mark, Kramlich David & Baecker Ronald: ’An integrated environment for program
visualization’. Automated Tools for Information Systems Design. Schneider &
Wasserman (eds.), North-Holland, 1982, 237-259.

• Kramlich David, Brown Gretchen P., Carling Richard T. & Herot Christopher F.:
’Program visualization: graphics support for software development’. Proceedings of the
ACM/IEEE 20th Design Automation Conference 1983, 143-149.

• Brown Gretchen. P., Carling Richard.T., Herot Christopher F., Kramlich David. A. and
Souza Paul:’Program visualization: Graphical support for software development’. IEEE
Computer. 18(8), 1985, 27-35.

PVS

• Foley J. D. & McMath C. F.: ’Dynamic program visualization’. IEEE Computer
Graphics and Applications. 6(2), 1986, 16-25.

SEE Program Visualizer

• Baecker Ronald & Marcus Aaron: ’Design principles for the enhanced presentation of
computer program source text’. Proceedings of the SIGCHI’86. 51-58.

• Baecker Ronald & Marcus Aaron: Human Factors and Typography for More Readable
Programs. Addison Wesley, 1990.

Software Oscilloscope, Software through Pictures

• Wasserman Anthony I. & Pircher Perer A.: ’A graphical, extensible integrated
environment for software development’. SIGPLAN Notices. 22(1), 1987, 131-142.

Development of Program Visualization Systems 21

TANGO

• John T. Stasko: Tango: a framework and system for algorithm animation. Ph.D.
Dissertation, Brown University, Department of Computer Science, Providence, RI, 1989.

• John T. Stasko: Tango: ’A framework and system for algorithm animation’. IEEE
Computer. 23(9), 1990, 27-38.

• John T. Stasko: ’Using direct manipulation to build algorithm animations by
demonstration’. Proceedings of the SIGCHI’91. 307-314.

TPM

• Eisenstadt Mark & Brayshaw Mike: ’The transparent Prolog machine: an execution
model and graphical debugger for logic programming,. Journal of Logic Programming.
5(4), 1988, 277-342.

• Kwakkel Fred: ’TPM for Macintosh’, version 1.1, Human Cognition Research
Laboratory, UK, 1991.

UWPI

• Henry Robert R., Whaley Kenneth M. & Forstall Bruce: ’The University of
Washington illustrating compiler’. Proceedings of the ACM SIGPLAN’90 Conference
on Programming Language Design and Implementation. 223-233.

VIPS

• Isoda Sadahiro, Shimomura Takao & Ono Yuji: ’VIPS: A Visual Debugger’. IEEE
Software. 4(5), 1987, 8-19.

Zeus

• Brown Marc H.: ’Zeus: A System for Algorithm Animation and Multi-View Editing’.
Proceedings of the 1991 IEEE Workshop on Visual Languages. 4-9.

