LINEAR TIME ALGORITHMSFOR
LAYOUT OF GENERALIZED
TREES

Ari Juutistenaho

DEPARTMENT OF COMPUTER
SCIENCE
UNIVERSITY OF TAMPERE

REPORT A-1994-6

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A
A-1994-6, MARCH 1994

LINEARTIME ALGORITHMSFOR LAYOUT OF
GENERALIZED TREES

Ari Juutistenaho

University of Tampere
Department of Computer Science
P.O. Box 607

FIN-33101 Tampere, Finland

ISBN 951-44-3528-1
ISSN 0783-6910

Linear Time Algorithms for
Layout of Generalized Trees

ARI JUUTISTENAHO
Department of Computer Science, University of Tampere
email: ari@cs.uta.fi

ABSTRACT

Many layout problems involve n-ary trees with variable-sized vertices. This paper includes linear
time algorithms for the layout of such trees. Two algorithms are presented: the first one creates a
layout in a simple way, and the second one makes it narrower.

1. Introduction

In practice we often have to lay out trees that contain variable-sized vertices and
have arbitrary arity. In many situations the shape of the tree varies dynamically,
which requires that algorithms must be fast and efficient.

First we consider different ways to draw a tree, called conventions, to see what
kind of result we are looking for. This paper presents a tree drawing algorithm,
which is a simplified version of the algorithm of Eades et al. [ELL]. The algorithm
constructs a layout of a generalized tree in linear time, but the layout is not as
narrow as possible.

Bloesch [Bl] represents an algorithm that creates tree drawings that occupy as little
width as possible, but his algorithm is not linear. Finally we consider a linear

time algorithm that is based on Bloesch's algorithm and that takes as input the
layout we got with the former algorithm and makes it narrower.

2. Conventions
Eades et al. [ELL] consider three tree drawing conventions: classical convention,
tip-over convention and inclusion convention. In each convention the vertices

are represented as boxes (rectangles) that do not overlap.

In the classical convention the parent - child relationships are represented by
lines between the boxes, and the depth of a vertex is represented by its y coordi-

I:I
5 =
1 3 C3 O

Fiqure 1: Classical Convention
The tip-over convention differs from the classical one by arranging the children
of a vertex either vertically or horizontally. Each parent is still above its children.
This is demonstrated in Figure 2.

Figure 2: Tip-over Convention

In the inclusion convention the box of a child is inside the box of its parent, as in
Figure 3.

Figure 3: Inclusion Convention

The algorithm that draws a layout in the inclusion convention can be usable for
drawing the tip-over convention or the classical convention, too, as we can see in
Figures 2 and 3. This is possible if the algorithm fulfils certain conditions: the
children must be located either vertically or horizontally; and there must be
enough space for the parent, too.

3. New Drawing Algorithm

The algorithm we present here is based on the algorithm of Eades et al. [ELL].
Both algorithms handle vertices with different sizes, and the results can be used
to draw trees in the inclusion convention although the main goal is to follow the
tip-over convention. Eades's algorithm is for balanced binary trees and locates the
children either vertically or horizontally, but our algorithm draws a layout of any
kind of tree and locates the children horizontally.

As input the algorithm requires the minimum horizontal and vertical distances
between the boxes (dx and dy), and the name, the width, the height, and the
parent (except for the root) for each vertex to be considered.

Our method is divided into two parts: the first algorithm calculates the coordi-
nates of the boxes, and the second one draws the layout.

When we construct the layout of a tree, we need the following data for each ver-
tex (Example values concerning a sample tree in Figure 4 are given in parenthe-
ses).

w width of thebox (Id-r |, 1d2-72 1)

e height of the box (11-d |, [12-d2 1)

a width of the subtree (| c-a |, | ¢2-a2 1)

z height of the subtree (| z-a |, | z2-a2 |)

RelX the horizontal distance of the left-top corner of the subtree from the left-
top corner of the subtree of the parent (| c2- bl for the vertex B; RelX =0
for the vertex A)

RelY the vertical distance of the left-top corner of the subtree from the left-top
corner of the subtree of the parent (| c2-c |)

X1 the horizontal distance of the left-top corner of the box from the left-top
corner of the subtree (| c2-12 1, 1 c-11).

C I m a
Root € r
c?2 d
2 m2 a2 | b
A B
[
d2 e2
/-\ r2
M N
L
z2 2

Figure 4: Layout of a tree

When those values are calculated, we need the following fields, too:

g count of the children
h shows if the values are calculated, initialized 0
EL list of the edges to the children.

We get the values of w and e for each vertex as input. In Algorithm 1, the other
values are calculated (Appendix 1 contains a C version of the algorithm). When
we know the values a and z for each child, we can calculate them for the parent.
If the parent is narrower than the subtree (like the vertex A in Figure 4), the
parent must be centred; otherwise (like the vertex B in Figure 4) the children
must be located so that they are in the centre of the area. The vertices are in the
output according to their order in the input.

Algorithm 1. Calculating the coordinates of the boxes of the vertices.

Input: A list VL of vertices with g, h, El, w and e given.
Output: A list VL of vertices with a, z, RelX, RelY and XI updated.

CountTree(VL: vertex list):
Assign unseen ~ count of the vertices and v « first vertex of VL.
Repeat

If v is not handled then

CalcSubtree(v, Unseen).

Assign w — v and v — next vertex of the VL.
Until (Unseen = 0).
The vertex w is the root of the tree.

CalcSubtree(v: vertex; unseen: integer):
If v is a leaf then

Assign v-a « v-wand v-z « v-e.
Else
Assign Sx « -dx; Sy « dy + v-e;
Deepest — 0; R_most «~ 0; and L_most —~ INT_MAX.
Handle all the children:

Assign Sx « Sx + dx; child-RelX « Sx and child - RelY ~ Sy.
If child has not been handled then
CalcSubtree(u, unseen).
Assign Sx « Sx + child -a.
Update Deepest, L_most and R_most.

Assign v-z « Sy + maxy.
If (Sx >= V-w) then

Assign v-a « Sxand v-Xl « (R_most + L_most - v-w)/2.
Else

Assign v-a « v-ow.
Handle all the children:
Add (V-w -5x)/2 to child - RelX.

Assign unseen ~ unseen - 1 and mark the vertex handled.

Lemma 1. If T is a tree where u and w are children of v, then Algorithm 1 calcu-
lates in linear time, for all the vertices of T, coordinates with the following

properties:

1) The boxes of the vertices do not overlap.

2) The left-top corners of the boxes of # and w have the same y-coordinate
that is larger than the y-coordinate of the left-down corner of the box of v.

3) If the x-coordinate of the right-top corner of the box of u is smaller than the

x-coordinate of the left-top corner of the box of v, then the x-coordinate of
the right-top corner of the box of each vertex of the subtree u is smaller

than the x-coordinate of the left-top corner of the box of each vertex of the
subtree v.
Proof. The property 1 is true if the properties 2 and 3 are true. Because Sy is as-
signed only once, then u - RelY = w- RelY = Sy. Because u - RelY represents the
relative position of u to v, it is enough to prove that Sy > 0, which is obvious
since dy >0 and v-e > 0.

If u is handled before w, then w - RelX = u-RelX + dx + u-a. The property 3
follows from the fact that u —a represents the width of the subtree of u.

CountTree visits each vertex at most once. CalcSubtree(v) makes a constant
number of calculations for the vertex v and for each descendant of v. O

After Algorithm 1 has updated the fields of the vertices, we can easily draw the
layout of the tree, which is done by Algorithm 2 (Appendix 2 contains a C version
of the algorithm).

f

Figure 5: A sample drawing

We use here three drawing procedures: DrawBox, MoveTo, LineTo. We can
demonstrate with Figure 5 how to use those procedures. If [and t are the x- and
y-coordinates of the point a, and if w and h are the width and height of the box
abcd, then DrawBox(l, t, w, h) draws that box. The line ef can be drawn by the
procedure calls MoveTo(ex, ey), LineTo(fy, fy).

Algorithm 2. Drawing the layout of the tree.

Input: A list v of vertices updated by Algorithm 1.
Output: A layout of the tree v.

DrawTree(v: the root of the tree):
MoveTo(v-Xl + (v-w)/2,0).
DrawSubtree(v, 0, 0).
DrawSubtree(v: vertex; px, py: integer):
Assign x2 — px + v-RelX; px « px + v-RelX + v- Xl and
Py < py + v-RelY.
LineTo(px + (v-w)/2, py); DrawBox(px, py, v-w, v-e).
Handle all the children:
MoveTo(px + (v-w)/2, py + v-e).
DrawSubtree(child , x2, py).

Lemma 2. Algorithm 2 draws a layout in the tip-over convention in linear time.

Proof. DrawSubtree calculates the absolute coordinates of a vertex using its rela-
tive coordinates and the absolute coordinates of its parent. Because the procedure
draws the box according to the absolute coordinates, the box is located in the right
place. MoveTo begins the edge in the centre of the bottom of the parent, and
LineTo ends it in the centre of the top of the child. O

In Figure 6 we see a tree layout drawn by Algorithm 1 and Algorithm 2. Bloesch
presents two algorithms that create tree drawings that occupy as little width and
height as possible, but at the cost of O(nh) time, where the tree is h rasters high.
In the following section we present an algorithm that makes the layout of Algo-
rithm 1 narrower using only linear time.

Paul
Karl
@/\ James
Kevin
Adam Jake
/\ n UrSUla |
a Kate | .
Vivian
uliy

Oscar Iﬁ Clél B Jane

Figure 6 :Tree layout

4. Making the Layout Narrower

When we begin with Bloesch's first algorithm and make some changes to it, we
can construct Algorithm 3 (Appendix 3 contains a C version of the algorithm)
that uses the result of Algorithm 1 and comes to the same result as Bloesch's first
algorithm [BI, p. 821], but in linear time. The major disadvantage of Bloesch's
first algorithm is that it compares the vertices raster by raster. In what follows we
show that it is possible to use our knowledge of the sizes of the vertices. To be
able to use that knowledge, we must construct, for each subtree, a path of the
leftmost descendants and a path of the rightmost descendants.

Suppose that w is the first unhandled child of v and w is not the first child of v.
The first path (Ryp), called the right path of v, contains the rightmost handled ver-
tices of the subtree of v, and the second one (Ly), called the left path of v, con-
tains the leftmost vertices of the subtree of w. (Examples of paths are given in
Figure 7.) After having compared the paths, we know (mindist(Ry, L)), the

6

minimum distance between them. We can move the subtree of w to the left so
that the new minimum distance is dx, the earlier defined minimum distance
between the boxes. That can be done in the following way:

w-RelX = w-RelX - mindist(Ry, Lw) + dX

In the case of the first child, no movements of subtrees are done. Besides, in this
case there is no right path of the parent we could compare the left path of the
child with. We only update the paths of the parent. This happens e.g. in Figure 7
when we handle the vertices 4, ¢, f, ¢, and e.

Algorithm 3 is recursive. If the vertex has children, we study their paths in order
to create the paths of the parent. For that purpose, we must update the paths Ly
and Ry each time we handle a child of v. Notice that the paths can have vertices
of many subtrees, and Ly is not always the left path of the first child, nor is Ry
always the right path of the last child.

Define that the depth of the path is the absolute location of the bottom of the last
vertex of the path. There are four kinds of updating situations: the vertex is the
eldest child, the right path is deeper, the left path is deeper, or the paths are of
equal depth. Notice that depth(Ry) = depth(Ly) because Ry contains the right-
most vertices of subtree v, and Ly contains the leftmost ones of subtree v. The
paths have often the same last vertex.

If depth(Ry) = depth(Ly), then Ly does not change and Ry including v becomes
the new Rp. This is demonstrated in Figure 7 (Ry ={v,u,b,c}, Ly ={v,t,a },

Ly ={w,e, d}, Ry ={w,d}, and the new Ry = { v, w, d }). Only after this kind of
comparison, the paths Ly and Ry do not have the same last vertex.

B
a d

Figure 7: depth(Ry) = depth(Ly)

If depth(Ry) > depth(Ly), then Ly does not change and the new Ry contains Ry
and those vertices of Ry whose depths are greater than the depth of Ry. This is
demonstrated in Figure 8, where originally Ry ={ v, u, b, ¢, a }, and after updating
Ry={v,w,d, c a}l.

a

Figure 8: depth(Ry) > depth(Ly)

If depth(Ry) < depth(Ly), then Ry including v becomes the new Ry and the
new Ly contains the old Ly and those vertices of Ly whose depths are greater
than the depth of Ly. This is demonstrated in Figure 9, where originally Ly =
{v,t a}, and after updating Ly = {v, t,a, d }.

%
t| /u\

b W
afE'/\

d

Figure 9: depth(Ry) < depth(Ly)

It is possible to make the layout narrower in Figure 7 and Figure 8, but not in
Figure 9. The approach sometimes causes some problems: the boxes can tem-
porarily overlap, or be located outside the drawing area. Those problems are
demonstrated in Figure 10.

L w
T
| |
U | a
c

Figure 10: Temporary Overlapping

When the paths Lj and Ry are compared, the subtree d is moved to the left so
that the distance between vertices ¢ and d is minimal; but the vertices a and u are
overlapping until the paths Ly and Ry are compared. Because mindist(Ry, Lyp) is
negative, the subtree w is then moved to the right so that the distances are large
enough.

A more serious conflict occurs with the vertex c. When the paths Ly and Rt are
compared, a part of the box of vertex c is located outside the drawing area. There-
fore in the end of the algorithm, the items of the path Ly are compared to the left
border of the drawing area, and the whole tree must be moved to the right, if
necessary.

To keep the time complexity linear, we can go through the whole path only be-
fore we delete it. To avoid extra visits, we need certain pointers. For example,
when we add the vertex d to Ly in Figure 9, there must be a pointer to the last
item of Ly, which is updated to point to d. For the same reason, when we move a
subtree, we update only the location of the path item of the root. The movements
of the items of the paths will be updated when the items are compared.

Algorithm 3 needs the absolute coordinates of left-top corners of the vertices. Be-
cause each vertex is in a right path and in a left path, we need a different data
structure for a item of a path. Let "path" be a pointer to a record with the follow-
ing fields:

Next pointer to the next path

Vx pointer to the record of the vertex

downY Y-coordinate of the bottom

rightX X-coordinate of the right border

leftX X-coordinate of the left border

Moved shows how much the subtree of the vertex has been moved

Algorithm 3. Making the layout narrower using paths.

Input: A list v of vertices updated by Algorithm 1.
Output: A list v of vertices with locations updated.

NarrowTree(v: the root of the tree):

Assign RightPath — NewPath(v) and LeftPath — NewPath(v).

Point LastRight to RightPath and LastLeft to LeftPath.

Assign MaxDepth ~ v-z + dy.

NarrowSubtree(RightPath, LastRight, LeftPath, LastLeft, v, MaxDepth, 1).

Move v so much to the right that vertices are inside the area.
DelPath(RightPath, NIL); DelPath(LeftPath, NIL).

NarrowSubtree(RightPath, LastRight, LeftPath, LastLeft: Path; v: Vertex;
MaxDepth: Integer; Card: Integer):

Assign OwnRight — NewPath(v) and OwnLeft — NewPath(v).
Point OwnLastR to OwnRight and OwnLastL to OwnLeft.

Assign OwnDepth — OwnRight-downY.

If v is not a leaf then

Assign Count - 0.
Handle all the children of v:

Assign Count ~ Count + 1.
NarrowSubtree(OwnRight, OwnLastR, OwnLeft, OwnLastL,
child, OwnDepth, Count).
Move v to the middle of its children and get Moved.
Add Moved to v-a.
If (v-a <v-w) then

Assign v-a « vow.
Else
Add Moved to v-Xl, OwnRight-Moved, OwnLeft-Moved.
Subtract Moved from OwnRight-Next-Moved and
OwnlLeft - Next - Moved.

Assign OwnLeftFUd — OwnlLeft and FirstUndel ~ RightPath - Next.
If (Card > 1) then

Movement ~ ComparePaths(FirstUndel, OwnLeftFUd).
Add Movement to OwnRight-Moved, OwnLeft-Moved, v-RelX.

Assign FirstDel ~ RightPath-Next and RightPath-Next — OwnRight.

If (Card = 1) then
Update RightPath, LastRight, LeftPath, LastLeft and MaxDepth.
Elsif (OwnDepth = MaxDepth) then

Assign LastRight — OwnLastR.
Elsif (OwnDepth < MaxDepth) then
Subtract Movement from FirstUndel-Moved.

Assign OwnLastR-Next ~ FirstUndel.
Elsif (OwnDepth > MaxDepth) then

Assign MaxDepth — OwnDepth; LastLeft-Next — OwnLeftFUd;
LastRight — OwnLastR; LastLeft — OwnLastL.

DelPath(FirstDel, FirstUndel); DelPath(OwnLeft, OwnLeftFUd).

ComparePaths(Handled, Unhandled: path): integer:
Assign LeftSum, RightS ~ 0.

Assign MinDist — INT_MAX.
While (Handled <> NIL) and (Unhandled <> NIL) do

Assign LeftB — Handled - rightX + Handled - Moved + LeftSum.

Assign RightB «~ Unhandled - leftX + Unhandled - Moved + RightS.
If (Handled -~ downY < Unhandled -~ downY) then
Add LeftSum to Handled - Moved.

Assign LeftSum ~ Handled - Moved.
Assign Handled ~ Handled - Next.

10

Elsif (Handled - downY > Unhandled - downY) then
Add RightS to Unhandled -~ Moved.

Assign RightS — Unhandled -Moved.

Assign Unhandled ~ Unhandled - Next.
Else do both former if and former elsif.

MinDist — Min(MinDist, RightB - LeftB).

If (Handled <> NIL) then

Add LeftSum to Handled - Moved.
If (Unhandled <> NIL) then

Add RightS to Unhandled - Moved.
Return(-MinDist).

NewPath(v: vertex): p: path:
Reserve space for p.

Assign p-Vx « v;p-downY « v-CY + v-e +dy;
p-leftX « v-CX; p-rightX « v-CX +v-w +dx;

p-Moved ~ 0; p-~Next — NIL.
Return(p).

DelPath(FirstDel, FirstUndel: path):
While ((FirstDel <> FirstUndel) and (FirstDel <> NIL)) do

Assign Del ~ FirstDel.

Assign FirstDel FirstDel - Next.
Free the space of Del.

Lemma 3. Algorithm 3 works correctly. Its time complexity is linear.

Proof. In the procedure NarrowSubtree, the vertex is moved if its rightmost
child has been moved. Because the relative locations of the children to their
parent change, the children must be updated, too. The procedure ComparePaths
updates the location of a vertex before the comparison, goes through the paths
until either of them ends, and finds the minimum distance between them.
Finally, the last visited item is updated, too.

The procedure ComparePaths returns how much the vertex can be moved. If
OwnDepth < MaxDepth, then the result must be subtracted from the first old
item of the right path so that the following items could be correctly updated. In
the end of the procedure NarrowTree, the relative coordinates of the vertices are
correct, but the absolute coordinates are not updated. That can be done later in
linear time.

Each vertex is visited once when we create the paths. During that visit, we create
two items of path for each vertex. If n is the number of vertices, we show that the

total number of visits of the items on the paths is O(n).

Each item of the paths is handled once when it is created and once when it is
deleted. Each item is updated at most once when its children are handled, at most

11

once when its parent is recentred, and at most once when the paths have been
compared.

The procedure ComparePaths(Ry, Ly) handle the paths until either of them
ends. If those paths have k items, the number of comparisons < k. After the com-
parison, all the handled items of the paths are deleted, except one that can be
compared later, the item "FirstUndel" in Ry if depth(Ry) > depth(Ly), or the
item "OwnLeftFUd" in Ly if depth(Ry) < depth(Ly). So the items of paths are
usually visited once in comparison. For each child there can be one item that has
already been visited and will be able to be visited later. So there can be 3n com-
parisons for n vertices. O

If Algorithm 2 gets as input the results of Algorithm 3, it draws a layout that is of-
ten narrower than the layout drawn with the results of Algorithm 3. In Figure 11
we have a narrower layout for the tree shown in Figure 6. In the following sec-
tion we list some aesthetics and look how well our layouts meet those require-
ments.

Karl
James
Kevin
Adam Jake
y Ursula |
a Kate | .
¢ Vivian
b C

Oscar Ilg'l Iél B Jane

Figure 11: Narrower tree layout

5. Bloesch's criteria
Bloesch [BI] lists the following 7 aesthetics for a tree layout:
1. Sibling vertices should have their top edges aligned horizontally.

2. Sibling vertices should be drawn in the same left-to-right order as their
logical order.

3. Parent vertices should be centred over the centre of their leftmost and
rightmost children.

12

4. A tree and its logical mirror image should be drawn as reflections of each
other, and a subtree should be drawn in the same way no matter where it
appears in a tree.

5. No edge joining the centre of the bottom of a vertex with the centre of the
top of a child should cross any other such edge or vertex.

6. All vertices that share a raster should be separated horizontally by at least a
distance p > 0.

7. Each vertex should be separated vertically from its parent by exactly a dis-
tance g. If vertices are composed of lines of text on a bit-mapped display,
then g should be a multiple of the line height.

Bloesch's algorithm creates a layout that meets all requirements 1 - 7. Algorithm
1 and Algorithm 2 create layouts that meet all of those criteria except 3. The ver-
tex is centred over the centre of the left border of its leftmost child and the right
border of its rightmost child, which location is quite near to the centre of the
centre of its leftmost and the centre of its rightmost children.

This narrower layout meet the same Bloesch's criteria as the wider layout, except
4, since the narrower layout of a symmetrical tree is not always symmetrical.

References

[BI] A. Bloesch, Aesthetic layout of generalized trees, Software - Practice and
Experience, 23, 817 - 827 (1993).

[ELL] P. Eades, T. Lin and X. Lin, Two tree drawing conventions, International
Journal of Computational Geometry & Applications, Vol. 3, No. 2, 133 - 153
(1993).

APPENDIX 1: C CODE FOR ALGORITHM 1

/* These appedices differ in some situations
from the algorithms they are based on */

[* CalcSubtree calculates the demand of space for the subtree
and updates the count of the unhandled vertices.
It goes the vertices of the subtree in the depth-first order.

*

/

void CalcSubtree(V, Unseen)

struct vertex *V,

int *Unseen;

{
edgenode *Edge 1, /* pointer to the beginning */
*Edge_i; * of the list */
vertexnode *u;
int Sx, Sy, S, maxy = 0;
int leftest = INT_MAX, rightest = O;

13

if (V->g==0){ /*aleaf */

V->a = V->w;
V->z = V->e;
}else{
Edge_1 = Edge_i = V->EdgelList;
Sx = -dx; Sy = dy + V->¢;
do {
if ({(Edge_i->EndVertexChild)) { /* edge to */
Sx +=dx; [* child */
u = Edge_i->ToVertex;
u->RelX = Sx;
u->RelY = Sy;
if (u->h > -1)
CalcSubtree(u, Unseen);
SX += u->a;
maxy = (u->z > maxy) ? u->z : maxy
if (leftest > (u->RelX + u->Xl))
leftest = u->RelX + u->XI,
if (rightest < (u->RelX + u->XI + u->w))
rightest = u->RelX + u->Xl| + u->w;
} I* else edge to V's parent */
Edge_i = Edge_i->Next;
} while (Edge_i != Edge_1);
V->z = Sy + maxy;
if (Sx >=V->w) {
V->a = Sx;
V->XI = (rightest + leftest - V->w) / 2;
} else {
I* The width of the parent is larger than
the one of the children. */
I* So the children are located
in the middle of the area */
Edge_1 = V->Edgelist;
Edge_i = Edge_1;
do {
if (/(Edge_i->EndVertexChild)) { /* edge to
V's child */
S = (V->w - Sx)/2;
Edge_i->ToVertex->RelX +=S;
}
Edge_i = Edge_i->Next;
} while (Edge_i '= Edge_1);
V->a = V->w;
}
(*Unseen)--;
V->h--; /* mark the vertex handled */

MaxY = (V->z > MaxY) ? V->z : Maxy;
MaxX = (V->a > MaxX) ? V->a : MaxX;

/* CountTree calculates the layout according to Algorithm 1 */
boolean CountTree(VertexList)
vertexnode **VertexList;

vertexnode *V, *FirstV, *Root;
int *UnseenVs;

V = *VertexList;

*UnseenVs = VertexCount;

14

/* Because the order of the vertices is not known,
we must go through the whole tree.
If the vertex has been handled, V->h = -1.
Else the values of the whole subtree are calculated: */
do {
if (V->h > -1)
CalcSubtree(V, UnseenVs);
V = V->Next;
} while (*UnseenVs > 0);
/* The values of the root remain zeros */

VertexList = V->Prev; [Let the VertexList point */

V = V->Prev; [* to the root */

APPENDIX 2: C CODE FOR ALGORITHM 2

static void DrawSubtree(Root, px, py)
vertexnode *Root;

int px, py;

vertexnode *v;
edgenode “*e, *el;
int x2;

v = Root;

px += v->RelX;
py += v->RelY;
X2 = pX;

px += v->XI;

LineTo(px + (v->w)/2, py); /* edge from the parent */

DrawBox(px, py, V->W, v->e);

if (v->Name)

DrawTrName(px, py, v->e, v->Name);
if (Root->g > 0) {

e = el = v->EdgeList;

do {
if (!(e->EndVertexChild)) {
MoveTo(px + (v->w)/2, py + v->e);
[* edge to the child */
DrawSubtree(e->ToVertex, X2, py);
e = e->Next;
} while (e = el);

}

static void HandleTreeVertices(VertexList)
vertexnode *VertexList;

{
vertexnode *v;
v = VertexList;
MoveTo(v->CX + v->XI| +(v->w)/2, 0);
DrawSubtree(v, 0, 0);
}

15

APPENDIX 4: C CODE FOR ALGORITHM 3

[* Paths goes through the tree according to Algorithm 3 */
void Paths(tree)
vertexnode *tree;

{
pathnode *Ip, *rp, *Il, *Ir;
int MD;
Il =lp = NewPath(v);
Ir =rp = NewPath(v);
MD = tree->z + dy;
NarrowSubtree(rp, &lr, Ip, &ll, tree, &MD, 1);
[l = Ir = (pathnode *)NULL;
DeletePath(rp, Ir); DeletePath(Ip, Il);
}

/* NarrowSubtree makes the subtree narrower */
void NarrowSubtree(RightPath, LastRight, LeftPath, LastLeft,
v, MaxDepth, Card)

pathnode *RightPath, **LastRight; /* Right path of the par */
pathnode *LeftPath, **LastLeft; [* Left path of the parent */
vertexnode *v; /* the root of the subtree */

int *MaxDepth; /* old maximal depth */

int Card, [* = n for the n:th child */

{

pathnode *OwnRight, *OwnLeft, *OwnLastL, *OwnLastR;
pathnode *FirstDel, *FirstUndel, *OwnLeftFUd;

vertexnode *u; /* child */
edgenode *e;

int OwnDepth, Movement = 0, count = O;
int NewPlace, OldPlace, PlaceMoves;

pathnode *FirstChild, *LastChild;

/* Own paths are made */

OwnlLastL = OwnLeft = NewPath(v);
OwnLastR = OwnRight = NewPath(v);
OwnDepth = OwnRight->downY;

I* The subtrees of the children are handled: */
if (v->g > 0) {
e = v->EdgelList;
do {
if (e->EndVertexChild)
e = e->Next;
count++; u = e->ToVertex;
NarrowSubtree(OwnRight, &OwnLastR, OwnLeft,
&OwnLastL, u, &OwnDepth, count);
e = e->Next;
} while (count < v->g);
OldPlace = 2 *(OwnLeft->leftX + OwnLeft->Moved);
FirstChild = OwnLeft->Next;
LastChild = OwnRight->Next;
NewPlace = (FirstChild->leftX + FirstChild->Moved +
LastChild->rightX + LastChild->Moved -
dx - v->w);
PlaceMoves = (NewPlace - OldPlace)/2;
v->a += PlaceMoves;

16

if (v->a < v->w)
V->a = V->W;

else {
v->X| += PlaceMoves;
OwnRight->Moved += PlaceMoves;
OwnLeft->Moved += PlaceMoves;
OwnRight->Next->Moved -= PlaceMoves;
OwnLeft->Next->Moved -= PlaceMoves;

}

[* If not 1st child, the paths are compared */
if (Card > 1)
Movement = Compare(RightPath->Next, OwnLeft);
[*and the subtree is moved */
OwnRight->Moved += Movement;
OwnLeft->Moved += Movement;
v->RelX += Movement;

[* The paths are updated and unneeded items are deleted */
FirstDel = RightPath->Next;

RightPath->Next = OwnRight;

OwnLeftFUd = (pathnode *)NULL,;

FirstUndel = (pathnode *)NULL,;

if (Card == 1) {
*LastRight = OwnLastR,;
LeftPath->Next = OwnLeftFUd = OwnLeft;
*LastLeft = OwnLastL;
*MaxDepth = OwnDepth;

} else if (OwnDepth == *MaxDepth) {
*LastRight = OwnLastR,;

} else if (OwnDepth < *MaxDepth) {
FirstUndel = FirstDel,
while (FirstUndel->downY <= OwnDepth)

FirstUndel = FirstUndel->Next;

FirstUndel->Moved -= Movement;
OwnLastR->Next = FirstUndel,

} else if (OwnDepth > *MaxDepth) {
OwnLeftFUd = OwnLetft;
*LastRight = OwnLastR,;
while (OwnLeftFUd->downY <= *MaxDepth)

OwnLeftFUd = OwnLeftFUd->Next;

(*LastLeft)->Next = OwnLeftFUd;
*LastLeft = OwnLastL;
*MaxDepth = OwnDepth;

}

DeletePath(FirstDel, FirstUndel);
DeletePath(OwnLeft, OwnLeftFUd);

}

[* Compare compares the paths h and unh and returns the value
how much the path unh can be moved. */

int Compare(h, unh)

pathnode *h, *unh;

{ pathnode *Handled, *Unhandled, *Deepltem;
int leftBorder, rightBorder;
int MinDist = INT_MAX, LeftSum = 0, RightSum = 0;

17

Handled = h; Unhandled = unh;

while ((Handled != (pathnode *)NULL) &&
(Unhandled != (pathnode *)NULL)) {

leftBorder = Handled->rightX + Handled->Moved +
LeftSum,;

rightBorder = Unhandled->leftX + Unhandled->Moved +
RightSum;

if (Handled->downY < Unhandled->downY) {
Handled->Moved += LeftSum;
LeftSum = Handled->Moved:;

Handled = Handled->Next;

} else if (Handled->downY > Unhandled->downY) {
Unhandled->Moved += RightSum;
RightSum = Unhandled->Moved;
Unhandled = Unhandled->Next;

}else {

Handled->Moved += LeftSum;
Unhandled->Moved += RightSum;
LeftSum = Handled->Moved:;
RightSum = Unhandled->Moved;
Handled = Handled->Next;
Unhandled = Unhandled->Next;

}
if (MinDist > rightBorder - leftBorder)
MinDist = rightBorder - leftBorder;

/* Update the last item: */
if (Unhandled != (pathnode *)NULL)
Unhandled->Moved += RightSum;
if (Handled != (pathnode *)NULL)
Handled->Moved += LeftSum;
return(O - MinDist);
}

/* NewPath creates a new path item that points to V */
pathnode *NewPath(V)
vertexnode *V;
{ pathnode *pp;
pp = (pathnode *) malloc(sizeof(pathnode));
if (pp != (pathnode *)NULL) {

pp->Next = (pathnode *)NULL;

pp->Vx =V; pp->Moved =0;
pp->downY =V->CY + V->e + dy;

pp->leftX =V->CX + V->XI;

pp->rightX =V->CX + V->XI + V->w + dx;

ieturn (pp);

/* DeletePath deletes the path items FirstDel..(FirstUndel-1) */
void DeletePath(FirstDel, FirstUndel)
pathnode *FirstDel, *FirstUndel,

{ pathnode *Del,
while (FirstDel !'= FirstUndel) {
Del = FirstDel;
FirstDel = FirstDel->Next;
free(Del);
}

18

