ABSTRACT

The aim of this study was to develop a moda the
mathematical wrd problem-solving from logicalpoint of
view. Word problems andthe underlying equations were
shown to be isomorphic.

We studied the relevant theories related tordvproblem-
solving model. First a survey tie history of vard problems

and corresponding computer programs was conducted. The
properties ofogic programming as a modelling language was
then investigated. The model was developedherbasis of

that theoretical groundwork.

The model is relational, and has several abstradtoels.

The model iscalled the TEACHER, because we want to
emphasisehe similarity of the model and Polya'strategy to
teach problem-solving. Questions concerning natural language
understanding ar@ot covered.The TEACHER isable to
generateexactly those wordproblemsthat it iscan analyse.
Text analysis and text generation of therdproblem is done
with logic grammars.

The result of this study, a logic based model athematical
word problem-solving, could be used in different ways. First,
themodel is a confirmation of Polya's way teach problem-
solving. Second, the model may be used as a starting point for
further theoretical development and as a framework for
empirical studies of wrd problem-solving. Third, the
TEACHER is a computer program thetn be used basis of

an Intelligent Tutoring System.
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1. INTRODUCTION

"You can only find truth with logic if you already found truth without it."
G. K. Chesterton

1.1. ALOGIC BASED MODEL OF MATHEMATICAL WORD
PROBLEMS

This work deals with a fundamental problem in school mathematicsy to
transform a mathematicalord problem into an equati¢éh[HaKi-89, KiGr-85,
NaKi-92, Poly-65, Reus-88, Thae-86]. Our aim isbtold a logicbased model
between an equation and amd problem. There are two didactic reasdhat
support thechoice of veord problems. First, wrd problemsare much more
difficult for students than comparabédgebraic problems [HaKi-89Reus-90].
Second, thesignificance of wrd problems is rapidlygrowing in secondary and
high school curricula [Anon-93]. Thus th@ain emphasis is othe pragmatic
needs of the modelling of problem-solving process rather thgemeral cognitive
theories. However,Cognitive Scientists asvell as researchers in wificial
Intelligence and Coputer Sciencénave a rich tradition ithe investigations of
mathematical wrd problems [AnBo-90, BaFe-8Bobr-68, BrLa-84, CoVe-86,
MiCa-83, PsMa-88, Reus-87b, Simo-83, Scho-87]. We use this knowledge as
background information tdouild a theoretical modelthat has some practical
implications.

This work is interdisciplinary. We uske methods of Comput&cience anapply
them to Educational Science. To be precise, we theegeneral methods of
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Artificial Intelligence (Al) and especiallythe art ofLogic Programming [Bat-86,
CIMe-81, GeNi-88, Kowa-79, StSh-86]. Tkemmon denominator of Al and the
Didactic of Mathematics is problem-solving. Wheall modelthe problem-solving
process of mathematical word problems that are presented in a textual form.

The starting point obur analysis ighe structure of an equation. The equation is
an equivalence relation between two obj¢lcts have an innestructurewith sub-
objects, relations between sub-objects and operati@idind these sub-objects
together. Thadentical structurecan be found fronthe wordproblem. Inother
words, a wordoroblem is isomorphic witthe corresponding equation. Therefore
it is possible to find the logical structure of a word problem.

The starting point of the previousodels of verd problem-solving has been the
textual form of an equatiofBobr-68, BrLa-84, CoVe-85a, HakKi-89, KiGr-85,
NaKi-92, Reus-87b]. We are analysing the logical structure afrd problem and
theunderlying eqgation simultaneously. This enables us to buitélational, or bi-
directional, model. A model is calledi-directional if it has two different
interpretations: from a @rd problem to an equation, and from an equation to a
word problem. We araising logic programming as a modellitgpguage. As a
result weget amodelfor analysingthe mathematical problem solving from logical
point of view. Atthe samdime we alsayet a computer program theanbuild an
equation from a wrd problem. Because thaodel is bi-directional then so is the
computer program. Thus the program also transfornggven eqation to all
possible word problems that it can analyse.

We are notrying to solve questions concerning natural language understanding.
The word problems presented in a textual forme,ahowever, required to be
analysed with acomputer program. To do this, weve tocreate arartificial
language of wrd problems. It is possible to defirtbe artificial language using
Definite Clause Grammaf{®eWa-80, CIMe-81, McCo-87, Brat-86]. At the same
time we get a computer program tleanh generatell the possible sentences of the
artificial language. Weall our prototype theTEACHERL. It can analys®nly a

very restricted sub-set of natural language. The TEACHERaoaltyse onlyhose

word problems that it can generate.

We are notmodelling a human problem-solvingocesses with a computer. The
model can be used andderstood without a computer. However, it is @agy to

1we also call the corresponding model with the same term TEACHER.
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separate the computer program andrtivelef, because we atauilding a model
usingthe methods dbgic programming. Theomputer prograrmay beseen as a
validation of the logcal correctness of the model. In addition, the computer
program has some interesting features sudheaability to generate hundreds of
meaningful word problems from one equation.

1.2. INTRODUCTION OF THE SUBJECT AND ITS
IMPORTANCE

Much importance has been placed on mathematics education arattenatical
word problems inthe lastfew years [HaKi-89, Lehn-88, Mali-92, NaKi-9Pea-
87, Scho-87, SeBe-98ilv-87, StSI-91]. The curriculare changing inFinland
and in the International Baccalaureé) high schools around the worlduring
the nextfew years(1994-1995) [Anon-93]. The curricula in rhamatics are
changing partly because thfe use of computers. ay ofthose tasks thatan be
better performed with computers, such as curve-drawindpasid manipulation of
polynomials,are losing their importance. Problentisat are presented textual
form, mathematical wrd problems, are thusecoming more and more important
in mathematics education at all levels.

Subjects wherenan issuperior tomachine, likenatural language understanding
and problem-solving, have be#re anbitious researckopics of Al from itsearly
days[BaFe-81, Chom-57, Colm-78, Elor-74, NeSi-63]. Wprdblems have been
studied by the researchers of Al, e.g. [Simo-83, Bobr-&&ichllyfor the same
reason as these problemase now gaining importance in educationnamely,
"solving problems ishe specific achievement of intelligene@d intelligence is the
specific gift of man" [Poly-65].

It has been showrthat many students solvealgebraic equations whiout
understandingvhy the different procedural detailsre justified [StSI-91]. It is not
difficult to master the proceduratay of solving arequation. Thalifficulty is in
the conceptual understanding effuivalent equationfStSI-91]. This isthe main
reasonwhy our stating point is the equation seen as eguivalence relation
between two objects. Students wdlceady master algebraiormalism also have

2We usethe phrase th&EACHER system to denote bothe TEACHER prototypeand the
TEACHER model.
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difficulty to find the mathematical entities and relationshipesented or iplied in
the problem text [HaKi-89].

Students, who are taught teolve word problems considering mathematical
relationships between pairs of quantities, solve certain kind artl wroblems
efficiently [SeBe-91]. We want t@mphasisehe role of relations imur model,
because the understanding of relaticeems to behe key factor for a true
understanding of the problem-solving process.

1.3. SHORT INTRODUCTION OF PREVIOUS RESULTS

Computer scientistgspeciallythose whaohave been specialising A, have been
interested in word problems for various reasons. In the 1960's and in the 1970's the
main interest areas were computatidmeguistics,e.g. patterrmatching[Shap-87,

p. 718-719] and storgnalysis $hap-87, p. 1090-1099], arnuoblem-solving
[Elor-74]. Bobrow's STUDENT wasable to solve highschool level word
problems[Bobr-68]. Bobrow's aim was to discover how baild a computer
program that couldommunicate with people in a natural languaggin some
problem domain. Charniak developBdbrows workfurther and "foreshadowed

an interest on a part of the Abmmunity inthe 1970's in story understanding"”
[Shap-87, p.135].

From themid 1970's mathematicaphysicaland chemicalschool-bookproblems
have been studied ithe field of machine learning [MCa-83, MiCa-86]. The
problems of natural languagee keptaside, althoughmany researcherdave
developed a natural language front end [MiCa-86]. Tthaswordproblems, in a
strict sense, amgot included inthese studies. However, these studiay enlarge
our understandinggbouthuman learning and problem-solvifigliBa-89]. These
issues are essential in machine learning:

| would give a very high priority to research aimed at simulatary] thereby
understanding, human learning. It may be objected that such research is not
Al but cognitive psychology or cognitive science or something else. | don't
really care what it is called; it is of the greatest importance that we deepen our
understanding of human learning, and Al community possesses a large share
of the talent that can advance us toward this ¢g8aho-83].



Educational scientists have recently fouhd computer metaphor asvaluable
tool to nodel, and thus tbetter understand, thmasic questions déarning [Duff-

90, Egge-90, MIi-92, NaKi-92]. Reusseimplemented inthe mid 1980's the
Situation-Problem-SolvefSPS), a computesimulation model of understanding
and solving wrd arithmetical problemfReus-87a, Reus-87b, Reus-88]. Reusser's
studies in word problems vere part of the broadeesearch project "on theoretical
relations between text comprehension, situation comprehension, and
mathematization in solving avd arithmetic problems, and dihe teachability of
these issues" [Reus-87b]. Reusser has contihigseork on thepsychological
processes of how students understand solde mathematical @rd problems
[Reus-88]. He has also developedlatelligent Tutoring SysteniiTS) thatuses
the ideas of the SPS-model [ReK&-90].

The SPS was one of tffiest attempts tacombinethe methods used in tifield of

Al with the research on mamatics education. The model had, however, some
weaknesses (Sectidh3). We want tduild a parallel model tthe SPS irwhich

we are not considering the complicated time dependent reasoriiegSPS can
analyse only a fixed number of predefinpbblems. We want to broaden our
model in this issue. EveBobrow [Bobr-68] saw that ard problems found in
standard textbooki®rm a semanticallpoor subset of natural language. Thus, it is
possible to definghe language of mathematicalond problems, or more foratly:

to write the grammar of the language that our model is able to anafyse third
difference betweethe SPSandour model isthe mostfundamentabne: the SPS
analyses the word problems and the result ofathédysis is amquation. We argue
that theproblem-solvingprocess is notini-directional. The problem-solver has
sometimes to go back and re-evalutie previous facts. Therefore we want to
build a model that also looks at the problem in another direction, from the
equation to thevord problemgFig. 1). We arebuilding a modethat canhandle
these kinds of relational features (Chapter 4).



1.4. APPROACH METHOD AND RESEARCH OBJECTIVES

Lewis [Lewi-81] used the wrd "algebra problem-solving", when he studiedn’s
ability to solve algebraic equations. In this study are mainly interested how
word problemsare "translated" into equations andt howthese equations are
solved. However, the thoroughly exizsed area ofsolving eqation can be seen as
valuable background informatigMatz-82, MiPa-89, AnBo-90, PaSqg-90].

How to solve mathematical @rd problems? This question has been actual for
hundreds of years. Our starting points are theittbadl methods forsolving
mathematical wrd problems,nicely conbined andfurther developed irPolya's
books [Poly-45, Poly-65], and the general theory of problem-solving and heuristics
(with many examples from mathematical word problems) [Elor-74].
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Figure 1. The Teachers view to word problems is a combination of the students
pursuit to solve the problem and of the textbook writers intentions to
find word problems that the student is able to solve.



Our objective is to better understand gneblem-solvingorocess that iseeded to
transform a mathematicalond problem into an equatioi®ur perspective ighat
of a teacher. Therefore we filsave to analyse ordinary textbook problems, then
build astep by stepnodelfrom text to equationOr ratherfrom the point of view
of a teacher, we know whkind of an egation a student iable to solve at each
level. We have to find a correspondingng problem, whose partial answertieat
equation. In other words, we aamalysingthe process step by stépm equation
to word problem But a real teacher igot allowed toforget theview of the
student (Fig.1). To understand how wrd problemsare solved we need to
combinethe view of a texbook writer (equation- word-problem) with the view
of a student (word problem equation).

Our main objective is

to build a bi-directional model between a word problem and an equation.

The modelwill be logic-based and we needdols for analysingand parsing the
text. The previous models ofornd problem-solvingprocesses, e.g. the STUDENT
and the SPS, have originally been implementedI 8y, afunctional programming
language. LISFhas been used Hinguistics over twodecades. LISP is also a
languagethathas beemwidely used by researchers in Al [BaFe-81]. The long and
common tradition othe LISP,linguistics and Al have also had an impact on the
computational models. Theainfeature thatan be found in these models is the
use of functions. Howevemany ofthe presentodels of vord problem-solving
processes have relational features [HaKi-88lationality can rost naturally be
handled by logic programmingStSh-86]. In this work we use thégic
programming language PROLOG (PRogramming in LOGic) to build a transparent,
relational (bi-directional), program.

Logic programs can be made transparent. In otherdslogic programs use

facts to represent the static situations and rules to represent the inference
processes between these situations. Logic programming uses a language that
can be understood by people that are not familiar with ordinary (functional)
programming languagei&owa-79].

The starting point of traditional evd problem solvers has beéme textuaform of
word problem. Therefore, the history afathematical wrd problem solvers is
intertwined with thebasic problems of natural language understanding. Our
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objectiveis not to try to understand andnswer questions concerning natural
language text comprehensioHowever, we do nobnly want to considefixed
problems (likeSPS). Our aim is to creat®ncise grammarthat may beenlarged
to handle a semanticallyoor subset of natural language, thmathematicaivord
problems found in standard textbooks [Bobr-68].

Grammarsfor natural andartificial languages can bearitten as logic programs.
Grammarghat may beanalysed byProlog arecalledlogic grammargMcCo-87].
Thebasic version of logic grammars, Definite Clause Gramnbaedfly DCG, is a
grammar formalismand at the sam#me effectively executable inProlog. The
most Prologmplementations offer auild-in DCG-version. We use thi®ol for
text analysisandtext generation. We want emphasis¢hat ourmodel knows all
the problemsthat it will encounterProblemsthat do notfollow the grammar of
the system are out of the systems boundaries.

Our objective is tobuild a simplified test envanmentfor modelling the word
problem-solving processes. In doing this we have chosen the part of the curriculum
[Anon-82] where mathematicalosd problemsare to be solved biyrst forming an
equation.This isanotherdifference betweethe previousnodels andur system.

The previous models haweainly been interested in elementary arithmetizatrd
problems [BrLa-84, CoVe-85a-b, Reuss-87a]. We concentrate on fifse
introduction of algebraic @rd problems. This @rt of thecurriculum is important

for further mathematical studies. Many high-school algebreors of solving
equations are due to the conceptual charmgedvied in moving from arithmetic to
algebra [Matz-82].

1.5. RESULTS

We shall build a simplified testnvironment, calle@EACHER, between avord
problem and an equatiq@hapter 4.)The TEACHERsystem has been designed
and implemented by logic programminigie mainresult of this study ishat it is
possible to model a problem-solvipgocess andimultaneoushget anexecutable
Prolog program of that adel. In fact, it isimpossible to segrate the abstract
modelling process (TEACHER model) and théenplementation process
(TEACHER prototype)with Prolog. This is due to the features of thmodel.
First, the problem-solving process proceeds through abstraction levels (Fig 2.)
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Second, deductive reasoning is needétin and bewveen thesdéevels. Third, the
model is lasicallyrelational All the aboveamentionedhree features arembedded
in the art oflogic programming. Conversely, logic programming is a ugefull in
refining the model, because the processngflementation forcesne tomake an
in-depth analysis of the model.

WORD PROBLEM

TEXTBASE

ENLARGED TEXTBASE

CONTEXT SENSITIVE MODEL

CONTEXT FREE MODEL

EQUATION

Figure 2. The abstraction levels in the TEACHER model.

The TEACHER transforms aad problem bi-directionally fromext to equation
using the same steps as a teacher introduces to a studenbi-gbaerative
architecture of the TEACHERystem(Chapter 5) can beewed inmanydifferent
ways.

First, it may beseen as test bench of problem-solving processes in a restricted
area Is it possible toknow when extra knowledge is needed amdhen extra
knowledge isnot needed to solvthe problem? Whaare the steps that arelated

to the choice of theariable anchow manysteps are thergdow is thevariable
selected? What are thgsychological and technical, or contextual and textual,
details that have an effect on the choice of the variable?
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Second, the TEACHERystemmay beseen ag model of the mathematicabrd
problem-solving process with phases that a teacher introduces to his students
These phases follow quitdosely tothe well-known Descartes' scheme [Poly-65].
The transparency of the Prolog-conmkesthe features of thenodel explicit.
Thus the TEACHER forms a basis for an Intelligent Tutoring System (ITS).

Third, thesystemmay beused as wordproblem generatorThis isdue to the bi-
directionality of the system. From ajiven equationthe TEACHER prototype
generates a group of equatialisof whichmight be found irstandard textbooks.
The group of wrd problemsthat the TEACHER prototype iable to solve, is
explicitly defined by a logigrammar formalism.e. one carsay in advance, by
studying the logic grammar, whether a certain problem sslvable by the
TEACHER. It is easy to enlarge¢he logic grammars to handle problems of
different languages, in this versiéimnishand English, or to widethe scope of
problems the TEACHER prototype is able to solve.

It should benoted that the three features aret separate. Foexample, the
generation of equationsiay also be used as a moduletire ITS part of the
TEACHER. It is alsgossible to usthe TEACHER as a test-environment for the
studies of problem-solvingorocesses.This can be realised by keeping the
underlying mathematicaltructureinvariableandvarying onlythe semantics of the
text. The TEACHER prototype at present is jusiiaanework forbuilding alarger
environment. The motivation of this study is in forming a new type of a model for
doing all this.

1.6. DIVISION TO CHAPTERS

In Chapter 5 waanalyseand discusshe abovementionedthree features of the
TEACHER system in detail. Therthe restrictions of themodel and its
implementational issueme discussed. Trspecial emphasis @ut on thecommon
factors ofPolya's way of teaching problem-solving éhé TEACHER as #ogic
based model.

In Chapter 2 we take a closer look into thistory of previouswvorks thathave
combinedcomputer programs anghathematical wrd problems. The history of
ComputerAided Instruction is then covered. The Situation Problem-Solver, an
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inspiring exampldor the present work, idiscussed in more detail. Eity, the
impact of computers and graphical calculators to modern curricula is surveyed.

In Chapter 3 themain features of logic programming asnaodelling tool are
covered. The connections betweelogic programming languadgerolog andirst

order predicatdogic are discussed. Then the tvdifferent readings oProlog
programs, declarative and procedural, are presented. An extension of pure Prolog
is Definite Clause Gramma(PCG), agrammar formalisnthat is used t@nalyse

and generatéext and equations. The expresspewer of DCG isshown to be
adequate for analysing the textual form of word problems.

In Chapter 4 we describe how thmodel was constructed. We start the
construction with a tekibok analysis. Then we analysee equationdehind the
textbook wordproblems. The equations are parsed with the DCGs twdered

set of relations, operations and objects. We cant continue the construction
before we have parséde text to an ordered set of correspondifggnents. Some
elementsthat arefound in the equation, objects or relations or operations, are
missing fromthe text. We add thelements using general mathematical knowledge
or specific knowledge frorthe problem domain. When we hagdded themissing
elements we need to expredisobjects with thenelp of one specifiedobject. This
object is the unknown. Thefinally, we areable toconstruct a rapping between
an equation and a word problem.
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2. RELATED WORK -
HISTORY AND MOTIVATION

Word problems have also been studied by soméhefgreatestnen of science.
"Suchmen adescartes, Newtorbeibnitz, and Euler dishot find it beneath their
dignity to explainand illustrate at lengthhe application of equations to the
solution of word problems" [Poly-65]. Theysedmathematical wrd problems as
a meangowards auniversal nethod forsolving allproblems. Although the quest
for auniversallyperfect method hasot succeeded, it has many ways influenced
science.

In this chapter we first investigate computer progrdha are not intesed to
support education.len we consider computer prograthat have been planned

to support education. Intelligent Tutoring Systems are shown to be the only area in
Al research where Al is viewezhly as a modellingool. We consider idletail the
Situation Problem-Solver, a computer progriuat was thdirst computermodel

for mathematical wrd problem-solving. Finally, we discugbe impacts of the
computers and graphics calculators on modern mathematics curricula. We show
that the use of these new tools enhances the status of word problems.

2.1 HISTORY OF WORD PROBLEMS

The capabilitiesfor problem-solving and reasonirgre generally taken as the
principal factors of anintelligent system in Alresearch. The concept of an
“intelligent system" has changed itseaningtogether with the evolution of
computer programdJsually these"intelligent systems" have been designed to a
restricted problendlomaine.g. tochess playingThe search founiversal methods

to solve a variety of different problems in different domains have inspired
researchers iArtificial Intelligence fromits early daysThe first, and perhaps the
best known wrk in thisfield is the GPS(General Problem Solver) model by
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Newell and SimoriNeSi-63]. The GPS is a program that triestoulate human
thought. Newell and Simonargue that thefree behaviour of human can be
understood as a product of theite and determinedet oflaws. TheGPSmodel
raisesmany philosophical questionfMarj-90]. However, the GPShas led to
generalised schemes of representation goals and plans, methods for
constructing discrimination nets, procedures for the control of tree search, pattern-
matching mechanisms, and language parsing systems" [NeSi-76].

Word problems have also been usedhafield of computational linguisticEarly
implementations inthe 1960's were often required tmderstandtheir inputs
[Shap-87, p 134-136]. Bobrow wrolés dissertation "Natural Language Input for
a ComputerProblem-Solving System” 1964 [Bobr-68]. In it he developed a
system calledSTUDENT thatsolves high-schoolevel algebra storyproblems
given in asubset ofEnglish.The program uses pattenmatching and well-chosen
heuristic8. Bobrow developedechniques which allowed eomputerproblem-
solving system to accept natural language. His main interest \waguistic issues
andnot in educationahor didactic onesHis mainmotivation for choosingvord
problems ashe domain waghat thealgebraic equationsay beused to store the
information needed to answer the questions in this context.

The STUDENTbecame famous partly because ofaitdity to solve most of the
word problems found in a standard high-school algééxsbook,and partly from
the use of the wordunderstanding” irhis dissertation. He givethe following
operational definition of word "understanding":

A computer understands a subset of English if it accepts input sentdncles w
are members of this subset aadswers questions based amformation
contained in the input. The STUDENT system understands English in this
sensgBobr-68].

If we forget thedefinition, we may have to conclude¢hat the STUDENT, a
computer programreally understands English. Reseamhoutunderstanding is

still a central theme in wrd problem-solvinge.g. inPolya's method$or solving

word problems [Poly-65], irKintsch and Greeno's problem-solving model [KiGr-
85], in Greeno's application of this model to mathematics education [Gree-87], and
in Reusser's cognitive simulation [Reus-90].

3E.g. in problems like : Mary is 4 years oldéran Susan..."years oldehan" isconverted to

"plus”.
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Charniak developed Bobrow's ideas and969implementedhe CARPSsystem,
which could solve calculus @rd problems at freshman-level. In reflecting on his
work, Charniak noted that,despite its advances over t8&TUDENT, avery
powerful calculus wrd problem solvewill require a goodleal of ‘common sense'
knowledge. In advancing thidaim, Charniak established rew domain in Al,
called the story understanding. One question irfigfek of story understanding has
been left unansweredVhat does itmean tounderstand a story, and how is it
possible to determine whether @mputer program wasuccessful in this
undertaking? [Shap-87, p.135].

One can argudike Bobrow, that theabove mentioned problem ceases to exist if
we use worgroblems ashe domain. This holds, if we thinthat to understand a
mathematical wrd problem is to be able to solteatproblem. Or morerecisely,

we can understand aond problem if we carconstruct therelevant equation(s).
However,only a few common tekbok problems forcestudents to do in-depth
semantic analysig.hus it can also be argu#tht sometimes it is easier to solve a
problem than it is to understand it:

The way text problems are formulated arftbw they work out can provide
subtle hints to the problem solwehich maylet him accept a solution even if

he does not understand it. To come up with a correct solution and be quite sure
about it may noalways mearthat one understands it, even if the solution was
inferred by several stejReus-88].

Both the STUDENTand the CARPS transformed natul@hguage into aet of
simpler sentences, so-called kernel senterited wereequivalent inmeaning.
Thesesimple sentences were then transformed intset of equations. Both of
these systemasedglobal informationabout theproblemarea, and theystems

were able to ask for missing information from the user. However, Simon has stated
that the STUDENT tried to translate thatural language problentirectly into
equations [Simo-83].

4Kernel sentences belong tiwe theory of transformationajrammar (TG), aheory behindnost
of theworks in computational linguistics (CL) ithe 1960s'. Théypothesis of TG impliethat
"an understanding of syntax, or structure, of natural-langeagtncegan be arrived at on a
solely grammatical basis, without considering the neakld properties (e.g., meanings) of the

terms being discussed" [Shap-87].



15
This statement is anversimplification ofthese systems. Tjastify this statement,
we have tdook at the more recent work of wopdoblem programaMost of the
early work prior to mid 1970's concerned computationliguistics. Novak
implemented the ISAAC program i976. Itsolves college-level physics problems
found in standard textbooks. Thaindifference betweethe STUDENT and the
ISAAC is that the ISAAC firsbuilds up an internakpresentation of the situation.
This (physicalyepresentation dimental model" isconstructedwvith the help of a
specialdatabank, where thénformation ofthe basic physicabbjects isstored in
the form of schemas. The internal representatioes a lot of workpecause it
identifiesthe points where forcesave to be equilibrated and therefadentifies
which equations have to ket up. Itcan be saidhat thelSAAC in a restricted
sense understands tipeoblems it is givenBut as Simon argues thelSAAC
alreadyknowsall the physics it'sgoing to know. To beble to reallyunderstand
the world of physicsthe system must also bable to learn, or t@reate new
schemas from the natural language [Simo-83].

Historical word problem solvers ere mainly interested in computational
linguistics.For ourpurposes twanajor factsare to be notedviathematicaword
problems form a strongly restricted subset of natural language, andeamal
representation between an equation andedwroblem is needed. Therefore it is
possible to buildprograms thatcan analysethe textualform of mostword
problems found in standartextbooks. Theinternal representation oivord
problems is a good starting point for modelling the problem solving, too.

2.2 COMPUTER ASSISTED INSTRUCTION

The above mentioned programs had their origin in computatiorglistics.
Another branch of programs contains those programs thatigieally planned to
support education. Computer-assistattoduction/learning (CAI/CAL)started
with linear programs Linear programs @re designed in late 1950's according to
the behaviourist tradition with very littlgossibilitiesfor individualisation. They
simply proceeded step by step towards a goal, and acaepyeight and rejected
wrong answersBranching programsvere natural successors lofear programs
in 1960's. Theyused patterrmatching techniques to smpte right and wrong
answers [Nwan-90]. These programs waipée to comment answers @isers and
use the answers to select an appropriate stegpt The irpact of these firstrials
can be seen in common teaching materials: lipragrams haveeasily been
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transcribedeasily to ordinary tekiooks andbranchingprograms areapplied in
textbooks that uséprogrammedIearning®. Also the use ofmultiple-choice
guestions has beeanfluenced bythe technologythat made them so easy to use
[ScEd-89]. Generative programsfirst implemented inthe late 1960's, could
provide somethinghat wasnot possible fromtextbooks:they wereable to
generate teaching material. umber ofadaptive systems \ere implemented to
provide drill and practice in arithmetic, and to select problemshatlevel of
difficulty appropriate to the student's overall performance [SIBr-82].

Different forms of CAlfailed according to Nwana [Nwan-90] for tHellowing

They attempted to produce total courses rather than concentrating
on building systems for more limited topics.

They had severe natural language barriers which restricted users'
interaction with them.

They had no "knowledge" or "understanding” of the subject they
tutored or of the students themselves. Consequently they tended to
assume too much or too little student knowledge, and they could
not conceptualise so as to diagnose a students misconception with
his/her own framework.

They were extremelyd hoc Building tutoring systems was not
recognised to be a non-trivial task - a task requiring detailed
psychological theories of learning and mislearning. Anyone with a
knowledge of computing attempted to build a tutor. Consequently
there was little or no co-operation among educators, psychologists
and computer scientists in the development phase of these tutors.
They tended to be static rather than dynamic. There was little
experimentation with systems in order to improve them. Human
tutors learn about their students and about the subjects they teach
every day and so should machine tutors.

Basic types of CAl-programdinear, branching and generativeene developed
over 20yearsago.These programs had to be re-evaluated when micro computers
were started to be purchased $ehools in the1980's. Thevasion of comuters
to school wasmainly due to factors that were related to tbeerall social

STextbooksthat usethe method of "programmed learningdmply with the following idea: "If

you know the answer to this sub task then go to page nn, otherwise go to page mm" [Sein-74].
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development. The schools dmbt request coputers and at first they wondered
what to do with them [Meis-87]. Whahe schools needed were educational
programs. InFinland the government supportaddividual programmers. As a
result plenty of programmers matlee abovementioned mistakesJsually only
thoseideasthat wereeasy to implement evolved ©Al-programs. An attempt
was made taeimplementour currentcurriculum oncomputers, but wehould
have investigated what computers can do to reshape education to answer the needs
of modern society{ScEd-89]. No-one asked, or rather no-one answered the
question: What parts of theurriculum needs to beéaught with the help of
computers? Thus the CAIl programs staydhctically on a verynodestlevel
[DuMa-87]. CAl-programs were dsically conputerised work-books. Word
problems played no role in this CAl-episode.

School practice needs somethwat CAl-programs in 1980's coultbt offer.

Wil the answer be found in nemenu drivenprograms with advanced user
interfaces? Or are these components only syntactic sugar to unsolvable problems in
CAl-paradigm? Nwana pointsut [Nwan-90] that CAl-programs daot know

what to teachwho they teach anthow to teach it.Clanceyand Soloway argue
[CIS0-89] thatCAl architecture is inadequate to provide rich and rolmashing
environments. Thigvas noticed already marly 1970's by researchers whpplied

Al in CAIl systems. Theystarted todesign and imgment ICAI (Intelligent
Computer Aided Instruction) programs.

ICAl-programs have traditionally hatie following three components icommon
[CIS0-89]:
1. What to teach

A model of the domain and an expert program that can solve
problems in the domain.

2. Who to teach
A model of the student that identifies what the student understands.

3. How to teach
A tutoring model that can provide instruction to remediate
misconceptions and/or present new material.

Wenger has suggested for a fourth component [Weng-87], a component whose
importance is growing together with the possibilities of new technology:

4. How to interact
A model of user interface.
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Sleeman andBrown's "Intelligent Tutoring Systems" [SIBr-82] gave a new
acronymITS to ICAI. Researchers who dmt want touse the terniintelligent”
usenames such asBTS (Knowledge Based Tutoring Systems), ATS (Adaptive
Tutoring Systems), or KCS (Knowledge Communication SystdiMa)an-90].
The terminology is as yet unestablishedy. term'learning environmentivasfirst
used in open endeslystems or systenthat supportdiscovery learning like the
LOGO languaggPape-80]. Moreand more often this term is used to eagbe
the conprehensiveness tifie program, or the terfiearning environment" is used

as a synonym for ICAI [CIS0-89].

/

\

Linear programs 1950s
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Computer

Aided

Generative programs late 1960s

Instruction
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???7s

\_ School Practice )

Figure 3. From CAI to ITS in theory and in (school) practice.

Modified from [Nwan-90].

The learning environment as such is nowadays considererl of the most

important topics to be studied in the educational sciences.
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ITS programs haveot yet reached théevel of sophisticationthat isneeded to
satisfy the needs of modern education (F&). Building anITS is anon-trivial
task. I[tdemands expertise at least froime following disciplines: Al, educational
theory and psshological models o$tudent and expert. Has beersuggested that
"ITS researctwill grow. This is becausapartfrom their practical needfje area
appears to provide agxcellenttest-bed for theories to Al scientists, educational
theorists and cognitive psychologists” [Nwan-90]. One practical hebihd the
development wrk of CAl andITS has been tageduce thehigh cost of human

tutors and thus to develop systems for automatic education [AnBo-90].

ITS Domain Reference

ATDSE Basic subtraction Attisha & Yazdani (1983)
ARITHMEKIT Basic subtraction Brown (1983)
ALGEBRALAND Algebraic proofs Brown (1985)

BUGGY Basic subtraction Brown & Burton (1978)
DEBUGGY Basic subtraction Burton (1982)

EDSMB Basic multiplication Attisha & Yazdani (1984)
FITS Basic fractions addition Nwana(1990)
GEOMETRY Tutor Georatry proofs Anderson et al. (1985)
INTEGRATION Tutor | Basic integral calculus Kimball (1982)

LMS Basic algebra Sleeman & Smith (1981)
PIXIE Basic algebra Sleeman (1987)
QUADRATIC Tutor Quadratic equations O'Shea (1982)

SIERRA Basic arithmetic procedures Vanlehn (1987)

SPIRIT Probability theory Barzilay (1985)

WEST Basic arithmetic skills Brown & Burton (1978)
Table 1. A reasonably comprehensive list of ITSs in mathematics education

according to [Nwan-90].
The aim to develop systems for automatic education may never succeed:
| personally do not believe that computers competie uman teachers in

any real sense, or that they can or should replace people in instructional
settings. Teaching as social act simply involves too many dimensions
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beyond the exact processing of informationvitiich computers are made
and at which they can exd&Veng-87].

We areusing the methods of Al tanodel and thus tdetter understand the
problem-solvingprocess of worgbroblems.Our aim is not taeplace the teacher
but tobuild a model to beised by the teacher. To advanecwards this goal we
need to study the history of ITS, because ITS iotitgarea in Al research where
Al is only viewed as anodelling tool[CISo-89].

Mathematical wrd problemsare not included in aomprehensive list of 4B'Ss
[Nwan-90, p. 272]. Thdifteen whichare related to mhaématics education are
listed in Table 1. We mighadd some new ITSs whoslemain is mathematical
word problems. The algebra & ProblemTutor by Singley etal. [SiAn-91], the
HERON by Reusser et al. [ReK&-90], and the ANIMATE by Nathan ¢NakKi-

92]. The builders othese systemstrove for two goals. Thérst one was to
develop a pedagogic&bol to be used ilassrooms and the second one was to
explore some fundamental psychological problems surroundorg woblem-
solving.

The Algebra Vérd ProblemTutor is based on a recentonk on tutoringbasic
algebraic manipulation skilSiAn-91], whereas the HERONas been developed
by Reusser forseveral years [Reus-87a, Reus-87b, ReusR88)s-90]. The
ANIMATE presents a representational base to pheblem-solvingprocess by
giving situation-basedmeaning tothe equations through computanimation
[NaKi-92]. The ANIMATE and theSPS are botlibased on thevan Dijks and
Kintch's theory of discourse processing [KiDi-78]. Wahall closer look at
Reusser's previous work below.

Our mainpurpose is tduild a model of ward problem solving andot to build an
ITS. However, wethink that thebuilding of anITS must start in theconceptual
analysis ofthe situation. Aso some kind of a modabout the situation must exist
before a robust IT8an be built. The TEACHER is to lderstood in thisense.
In fact, the TEACHER is at themoment only a model ahe domain, an expert
program thatcan solve problems ithe domain. A tutoring model of word
problem-solving is evolving [HaKi-89, ReKa-90, NaKi-92]ser modelling easily
consideraman to be deterministiand mechanisti¢larv-93]. A lot of work must
be done before a real ITS in this domain can be built.
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2.3 SITUATION PROBLEM-SOLVER

In thefollowing we shalloutline themainfeatures of Reusser's Situation Problem-
Solver. The SPS was one of tiivst attempts tacombinethe methods used in the
field of Al with the research of mathetics education. &h the SPSand this
work share the same interestamely how to transform amathematicaword
problem into an equation. TH8PShas astrong theoretical background in the
discourseanalysis of van Dijlkand Kintsch [KiDi-78] and irthe processnodel of
problem-solving by Kintsch an@reeno [KiGr-85]. We argue that tliéscourse
analysisand the temporal reasoning cause some theoretical iongato the
model.

Reusserimplemented inthe mid 1980's the Situation Problem-Solvé$PS), a
computer simulation model of understanding and solvingrev arithmetical
problems [Reus-87a, Reus-8Reus-88]. The SPGses thegeneral theory afext
comprehension developed by Kintsch and @ik [Hoik-90]. The basic idea
behindthe theory is that theomprehension process can be decomposed into
components, some of which are manageable at predalgthe other<an be put
aside untillater. Because of theomplexity ofthe natural language, two important
components arexcluded fronthe model. Thenodelwill be concernednly with
semanticstructures. Furthermorepmprehension always involvésowledge use
and inferenceprocesses. Thenodel does not spcify details ofthese processes
[KiDi-78].

If we consider general theories of problem-solvigdor-74], or the specific
theories on mathematicalond problems [Poly-45, Poly-65, Lewi-81], we notice
that some important features angssing if we applythe abovementioned theory
to mathematical wrd problems. Ofcourse, thedetails of human inference
processes are unknown atamplicated, but the use of knowledge is assential
feature in general problem-solving [Chom-72, Elor-74]. dtieermissingfeature
is theinferenceprocessfrom the mathematicatext (syntax) to its reameaning
(semantics) (Tabl@). This isthe first phase in solving a evd problem, a phase

6The difficulties concerninghumaninference processeare discussed in [Bode-9G§nd [Sear-
92].
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that Polya call$&Jnderstanding of the Proble(fig. 11) Wewill discuss this phase
in Chapter 5.

The SPSalso uses Kintsch and Greeno's processing nibdelexplicitly deals
with both text-comprehension amuoblem-solvingaspects of wordarithmetic
problems [KiGr-85]. Reusser's studies inre/problems vere part of the broader
research project "on theoretical relations betwixt comprehension, situation
comprehension, and mathematization in solvirggdmarithmetic problems, and on
the teachability of these issues"” [Reus-87b]. Reusser has continueatkismthe
psychologicaprocesses of how students understandsahge mathematicakord
problems [Reus-88]. These workbave been behinthe development of the
HERON system [ReK&-90].

The SPShas five modulesl.) The Text Comprehension module parses and
encodes the Textual input into the Textbase. 2) The Situ&@nprehension
module goesbeyondthe textand concentrates on time-dependent or temporal
reasoning. 3) The Mathematization module puts asiidinoseelementghat are

not relevant to the operational gist of the episode. All elements are presented in the
same orderthan the children tend to recall a problem episode i.e. in a
chronological order. This phase,the Mathematical Problem Model, is knk
between the semantic and tnemericalrepresentation of thgroblem situation. 4)

The Calculation Module uses different counting stratefgieshe first graders. 5)

The Answer Interpretation module uses the result of The Situation Comprehension
module, the Episodic Problem model, in answer generation (Appendix 2).

Reusser has done a profoundriwonrefining and extendinghe ideas of Kintsch
and Greeno in understanding therd problem-solvingprocess. Reusséias also
demonstrated that a computer model which is intended to be a cogimtivation
model is "an excitingool both for thestudy of the phenomena, the generation of
theories asvell asfor the design of experiment§Reus-87b]. He has usdtis
knowledge in the development of the HERGMstem. The HERON is "a
computerised didactictool for facilitating and fostering self-direct and
comprehension-based learning and problem-solviiRgKa-90]. The HERON
helps the student tosolve word problems by providingsupport in text
comprehension and ibuilding mathematical problermodels. The HERON can
handle a fixed number of problems that have been implementeelspstem when
it has been developed. These problems vary fromsimple sentences and three
figures to problems with over 300 words and over ten different figures.
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Reusser has concentrated tbe psycholomgal issues otext comprehension and
problem-solvingprocess. Hehas not considered some of the factotisat are
crucial for the model in detail. One of thedactors is parsing and encoding the
textual input and thether istime dependent reasoning. the following we
consider time dependent reasoning because time is a centgroam in the SPS
model and the SPS model has been used as starting point of our work.

The roles of time in problem-solving are [Kahn-89]:

- Storing and retrieving time-varying, context sensitive data
« Detecting temporal relationships from time-ordered data
« Reasoning about change and processes

« Representing dynamical systems

« Reasoning about states and context.

Related research areas are:

- database management

« mathematical modelling

« symbolic knowledge representation
« temporal inferencing

The time problem isnot theunique poperty of wordproblems. It is a general
problem ofall thoseintelligent systemshat reason about thehangingworld. In
the SPS théime problem is equivalent tte problem of reasoningboutchange.
A fundamental assumption gonstructingintelligent systems ishat theproblem
solver or reasoning component has an internal model or represerttaion
captures theessential features dhe problemworld. This conponent iscalled
Textbase in th&PS. Theroblem solver reasons loyanipulatingthe elements of
this internalworld. The enterprise of constructifigrmalismsfor expressing real-
world entities in computer-usable internal models aalled knowledge
representation. The difficulties associated with time and change are problems in the
available knowledge-representation techniques for construciimernal models
that successfullyand efficiently capturekey properties of adynamic, evolving
world [Kahn-89]. In Al the problem dealing with changing propositions
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has been callethe frame problem Thesimplest solution to this problem invokes
theframe assumptionithe only factsthatchange aréhose factshat areexplicitly
told to be changed.

In the SPS thé&rame problem isiot presentThe SPSnly uses a statinumber of
pre-defined problems. The problense given to the SPS as a list of
micropropositions and not as sentences of problem text (Table 2).

Problem text Input
Walter (PRESENT)
tends to lose (EQUAL X WALTER)
everything. (EVERYTHING)
He got twelve (PAST)
beautiful (LAST WEEK)
shells from (RQUAL Y JULIA)
Julia last GET XY)
week as a (12)
birthday (SHELL)
present. (BEAUTIFUL)
(AS-BIRTHDAY-PRESENT)
Today Walter (PRESENT)
has only TODAY)
eight HAVE-LEFT X)
shells (8)
left. (SHELL)
(ONLY)
How many (PAST)
shells (LOSE X)
did Walter (HOW MANY)
lose? (SHELL)

Table 2 The natural language version of one of the problems that the SPS is
able to analyse and the actual input format for the computer
program.

’Original definitioncomes fronthe situation calculus, where theain problem is tohandle the
situation where something changgssituation calculus, a change in state results inrghwval
of logical statementthat are ndonger applicableand in the inserting afew logical statements

that are permitted in the new state [McHa-69].
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Many experiments in Artificial Intelligence have beeentred aroundsimple-
looking problems, because they "gius, for thesmallest initialstructures, the
greatestomplexity, sathat onecan engage sonmeally formidablesituations after
a relatively minimal diversionnto programming” [Mins-68]. Reusser also used
simple looking problems to investigate the inner structure of word problems:

Anyone who wants toteach children how to understand and solve
mathematicaivord problems, needs tknow by which processes or strategies,
and mediated byvhich mental representations, mathematicabinfation is
abstracted from verbal problem statemgfeus-90].

2.4 A PROGNOSTIC VIEW OF WORD PROBLEMS

The author of this studigasacted as a teacher and a teacher trainer for over ten
years. In the 1980's the calculators changed the teaching practice in schools. The
time spent to numerical calculatiodsninishedand arithmetically rare demanding
guestions could be set. The computers tteme to schools. In this section we
investigate how the computers have changed mathematics education.

The most recent innovation used in high-schools is graphics calculator. As a
teacher, it iseasy topredict how graphics calculatavil change mathematics
education. In this section, we investigate these possible consequences.

Lewis foundout thatthe experts performance solving elementargquations was
not sharply different to less skilled selrs [Lewi-81]. The experts makeistakes
and, surgsingly, theydon't just look afproblems and writelown the answers.
Lewis concludeghat people don'necessarily improve just by doing something
more frequenthjLewi-81].

Lewis and Matz [Matz-82] use the phrasalgebra problem-solving”, when they
studiedman's ability tosolve algebraic equations. In this study ae mainly
interested how wrd problemsare "translated” into equations andt how these
equations are solved. However, the thorougixigminedarea ofsolving equations
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can be seen as valuable background informatianyMigh-school algebrerrors
of solving equations are due to the concepttlznges involved in moving from
arithmetic to algebra:

Syntactically similar expressiondiffer semantically because equal sign,
concatenation, plus and minus have multiple meanings which are distinguished
only by parsing rules and context. Even though equality is mathematically
symmetrical, cognitively and pragmatically it is not. The bi-directionality of
algebraic processes injects a flexibility into algebraic problem-solwhgh,

in the eyes of some students, makes the activity more comp|MatzeB2].

There are twapecificreasons that support tiehoice of vord problems from the
didactic point of view. First, ard problemsare much nore difficult for students
than comparable algebraic problems [HaKi-B@us-90]. Second, thsgnificance
of word problems is rapidlygrowing. The Curriculum ifrinnishschools is going
to change fronthe beginning ofthe school gar 1994-1995 and there istiong
emphasis in problem-solving ancdbml problems. The generédend to use more
problem-solving and lesdrilling of basic mathematical manipulation education
is clearly seemlso in the neveurriculumfor the International Baccalaurediigh
schools [Anon-93]. Another argument for the growisignificance ofword
problems can be found the advancement of computers. Nevetthe history of
mathematics education has smgle inventionopened samany challenges and
demanddgor educators than the computers. Computenge influenceaducation
in three ways:

- Mathematics, and the way mathematicians are working has changed.

« From the above fact arfdom the availability of software thatalready can
performmanymathematicatasks, itfollows that thewhole curricula have to
be re-evaluated.

« Mathematics education has gained navgsibilities by using coputers to
support education.

IB has mandatethe use of calculators in mathemat@®@saminations from May
1994 andallowed the use of calculators witlgraphical display(IB World,
Decemberl992). Aso the Finnishnationalboard formatriculation examinatién

8The board (Ylioppilastutkintolautakunta Finnish) sent on 11.8.1993 a note to headmasters of

the Finnish highschools. The note admitsseveral interpretationsThe most probable
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has allowedhe use of powerful graphic calculators in thanish matriculation
examination from Marcii994. Wewill take a closer look whamplications this
new technology has fdhe way mathematics ught andvhich items irthe tests
are to be replaced. Wirst examineproperties of one of the most powerful
calculators that IB accepts, TI485

Tl (Texas Instrument) 85 is in fact not acalculator but asmall graphics
computer with 32kilobytes of RAM. It has a 28 charactersdisplay. Its
equation-solving capabilities allow solvirgy variable in arquation,solving 30
simultaneous equationfinding roots of polynomial up tothe 30th order and
solving differentialequations up tainth order. Itsolves calculus problems both
numericallyand graphically; finds firstand second derivatives, integraisinima,
maximaand inflectionpoints. It haspecialeditors for hadling vectors, miices,

lists, strings and complex numbers. It performs statiséicalysisfor one or two
variables, is able to use 7 different regression models and is ab$pleythe data

also graphically. In addition it can handle parametric equations and polar functions.

Many of the abovementioned featureare notnecessary ifrinnish matriculation
examinatiorbut nearly all ofthem come into use in Highéevel IB-mathematics
examination. The use of graphics calculatorexaminations hasot yet started
and therefore therexists no research in therea. However, the subject was
thoroughly examinedand discussed in a semintmr European IB-teachers in
mathematics (LUneburg Germany, Mar&B93). Threemain questions were
addressed bghief Examiners in IBMathematics as they ponderdte equality
issues of the availability and use of calculators in IB schools around the world:

1. Which mathematics content is most appropriately tested with a
calculator?

2. How do test items on calculator-based tests differ from those in tests
not allowing the use of the calculator?

interpretation is that the same calculators candeel inFinnish matriculation examinations and

IB-examinations.
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3. How can test items be constructed so that they may be calculator-
inactive, calculator-neutral or and/or calculator-aétve

These questions werstill found to bemainly unanswered. However, some
findings were stated:

1. Mathematics objectivesommonly cited as appropriate for testing
with a calculator include:
(a) exploration of number patterns,
(b) use of guess-and-check strategy for problem-solving,
(c) processes of hypothesis formulation and verification.

2. Test questions should not meastakeulator skillsonly but should be
based on the mathematics curriculum.

In thefollowing we shallshow howdifficult it is to find appropriate test questions
in present school bookBut first, what are thdenefits of calculator-basetms
and whatind of items should they be&&bme of the answetbat were rentioned
in the LUneburg conference were:

(i) Students should benabled toconcentrate on strategic approaches to
problems without getting tangled up in memorised computational algorithms.

(i) The calculators should enhance the validity of items by permitiegise
of more realisticdata ornumbers, and thereby allowing problem-solving
situations to be more akin to those found in practice.

(i) The use of calculators shoudhablethe amount ofime required to
complete individual questions to be better controlled.

(iv) All items on a test shouldbt require the use of calculator. Tiiems
should also be constructed in sucWay thatusing a calculator might affect
the performance of the student, positively, negatively or not at all.

9Calculator inactive problemare those for whichthere is no advantage (perhapgen a
disadvantage) in thase ofthe calculator. Calculator neutrptoblemcan besolved without
calculator but calculatamay be useful. Calculator active problems reqtireuse of calculators

for their solutions.
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(v) Items shouldemphasisethe testing ofproblem-solvingrather than
computational skills.

How many changes should be made to present tieshs? To evaluate this
guestion we chose two recent test papersHigber Level IB-mathematigsaper,
which was thoroughly evaluated at the Lineburg conferefmos spring 1992
(Appendix 3) and the corresponding higleael paper of thé=innishmatriculation
examination from spring 1992 (Appendix 4).

The Finnish examinatiorconsists of 10 problemthat nust be solved during 6
hours.Five of those terproblems hagarts a and b. The studestiould choose
either @rt a or part bj.e. there were 1%problemsaltogether.Five problems
(Problems 2, 3, 6a, 7, and 8) can be sobliegttly with TI-850 (Calculator active
problems). Considerableag of the problem can be solved in seven cases
(Problems 1, 4bba, 6b, 9b, 10a, and 10kyith TI-850 (Calculator active
problems). Little or no use of the calculator (Calculator neutral problems) is in
three cases (Problends, 5b, 9a)Problem 9a is ambstract geometricatem,
other calculator neutral problemare word problems (4a and 5b andalso
calculator neutral @t of theproblem 6b). No problem was considered to be
calculator inactive.

The IB-examination in Highdrevel mathematics has twzarts. For thdirst part
the studentdavel.5 hoursand they have to solve 20 questio@srrectanswers
give full marks, i.ethe students do natecessary have to show their reasoning.
One third of the points could lgained by usinghe TI-851 (questions 4, 9, 11,
14, 18and 19). Alsahe questions 1, 2 and 8 are messily handled by 850
than by a conventional calculator. Part twaled testhas four optional topics of
which the studenthas to solveone. These arenainly abstract rathematical
problems and thus mainly calculator neutral (Appendix 3).

The above mentioneahalysis ofthe use of TI-85 in the testdhas been carried
out without consideringthe programmingcapabilities ofthe calculator. The
calculator has quite advanced programming language and enwrgbry (32k
bytes of RAM) tostore the programs. Studertan copy these progranfiom
other calculators or from Maclintogh or IBML compatible computers. 1B
regulations allowthe use of stored programs (IB/orld, December1992).
Students camventthese programthemselves or they can copy them from the
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manual or frombooks thahave been publishddr supporting the use of TI-85
in mathematics education.

The new mathematicsyllabus for IB has been published to beised for
examinations from Mag995 onwards [Anon-93Higher Level Mathematics has
five major parts: Fundamental mathematics, Probability, Functions and Calculus,
Matrices and ¥ctors,and one optional topic. Studentsay use a graphics
calculator with the abovmentioned featureg.estquestions are to be suthat
student who do nobave the possibilities touse graphics calculat@rare not
disadvantaged. This situation demands some spgc@berties for the test
guestions. They must test mateeper and abstraotathematical understanding
than just mechanical manipulation of mathematical formidaelLower level
courses,Mathematical Mthods andMathematical Studies in IB anithe lower
level mathematics athe Finnish Matriculation Examination, dmot handle very
abstractmathematical problems. A considerable parthef curriculum of these
subjects consists of avd problems [Anon-93]. Theavailability of graphics
calculators mosprobablywill increasethe number of verd problemsboth in the
lower and higher level mathematics.

10 Many IB-schoolsare indeveloping countries. These schools have problems evgatiimg
enough ordinary calculators ftite examinationbecause slideules are no longeallowed from
May 1994 onwards.

11 |In the latest(September 1993) matriculation examination tbé Finnish higherlevel
mathematics thdour easiest problems were calculator active problems (AppéesidixThis
situation causessome problems becausgraphical calculators can based inthe next

examination (March 1994).
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3. PROLOG AS A MODELLING TOOL

In this chapter we investigatehich theoretical features doedagic based model
have andhow theimplementation othe model withProlog is intertwinedvith the
abstractmodelling process. In section 3.1 we shalat Prologhas itsroots in
mathematical logic. Th€rolog clauses have two different readings, declarative
and procedural. The declarative, or descriptive, reading ntakesodel easy to
write and easy tointerpret. We show that the procedurabding of Prolog
programs is analogous withathematical analysis. Isection3.2. weinvestigate
the properties oDefinite Clause Grammaf®CG). We show that thexpressive
power of the DCG isufficient to define a reasonaldeb-set of théanguage of
word problems.

3.1. PURE PROLOG AS A MODELLING LANGUAGE

The TEACHER prototype has been implemented by a logic programming language
Prolog (PROgramming in LOGic). The Prolog's syntaxthst of the first-order
predicate logic formulasvritten in clause form, and further restricted to Horn
Clauses [Brat-86]. The language based on Kiauises is as expressionable as the
first order predicatecalculus [Walk-87]. lrn clausesare alsocalled Definite
Clauses [PeWa-80]. Horn Clauses take the form:

Aif Biand Band...and B

The corresponding Prolog-clause is of the form
A - By, By, ....Bn
This clause can beead, and executed, as a procedure of a recyssdggamming

language, where A is the procedure head and theaf® itsbody [StSh-86]. In
other words this clause can be reladlaratively
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Ais true if By and B and ... and Bare true.

The clause can also be rgadcedurally

to solve (execute) A, solve (executg)dhd B and ... and B, or
todoA,doBanddo B ... and do B [Kowa-87].

The declarative, or descriptive, reading of Prolog programs is an interesting feature
from the point of view of a modelling process. We are able to write clauses that tell
us howmodelling issupposed to happen in general terms anbleasamdime we

get anexecutableProlog program i.e. we cativide a probleminto parts that no
longer have to bdunctionally dependent. We arable to constructrecursive
modelsthat share similar relational features. If we cemarly express how the
model is logically constructed, we then have also an executable model on Prolog.

We can notice thdifference betweethe problem solvingorocess and themodel
constructedwith Prolog. Ourmodel has a definite logicatructure thathas a
correspondence in reality. We also have some featutée model and irreality
that correspond t@achother. Themodel tells ushow we getfrom a certain
feature to another more general featénet themodel tells us this in logical terms
only. The modeldoes notintend to showhow our brains or mindgrocess the
knowledge togetfrom one feature to another. Tineodel is to beaunderstood in
this sense, i.aeclaratively

A logic program is a set of axioms, or rules, defining relationships

between objects. A computation of logic program is a deduction of
consequences of the program. A program defines a set of
consequences, which is its meaning. The art of logic programming is
constructing concise and elegant programs that have the desired
meaning StSh-86].

To understand better tlieclarative interpretation @fur model we have ttake a

closer look at thébasic constructs used in Prolog. These constrinetge their
origin in first order predicate logic. There are three statements in Prolog:

« Facts
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« Rules

« Queries
Facts are Horn clauses with no Tail. (A if True).
The procedural reading of a fact is to do A, do nothing.
Rules are Horn clauses with Head and Tail. (AifaBd B and ... and B.
Queries are Horn clauses with no Head (2i6Bd B and ... and B.

The only data structure in Prolog Iegical term Term can be&onstant variable
or structure Constants are eithatomsor integers Atomsbegin with a lowercase
letter or with aspecialcharacterVariablesstartwith an uppercase letters with
the underscore 12, Structure is a compound terie. a termthat has several
components. The componerntemselves can also B&uctures. Foexample the
structure

triangle(isosceles(top_angle, relation(6,*),base_angle)

mayrefer to an isosceles triangle whaep angle is six timegreater than itbase
angle. Interpretation has to Ils¢atedexplicitly. In this structuretriangle is the
(principal)functor of the term.

It is notplausible, and it imaive to believehat we ashwumangprocessnformation
like PrologmachinesHowever, it is wortmoticing how the Prolog programs are
executedprocedurally The proceduraimeaning ofProlog programs is based on
the principle of resolution[Robi-65]. The resolutiorprinciple may bepresented
briefly in the following form [Walk-87]:

A OAK OA,0-B
BOC, OCK OG,
A OAK OA,0CGOCK OC,

12yariablesthat need not be named are calladonymous variablesUsual convention of

referring to anonymous variables is to use the single underscore _.
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In other words, th@remisesA 0 ALK OA,0-BandBUOC OCK UG, imply
that the statemen®y O A K OA,0COGCK OG, istrué3 If m=0 andn=0
then we have two premisedB and Band no conclusion. In logical terms we have

-B
B

Contradiction

Resolution-based theorem proving&hind all easoning in Prolog-programs. For
instance if we have

f f f
sO-f thisisidentical tof - s which is written f:—s in Prolog-notation.

S S S

Thus, fromfact f and from the rulefactf implies statemerg we conclude that
statements is true(Modus Ponens).

Resolution is based ouanification "Unification is thebasis of nost work in
automated deduction, and the uses of logitgrence in Artificial Intelligence”
[StSh-86]. Aunification algorithm igoresented ifrig 4. Unification, as defined in
many Prologimplementationdor efficiency reasons, doesot exactly correspond
to unification as defined in logiddowever,from a practical point oview this
approximation to unification is quite adequate [Brat-86].

13 This is a shorthand notatidrecauseB and =B may include variablethat initialisewhen
B and— B unify. This procedure may have an affect the tefpand G ..
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Input: Two termsl; and, to heified

Output: 8 , the most general unifier (mgu) Bf anRd , or a failure.
Algorithm:
Initialize the substitutiof  to be empty, the stack to contain thie
equationl; = T, , and failure false
while the stack not empty and no failure do
popX =Y from the stack
case
X is a variable that does not occuYin
substituté foX in the stack and
i adXK =Y t6
Y is a variable that does not occukin
substitut® for in the stack and

iMm ad¥ =X t6
X andYy are identical constants or variables:
continue

X isf (X, K, X,) andy id(Y,K, Y)
for some functér amd> O:
pusiX, =Y J=1,K ,n on the stack
Otherwise:
failure:=true
if failure , then outpufailure ;
else outpl

Figure 4. A unification algorithm [StSh-86, p.71]

Has thisdefinition of resolutionany counterparts irhuman thinking?The word
resolution is of Greekrigin and its Latin equivalent &nalysis The mosfamous
description of analysis is that of Pappus (300 AD.):

In analysis, we start from vat is required, we take for granted,

and wedraw consequenceBom it, and consequences from the
consequences, till we reach a point that we can use as starting point
in synthesis. For in analysis we assume what is required to be done
as already donéwhat issought as already found,hat we have to
prove as true). We inquire fromhat antecedenthe desired result
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could be derived; then we inquire againhat could be the
antecedent of that antecedent, and so on, until passing from
antecedent to antecedent, we come eventually upon something
already known or admittedly true. This procedureca# analysis,
or solution backwards, or regressive reasoniRgly-65].

The two cfinitions for word "resolution” areclosely related. The greatest
difference isthat Prologuses pure computation [StSh-86], wherbasian beings
use different (geometrical) heuristics [Niin-83].

3.2. EXTENSIONS OF PURE PROLOG

The declarativeameaning of pureProlog programsmakesthe program, or the
model wearebuilding, easy tavrite andeasy tounderstand. Fgpractical reasons
of executionalefficiency pure Prolog programs araot possible. All Prolog
implementations offesystem predicates-or example,for arithmetic comparison
there aresystem predicatess and < thatdirectly callthe underlying arithmetic
functions ofthe computer. In additiorall Prolog implementations makese of
meta-logical predicaté$ to enhancéhe expressivepower of the programs. For
example,the term var(Term) tests whether thegiven term is at present an
uninstantiated variable [StSh-86].

A specialpredicate to control and to prevent backtrackingaledcut (written as

I). If inserting acut destroys the correspondence between the declarative and the
proceduraimeaning othe program, the cut alledred cut Otherwise it is called
green cut Use of extra-logical predicatescauses side-effects and declarative
interpretation of the program isot possible. Extra-logical predicates are
concerned with 1/O, or accession @dtaand manipulation othe program, or
interface with the underlying operating system [StSh-86].

14 The name meta-logical predicatésnotes tathe fact that these predicates are teigle the

scope of the first-order predicate logic.
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We have abovdriefly described themain features of logic programming as a
modelling language. To summarise:

« Logic programamay beexpressed in a languagigat iseasy to
understand.

« Logic programs are build to handle relational features.

« Logic programs can beinderstood bothdeclaratively and
procedurally (with the above mentioned exceptions).

These featuremay beapplied to modellingprocesses in general. In tfalowing

we shall introduce a special property of Prolog programs that helps us to model the
word problem-solvingprocess. The TEACHER prototype arsggand generates
mathematical wrd problems. The TEACHERprototype also analyses and
generates equations. We needoal to analyseand generate both thetificial
language of textbook examples, and the artificial language of equations.

Prologhas been designedtine early 70's to natural language processinghlayn
Colmerauer and Robert Kowalski. In 1978 Colmeraurer used a graiommafism

to assist in making a translation between English and French [Colm-78]. Grammars
that may beanalysed byProlog arecalledlogic grammars An extension of pure
Prolog, Definite Clause Grammars hriefly DCG [PeWa-80], is agrammar
formalism that is build imanyPrologimplementations. ThEEACHER prototype
makes use of DCG in two moduldsere, DCG isinitially used toanalyse and
generate word problems and secondly to analyse and generate equations.

In order to understankbgic grammars, we need to make explicit some general
features of grammars. If we want to makeaanuratedefinition of alanguage we
define a collection ofules calledgrammar The rules of a grammaefinewhether

the given string ofwords is avalid (generated) sentence of the language. "In
addition, thegrammar generally gives some kindamfalysis otthe sentence, into a
structurewhich makes itsneaning nore explicit" [PeWa-80]. It iseasy to define
grammars withProlog. Theanalysisand synthesisre forms of inferencehat are
executable by Prolog's inference mechaniBhe grammarbeingsimply an axiom
system or a collection of rules, is declarativaature, anchencethe grammar is
easy to create and understand [McCo-87].
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Type Oor General Rewrite Grammar

Productions of these grammadrave no limitations. It can be showmat
languages of this type are exactly those languages that a Turing maghine is
able to detect [HoUI-79].

Type 1 orContext-sensitive Grammar
There has to be at least msnynon-terminals orthe righthand side as
there are on the left hand side of the productions.

Type 2or Context-free Grammar
There is only one non-terminal on the left hand side of the productiops.

Type 3or Finite State Grammar
Productions take theform X - a¥Y or X- Y
where X andY are non-terminals ama is a terminal.

Figure 5. Chomskian hierarchy.

Logic grammars inherit thesymbolsand notations frontinguistics|Chom-57]. A
grammar is defined as a quadruple (VN,VT,P@)ere VN is the set ofon-
terminals, VT isthe set ofterminals, P ighe set of productionand S is the
starting non-terminal. The alphabet Vtbe language is an union oie terminals

VT and non-terminals VN. Chomsky defined four different types of grammars. The
most general one is of type O atitce most restricted one is of type 3.ths
Chomskian hierarchyFig. 5) thehigher levelgrammar is able tproduceall the
structures that the lowéevel grammar is able tproduce. Inaddition thehigher

level grammar alsgroduces othekind of structures.All productions take the
form

XY

where X andY are strings of alphabets V.
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Type 2 or Context-free Grammars, CFG, and Prolog claarseanalogous. Prolog
clauses have onlgne term on the leftand side othe rule andnany ornone on
the righthand side othe rule.Definite Clause Grammai&sare normally used as
level 2 Grammars. In fact DCG is a generalisation of Context-free Grammars.
CFG-grammarsre usually definedand represented in notation based on Backus-
Naur Form [PeWa-80]. A CFG-grammar defined bystating productiorrules
between the terminals amebn-terminal ofthe language. CFG cannatlequately
describe natural languagejor even many programminglanguages. DCG
overcomes this inadequacy by extending CFGs in three ways (Fig. 6).

1. DCGs providefor context-dependency in a grammar, so that| the
permissible forms for a phrase may depend on the contexttiaw
that phrase occurs in the string.

2. DCGs allow arbitrary tree structures to be built in the course of
parsing, in away that is not constrained by the recursive strucfure
of the grammar; such tree structures can provide a representatjon of
the "meaning" of the string.

3. DCGs allow extra conditions to be included in the grammar rules;
these conditions make the course of parsing depend on aukiliary
computations, up to an unlimited extent.

Figure 6. DCG in an extension of Context Free Grammars [PeWa-80].

After these extensions a DCGnermally still aContext Free GrammatDefinite
clause grammarareessentiallycontext-free grammars augmentedtty language
features of Prolog" [StSh-86, p. 260].

We aredefining asubset of natural language, thaguage of some word problems
found in standard textbook(s), in DCG-notation. Weadnle towrite thelanguage
of these wordgroblems in DCG-notation (Fig@.). This taskmay seem difficult or
even impossibleHowever, it hasbeen argued that wordproblems form an

15The name Definite Clause Grammammes from logic. Prolog is based on Horn Clauses

(Section 3.1) that are also known as Definite Clauses.
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semanticallypoor subset of natural langua¢@obr-68]. Weshallshow in Section
4.3 thatwith the help of acouple of concise DCGs we aable to analyse and
generatall the wordproblems (and more) found ane standaréFinnishtextbook
[PaVo-89]. Thesesimple DCGs areeasilytranslated into othelanguages, in the
TEACHER prototype we have translated them into English (Fig. 10).

Rules for
‘Word-problem-language'
in DCG notation

Generation Parsing

Word problems

in textual form

Figure 7. The language of word problems may be written in DCG-notation.
This notation is used to generate, and to analyse, other word
problems.

To clarify how the DCGs are to be understood we take a closer look to DCG-
notation. The productions of CF@ay bewritten with DCG. DCG is also an
executableProlog program. Therefore we can use itdentify and to generate
sentences that comply with the rules of the grammar. CFG-rules haeidiveng

form:

non-terminal-symbol- body.

where "body" is a sequence of one or mwmsseparated by commas. Each item
of thebody is either a non-termingymbol or asequence of terminal symbols. The
syntax of DCG is presented in Figu8ingthe notation of its own rule3his is a
modified version of[CIMe-84]. Our version considers alsthe backtracking
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mechanism ofProlog i.e.Fig. 8. presents an executaliteolog program that is
tested with LPA-MacPROLOG.

grammar_rule - head, [> ], body, ['.1.

head — non_terminal.

head — non_terminal, [','], terminal.
body — element_of_the_body, !.
body - body, [',], body.

body - body, [';], body.

element_of_the_body - [!].
element_of_the_body - [{], Prolog_goals,[}].
element_of the body — non_terminal.

non_terminal — prolog_atom(X).

terminal(X) - list(X).

list([]) - [I.

list([Head|Tail]) — prolog_atom(Head), list(Tail).
prolog_atom(X) - [X],{atom(X)}.

Figure 8. The syntax of DCG. Modified version of [CIMe-84].

The two first rulesstate that DCGules areidentical with CFG rules. Third rule
allows both non-terminals and terminals to be writterthe head of the rule. The
expressivepower of thegrammar is enhanced atite grammar is able tpresent
context dependent properties (Rule 1 in Fig. 6).

The body ofthe rule consists of oneingle element or of several elements
separated with commas. Tldementmay also be separated with semicolon.
Semicolon is interpreted as a disjunction. The useenficolons ishowever, not
recommended because large grammars then have side-#ffgcare noteasily
eliminated. An element athe body may becut ''. There are someeservation
against cut, but efficiency is improved when cut is used properly.

An element of the body may also be a Prolog goal or several différeloggoals
separated with commas. Each of these goaly call another Prolog program
(Rule 3 in Fig.6). These goals ar@ot satisfiedwhen the logic grammar is
executed. Mey are satisfied togethavith othergoals when execution continues.
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Elements ofthe body may also be terminals gron-terminals. Non-terminals are
Prolog atoms and terminals agenpty lists or lists oProlog atoms [ClMe-84].
Thus the translatidfi of these grammars frologbecomes easi¢6tSh-86]. The
features that arerelevant for modelling mathematical @rd problems are
summarised in Table 3.

Property of the program Feature of the model
Logic may be expressed in a language Models can be made
programs that is easy to understand. transparent.

are build to handle relational Models can be made bi-

features. directional.

can be understood both Two separate meanings of

declaratively and procedurally. |the word "understanding"”.

support advancing through Models may contain

abstraction levels. abstraction levels.
Prolog have been originally designed forWord problems may be
programs natural language processing. | handled efficiently.

have generally a built-in tool, logi®V/ord problems, and
grammars, for language analysis equations, may be analyse
and generation and at the same| and generated and the
time an elegant way to representgrammars may be easily
grammars. understood and enlarged.

=

Table 3. The advantages of logic programming in general modelling and the
advantages of a special implementation of logic programming,
Prolog , in modelling mathematical word problems.

16For reasons aéfficiency DCGsare translated tdifference lists [StSh-86]This can bedone
automatically with a help of a short algorittand theefficiency may beenhanced from O@‘) to
O(n) [ZhGr-88].
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4. THE CONSTRUCTION OF THE MODEL

In the two previous chapters weave investigatedhe properties oflogic
programming as a modellingol, and the relevant theorigbat relate toword
problem-solving. The model ware building between a wrd problem and an
equation shall baleveloped on thdvasis of thistheoretical groundwork. The
constructive part of this study is presented in this chapter.

The Situation Problem-Solve{SPS, Section 2.3)as been used as arspiring
example for the present work. Some of the names dfitfezent abstractioffevels
are nherited fromthe SPS. However, the SR8dour modellook the problem-
solving from different perspectives, and thus the abstractlewels are not
analogous.

The first step inbuilding a word problem solving model is to analyse ordinary
textbookproblems. Chaptet.1 tries to findanswers to questions such as: What
are the typicaproblemsthat are used asfast introduction to mathematicalord
problemsthat are to baolved using equations? Can we find common features of
word problems to group them into different types?

In Chapter 4.2 we analyse the structure of equations behind different word problem
types. Can we find common features of these equations? Or can wdingven
universally applicabléeatures of equationisehind word problems? Furthermore,

can we find analogous features frahe original word problems and ishere a
mapping between these elements?

In Chapter 4.3 we use tlmmswers of the aboveentioned questions to csinuct
the intermediate abstraction levels of the model.
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4.1. THE LANGUAGE OF WORD PROBLEMS AND THE
PROBLEM DOMAIN

We analys@newidely usedFinnish texbook [PaVo-89Jand showthat theresults

can be applied taanother famous Finnish texbook [HeKu-88]. Before the
textbook analysis, we shortly descrif®w the properties dbgic programming
(Table 3.) can be applied to word problem solving.

Themainadvantage of using logic programming aw@delling language e bi-
directionality ofthe model. The traditional, LISP-baseudels of verd problem-
solving processes have strong functional flavour. The starting point of the
analysis has, quite naturally, always b#&®snwordproblem itself. Fronthe days of
the STUDENT system [Bobr-68], word problems have been used in natural
language processing. Also Reusser's SPS-model is bagkd discoursanalysis
and text comprehension of van Dijk and Kintsch.

WORD PROBLEMS IN MATH AND PHYSICS

Hatunal language

PROBLEM TYPE 1 I

EQUATION 11

" [EQUATION 1K

| PROBLEM TYPE 2 I

EQUATION 21

| PROBLEM TYPE n

‘|EQUATION 2n

EQUATION 31

‘|EQUATION 3p

Figure 9. The starting point of traditional models for word problem-solving
has been word problems and the problems concerning natural
language understanding.
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An overview of the traditionainodels is shown in Fig. 9. Tigreatesproblem is
thediversity of natural language. the SPS thiproblem is bypassed by giving the
word problems tothe SPS as dist of micropropositions obtained from the
sentences of the probleext (Table2). Deriving these micropropositions from the
text is in fact aressential feature of avd problem-solving. We canot leave this
important phase without consideration.

We can not analyse natural language with computeitsye want tanalysewvord
problems presented in textual form wibmputers. Wédave solved thisnomaly
by creating an artificial languader word problems. The grammar of this language
is written in DCG-formalism. Infact, different problem types (Fig. 9) need their
own DCG-grammars. Textbook ond problems are usually presentedusing
different categories or problem types. Therefore fiassible to define grammars
for different problem types by analysing ordinary textbooks.

Time and change aressential components of situation problems i.e. problems
where states, even@nd actionsplay the main role [Reus-87b]. We do not
consider these problems, because it is still an open question, how to represent time-
dependent data in databases (Section 2.3). Sitvation problem solving is
important forvery young childrerbut thealgebraicstructure of the equation is
more important for older students "who know vergll the problem types with

their associated mathematical reasoning strategies” [Reus-89].

We are concentrating on ordinarprd problems of secondary school teabks,
where theproblems of time and changee normally bypassed. The theoretical
background of the TEACHERodel is quite different frorthe traditionaimodels.
In the TEACHERmodel weare interested in thoseathematical wrd problems
where theexplicit goal is to construct an equation asalve it. This isthe most
common type of word problems in secondary and high school textboBkdand.
One can argue like Reusser:

Many textbook math problems are not intellectually challenging because they
are formulated as semantically poor, disguised equations instead of thinking
stories or situation problems, which dwt allow students bypass thorough
semantic analysis in order to solve thfReus-88].

However, thesemanticallypoor word problemsare widely used inmathematics
and physics textbooks. We wanted tbuild a simplified testenvironment for
modelling the problem-solvingprocess. In doing this we cho#ieat part of the
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curriculum [Anon-82] wherenathematical wrd problemsare to be solved birst
forming an equationThis isanotherdifference betweethe traditionaimodels and
the TEACHER model. The traditionahodels have beemainly interested in
elementary arithmetical ovd problems [BrLa-84, CoVe-85, Reus-87b]. The
TEACHER model concentrates on thdirst introduction of algebraicword
problems. This part othe curriculum is extremely important because of the
conceptual changesviolved in moving from arithmetic to algebmspecially the
maturation of the concept efjuality[Matz-82]. This subject igaught inFinland
at the end of the 7th school year to 14 year-old students.

The mostwidely used textbook ifFinland inthe beginning 0f1990's [PaVo0-89]
was chosen as a starting point. Firgirablem-analysisvas carriedout. Most of
the examples were mechanical i.e. of the form "sthleeequation..." andnly 37%

of the problems vere of theform "build an equatiorand solve it". Theword
problems could quite easily be divided into four categories (Egblehe textbook
encourages students to solverd/problems by first determining its problem type
or problemcategory. Thdirst category literal representation of an equation, is a
simple one and it isnot takeninto further consideration. Theemaining three
categories, age problems, triangle problems, and money-sharing problems, form the
test-problem group for the TEACHER prototype. The test-problemsaljre
surprisingly, of the same, and indeed semantically poor, type.

The same problem typeseve found in anothewell-known Finnish textbook
[HeKu-88]. Surpisingly, the grammar forthe triangle problems developed on the
basis offPaVo-89](Fig. 10), was adequate &malyse alsthetriangle problems in
[HeKu-88].
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Problem type Typical problem % Equation
_ Form an equation and solve:
Literal A certain numberthat is| 20/32

representation | multiplied by fourteen is =
of an equation | equal to the mduct where] 60%
the sum ofthe member and
one is multiplied by four
Father is thredimes oldel
Age problem | than son. If you add the age3/32
of the father and the age |of= Xx+3x = 60
the son youget 60 years, 10%
Form an equation ansblve
it to find how old the father
and the son are.
The top-angle of an 3/32
Triangle isosceles triangle is four=
problem timesgreater than thease{ 10% | x+x+4x =180
angle. Build an equation and
solve it to findthe degree
of the angles.
Jim, Jane and iB were
Money sharing | thinning  carrots.  Jim 6/32
problem worked twotimes as much = X+2x+3x = 366
as Bill and Janeworked| 20%
threetimes as much asilB
Build an egation and solvs
it to find how the 366 m
pay should be shared.

14x = 4(x+1)

[2)

D

A

Table 4. The different problem types of a widely used Finnish textbook
AHAAY [PaVo-89] for 7th graders. The problems are from that part
of the curriculum, where mathematical word problems are to be
solved by first forming an equation.

4.2 DCG-GRAMMARS

In this section westart to discussthe model construction togethemith
implementational issue€Our main aim is to build amodel in terms oflogic
programming. Thenain emphasis othe implementational issues can be found in
this section. The final part of thisodel (Section 4.3) isnplemented problem type
specifically i.e. new problem types canot be added automatically. We are
describingthe model andthe prototypedeclaratively. A further research question
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is: are we also able to implement the rest of the model , Section 4.3, ussagrhe
DCG formalism as we have done in this section?

In the previous section we satlvat word problems can bgrouped into four
different types. The secorstep is toanalysethe equationdehindthe textbook
word problems.

Before westart toanalyseequations we shortly descriliee properties of Prolog
programs (Table3.) and especially the properties of LPA-MacPROLOG 3.5
[CIMc-88]. The language dhe wordproblem andhelanguage of equations must
first be transformed into a list edkens. Tokens areasic elements.g. words or
numbers, othe text or of the equation. $hould benoted that naapital letters
may be used in Prolog. Capital letters start the names of variables in Prolog.

Equations and word problems are given in strings and not as lists of tokens, e.g.

"In triangle ABCthe angle A is two times as big &lse baseangle B and the
angle C is six times as big #® angle B. Form an equation and solve ifibol
the angles of the triangle."

or "X+ 2x+ 3*2x = 180"

The predicate

tokenise(String, List).

transforms a given string , i.e. a word-problem or an equation, into a list of tokens.
First a string is decomposed into lettedggits and characters such as question
marks, comparison operators (>, <) €apital lettersare transformed tordinary
letters andfill chars such as spackne brake etc. arebypassed. Thesingle
characters are further cbmed to different kinds otokens such asvords,
numbers, or specialharacters. If for instancene variable String is instantiated

with "x + 2x + 3*2x = 180":

tokenise('x + 2x + 3*2x = 180;'List),

then the variable List is instantiated with: List = [x,+,2,x,+,3,*,2,X,=,180].
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Before we continue with this list representation of an equation we reiterate that the
basic idea behindhe TEACHERSsystem is tolook at themathematicalword
problem fromthe equation (Figl). The word problems weare interested in are of

the form "build an eqation and solve...". Therefore the equation can be
represented as a set of objects, operatiand relationsthat all have a
corresponding entity in the word problem.

The equations in Table 4 haa#f aninteger value athe righthand side of the
equation, and the leftand side is a sum or difference of twotlmee objects. The
equations can be represented in the following general form:

objectl operation object2 operation objeacguals total value
or

objectl operation objectZzquals total value

In the case of thériangle problem in Table 4he objects are thangles of a
triangle andhe operationgell us to sunthese objecttogether. The lefhand side

of the equatiorforms a combined object (sum thfe angles of a triangle) and the

right hand side othe equation is another object (180 degrees). Thus the equation
can be seen as an equivalence relation between two mathematical entities, or
objects:

LEFT-HAND-SIDE-OBJECT equals RIGHT-HAND-SIDE-OBJECT

The OBJECTs can be decomposed intooedered set of objecsnd operations
(left hand side) othe OBJECTgmnay repesent asimple value(right hand side).
The decomposed objects have, in equatibias arederived from mathematical
word problems, relationships with eaokher. In other words the equatioan be
decomposed into a set of objects, operatams relations between these objects.
This formal orcontext freemodelmay beapplied tothe underlyingequations of
the word problems found in Table 4.
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We are now ready toonstruct thdirst transformation othe model. The above
mentionedanalysis of an guation is performed usinBCG. The starting non-
terminal iséquation’ The predicate

parse(List, Structure, Grammar_rule).

builds a syntactistructure of thegiven word problem. Thevariable List is the

original equation transformed into a list of tokens @ndmmar_rule ishe starting

non-terminal (Fig. 8) of the grammar. If, for instance,waBable Grammar_rule is
‘equation’and the list is [X,+,2,X,+,3,%,2,X,=,180] then the Structure is:

obj(obj(x),obj(2*x),0bj(3*2*x),0per[+,+]) , 0bj(180)
In other words, wénave two objects obj(180) armhother object thatonsists of

three sub-objects, obj(x), obj(2*x) and obj(3*2*x), and operations, oper [+;4],
that bind these sub-objects together. We call this strutttareontext free model

This general model of aequation, or the context freeodel (Appendixl), can be
constructed withoutknowing the werd problem it will represent. The
transformation between an equation and the contextniiedel is implemented
using logic grammars. In grammi@mrmalism we have implementéke usual way
of writing an equation from text. For instance, if we have the following equation:

"X+x+60+2x=180"

we get the left-hand-side-objects:

obj(x) , obj(x+60) and obj(2x)

or some other possible combination e.qg.

obj(x) , obj(x), obj(60), and obj(2x)

All operations between the objects are '+'. The former combination of objects has a
representation in triangle problentsit the latter does nbiave a representation in

any ofthe problem types in Table 4. Whaay also want to expressyhich object

we want to process. This is done by using parentheses:
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"(x)+ (x+60) + (2x) = 180".

The transformation between an equation and the corresponding conterbifele

is not arbitrary. We ardransforming equations into set of objectghat have
corresponding entities in aond problem. Therefore one object, obj(x), has to be
the unknown. Other objectgave to be representeding this unknown. In other
words, there has to be a relation between different objects. For instance:

obj(2x) is 2*obj(x).

If we want a more sophisticated model, ardy have to recursivelgecompose

the objects intemallerobjects or entities. This recursive decomposition is needed
in high school physics problems, or one generally in problemsvhere wehave
simultaneous equationBut in our model the illustrated decomposition is
sufficient. Infact, relations such as: top-angle is ftiares greater thathe base-
angle,may berepresented in a form ofsampleequation. Thus also thexamples

in Table 4are fornally solved by solving simultaneoegjuations. However, this is
not theway weintroduce the solution process to students. The traditivaglof
teaching students to solve these problems starts from noticing the objects, relations
and operations fronthe textualform of the problem. The traditionavay of
teaching to solve mathematicabmd problems is analogous with Polya's way of
introducing the subject (Fig. 11Jhis discussion endse first transformation of

the model, the transformation between an equation and the context free model.

The next transformatiostartsfrom the textualform of the wordproblem. Our
ultimate aim is to find a mapping between anatium and a wrd problem. We
have describedhow to transform an equation into an ordessd of objects,
relations, and operations. The transformation from an equatiothetcabove
mentioned general forngontext freemodel (Appendix 1) inthe TEACHER
prototype, is implemented bi-directionally by a logic grammar. Logic grammars are
also used in the transformation ofrathematical wrd problem bi-directionally

into a formal representation that weall the textbaseA logic grammar of the
triangle problems is in FiglO. The textbase is composed a#rtain entities -
objects, relations and operations - that are derived from the text.
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triangle((P,R,Q)) - problem(P), condition(R), ['.], question(Q), ['.]
condition((R1,R2)) - condition(R1), [and], condition(R2).

condition(R) - relation(R).

problem(spec_object(triangle, Name)) - [in, triangle, Name], !.
problem(spec_object(triangle)) - [in, triangle].
problem(spec_object(isosceles_triangle)) [in, an, isosceles_triangle].
relation(rel(A, C2, ™™, B)) - object(A), [is, C1, times, as, big, as], object(B

{make_num(C1, C2)}.

relation(rel(A, equals, B)) object(B), [is, as, big, as], object(A).

i

relation(rel(A, C,'+,B)) - object(A), [is, C degrees, bigger, than], object
relation(rel(A, C,'+,B)) - object(B), [is, C degrees, smaller, than],
object(A).

object(top_angle) - [the, top, angle],!.

object(base_angle) - [the, base, angle],!.

object(Name) - [the, angle, Name].

guestion(question) -

[form, an, equation, and, solve, it, to, find, the, angles, of, the, trian

B).

gle].

Figure 10. A simplified DCG grammar to be used with Prolog both to
recogniseand toparsethe sentences it defines, andyemerateall
its sentences.

Word problems are given in strings and not as lists of tokens, e.g.

"John is fourtimes as old as Mary. If yosubtract the age of Jolfwom the age
of Mary youget 60years. Form an equation and solve it to fld how old

John and Mary are."

The first phase athe lexical analysiss done with the same predicalat is used

to tokenise equations:
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tokenise(Word_problem, List).

The predicate transforms a word-problem, into a list of tokens. The predicate

parse(List, Structure, Grammar_rule)1’

builds a syntactistructure of thegiven word problem. Thevariable List is the
original word problem transformed into a list edkens andsrammar_rule is the
starting non-terminal (Fig. 8) of a fitting problem type (Tad)elf, for instance,

the Grammar_rule istriangle’ then the program uses a DCG-grammar to parse
triangle problems. A simplified DCG-grammar for triangle problems is presented in
Fig. 10. This grammarmay beenlarged by adding more detailed rules for the
language. In fact only a small fraction of the possibilities of DCG-grammars is used
(Section 3.2).

It is possible to build parse tree of the wongroblem using DCG-formalism. The
DCG syntax presented in Fig. 8 able to buildthe logcal form of the word
problem. In Fig. 8the non-terminal symbolsre Prologatoms If we allow the
non-terminal arguments B&rologstructures(Fig. 10) then DCCGcan be used for
building syntacticstructures ingtad of logical formgMcCo-87]. We areusing
DCG-grammars t@roduce thenathematical meaning dfie wordproblem.With
the help of DCG-grammar wareable to separatéataand condition, to separate
the different parts of the condition anddate theelations between th#gata.This
phase is analogous with Polya's scheme (Fig. 11). The same griommaism is
used to generate all the word problems the system is able to recognise.

17The predicate parse is the following:
parse(List, Structure, Grammar_rule):-

X=..[Grammar_rule, Structure, List,[]),

call(X).
If the first clause, with the built-in predicate=.., is true then anew term
X=Grammar_rule(Structure, List, []) is constructebhis new term is not asyntactically
acceptable claus&Vith another built-in predicateall , whoseargument is the goal X, this

problem can be solved.
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Word problemsaresaid to be semanticallyoor [Bobr-68, Reus-88]. Ouiindings
verify this statementAll triangle word problems found iriwo Finnishtextbooks
for seventh graderf$’aVo-89, HeKu-89havethe abovementioned grammar. In
other words, the TEACHER is able to recognise amalyse althese problems. In
addition, the TEACHER can generate more (relevarahlems than can be found
in these textbooks. Enlarging TEACHERsiligb to solve different types of
problem can be performed by inserting grammars into the system.

4.3. A MAPPING BETWEEN AN EQUATION AND A WORD
PROBLEM

We have analysethe structure of an equation. The equatiamderlying a basic

word problem, has a definitstructure. Wehave shownthat it is possible to
transform this structure into a contelxée model. Nearly analogousructure
(textbase) can be found frothe textualform of word problems. Thénal phase

of the construction is to find out if there exists a mapping between the textbase and
the context free model.

It is possible to define, witbCGs, thelanguage of ordinary mathematicabrd
problems. Using this grammar vege able to transform a erd problem into a
textbase. The transformation betweeoravproblem andhe textbase is doneith
the predicatE:

from_text to_textbase(Word_problem, Textbase):-
tokenise(Word_problem, List),
parse(List, Structure, Grammar_rule).

For instance, if variable Word_problem is given the value:

"John, Paul, and Mary delivered advertising leaflets. Rauked six times as
much as John and Maxyorked fivetimes as much as Patdow should the
£285 pay be shared?"

18The variable Grammar_rule is instantiated véthimplemented starting non-terminals of the

DCG-grammars. Only one of them is possible in this prototype.
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then the result of thiexical analysisthe parse tree of the womtoblem, is the
Textbase:

textbase(object(john,paul,mary),relation(paul,6,*,john),relation(mary,5,*,paul),
object(tot_value(285), question(all_objects)).

However, the parse tree it easy toread because it is ongngle Prolog
structure. We want that the textbasebislt during the processing in a more
readable form. For this we apply an uncommon property of Prolog programs.

A special proprty of Prolog programs is the program'slighto modify itself.
New clausesnay beasserted aneéxisting clausesnay beretractedduring the
runtimel®. An excessiveuse of thesdacilities mayobscure themeaning of the
program. The resulting programay becomedifficult to understand andificult

to explain[Brat-86]. We demonstrate these featuresabsertingonly thosefacts
and rulesthat logically follow from the programAdding such clausewill not
affect the meaning ofthe programsince no new consequences can be derived
from it [StSh-86]. The TEACHER asserts facts (datd conditions) and relations
between the datthat are obtained by thebove mentionetkexical analysis. The
TEACHER also deduces new facts frdhe obtained relations. In textbase we
now have objects, relations between these objects and the unknowns.

We are nowable topresent an instance tie textbase of the aboveentioned
word problem in the following form:

fact(object(john, paul, mary)).
fact(rel (paul, 6, *, john).
fact(rel(mary, 5, *, paul).
fact(total_value(285)).
question(john, paul, mary).

We have now shown how to construct two abstrad#@oels,textbase and context
free model. Thecontext freemodel is a collection of objects, relations, and

19 Using extra-logical predicatessertandretract it is also possible to introduce set-predicates

that produce sets as a solution. This is one example of second-order programming [StSh-86].
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operations. Some corresponding componentsrassingfrom the textbase. The
additional components can be derived fritta knowledgehat has been learned
previously. The textbase is enlarged, we call the new abstréetrithe enlarged
textbaseif necessary with the help of general mathematical knowledge

aequalsb ifandonlyif ais 1*b,

or context specific knowledge

the sum of the interior angles in any triangle is 180°.

In the abovementioned problem type no general mathematical knowledge is
needed, but we need to use tbikowing contextspecificknowledge: thesum of

the moneythateach personggs is the total amount of tmeoney to beshared. In
other words, the extrenowledge is : the operations [+,bind the sub-objects
john, paul and @y together to darger object, and this new objecteiguivalent
with the total amount ofmoney to beshared. The extra knowledge is inserted to
the textbase with the predicate:

enlarge_textbase(Textbase, Enlarged_textbase).

The next phase is to choose the appropnatgable. We then can express all
objects usinghe unknown. Wecall this abstractionlevel the context sensitive
level It contains informatiorthat isneeded tdbuild anequation. Thedollowing
heuristic is used to selettte variable:Try to avoid structuresvherethe unknown

is in denominatar Therefore Mary and Paul can't be selected as unknowns. The
unknown will be John, or in fact John's share. Tlek between theenlarged
textbase, and the context sensitive model is the predicate

from_structure_to_model(Enlarged_textbase, Context_sensitive_model).

An instance of the context sensitive model of the previous example is

variable(john).
rel(paul, 6, *, john).
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rel(mary, 5, *, 6, *, john).
objects(john, paul, mary).
operations_between_objects([+,+]).
object(tot_value(285)).

Building acontextsensitive model is ore orless analogous to phased&vising
the plan, in Polya's scheme (Fig. 11fjtre connection between the datad the
unknown are presentexkplicitly. Related problemare problems wheré¢he total
amount ofmoney has to bshared. Choosing the unknown is done with the
described heuristic.

The predicate

from_model_to_model(Context_sensitive_model, Context_free_model).

transforms the contexdensitive model to relations between two obj¢lcts are
equal, wecall this abstractionlevel the context free modellhe objects may
contain sub-objects and operations between the sub-objectastance of the
Context free model of the previous example is:

object(x) + object(6x) + object (5*6x)equals tot_value(285)

Here all the connections to the meaning of the word problem are set asmtdyand
those features that are left &ssential to fornthe equation. The last phase is to
transfer the context free model to the equation. This is done with the predicate

from_model_to_equation(Context_free_model, Equation).

The last phase igivial if we are looking at theroblem-solvingprocessfrom
word problems to equation (Fib). But our steiing point was in fact the equation
andnot the wordproblem. We have described in Sectb@ how totransform an
equation to a context frerodel. This islone with the abovmentioned predicate
where variable Equation is instantiated and the other variable is uninstantiated:

from_model_to_equation(Context_free_model, Equation):-
tokenise(Equation, List),
parse(List, Context_free_model, equation).
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The predicates between each pair of two consecutigeels, e.g.
enlarge_textbase(Textbase, Enlarged_textbase)., can be us$e&d imays: to
generate the Enlarged_textbdsam the Textbase, or to generate the Textbase
from the Enlarged_textbas€ombining allthe abovementioned predicates under
one predicate, wdave the TEACHER prototype, without the usertariace
module:

from_text to_equation(Word_problem, Equation}-
from_text_to_textbase(Word_problem, Textbase),
enlarge_textbase(Textbase, Enlarged_textbase),
from_textbase _to_model(Enlarged_textbase, Context_sensitive_model),
from_model_to_model(Context_sensitive_model, Context_free_model),
from_model_to_equation(Context_free_model, Equation).

If variable Word_problem is instantiated (giveten theresulting equation is
formedtogetherwith the abstractiofevels,the Textbase, the Enlarged_textbase,
the Contextsensitive model, anthe Context free model. If theariableEquation

is instantiated (given) thethe abstractiomevelsarebuilt. Thereare usually many
possible Textbasdblatcan be built fronone equation. Each of these Textbases is
used to generate all the possible word problems that the DCGs can génergte
the grammar in Fig. 10.

In this chapter wéave showrmow the TEACHER prototype was constructed. At
the samdime we haveonstructed #ogic based moddbr word problem-solving.
We call this modethe TEACHER model. It i;ot easy to sparate the abstract
modellingprocess and thienplementation witiProlog. Therefore the result tfis
construction iscalled the TEACHERSsystemthat contains both anodel and a
prototype.

20 The program generatedso Finnishword problemsThis may be avoided by selecting the

language. The selection is part of the user interface module of the TEACHER .
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5. THE BI-DIRECTIONAL SYSTEM

In Chapter 4 we constructed the TEACHERdel. In this chapter wiavestigate
the properties of the TEACHERystem i.ethe model andthe prototype. The
main predicate of the TEACHER prototype, from_text to_equation(Text,
Equation), is a relation between the textieam of the wordproblem and the
equation. Other predicates describe the relations betddenent abstraction
levels of the TEACHER system (Fig. 2, Appendid). Prolog programs are
basically relational and therefore ware able to considethe problem-solving
processirom the student'siew, from text to equationand fromthe textbook's
view, from equation taext. In fact, if we araisingProlog as anodellingtool we
cannot, strictly speaking, eparate these twaews (Fig.1). In this chapter we are
studying the applications of the system.

5.1 THE TEACHER AS A WORD PROBLEM GENERATOR

We havecreated amrtificial languagdor word problems (Sectiod.2). Or rather,
we have invented a method Wwich the creation of the word-problelanguage is
possible. We use different grammars for different problem typesqFignlarging

a grammar of a problem type means we aalyse rore wordproblems from the
same problem domain. By changitig lexical part of thegrammar we can change
the language, in thisersion Englishand Finnish. Usinganalogous method,
textbookanalysisand DCG-formalism, we can widehe scope of thgroblems
that thesystem is able to analys€he system isentirely bi-directional. In this
section we investigate the transformation from an equatitimettextbase to word
problems.

As we have seen iRhapter 2, the history ahathematical wrd problems is
intertwined with theébasic problems of natural language understanding. Traditional
models of word problem-solving systems (Fig. 9pok the problems uni-
directionally fromtext to equation. If we want tbuild a computerenvironment,
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where true wrd problemsare to be solved, whave first to overcome the
manifold problems ohatural language. The problemoisviously unsolvable if we
do not restrict the natural language tsiraplified subsetThis iswhat Bobrow did
in his STUDENT system. Bobrow showed that

The STUDENT systermhich accepts amput a comfortable but restricted
subset of English, can be used to expresside wariety of algebra story
problems[Bobr-68].

Bobrow usedsimple patternmatching heuristics to buildis famoussystem. The
grammar ofthe text that wascceptable to the STUDENT wagdden in these
pattern matching statements.

From the context freenodel ofthe equation we arable toconstruct a group of

word problems. The TEACHER first checkshich problemtypes arepossible
(Appendix 1, Table4). The problem typemay be, for example, "Triangle
problem”, if there are three objects, the operations between these objects are "+"
and there is a natural number 180 on the other side of the equation.

WhenTEACHER knows theossible and selectadbntext , thesystem is able to
construct a contexdensitive model (Appendik). In the presentersion, we use

fixed expressions e.g. the name of a triangle is ABC and the angles are A, B and C.
When speciaknowledge of a context argeneral knowledgare takenoff from

the context free model, we get the textbase (Appendix 1).

The textbase is a collection of objects, relations between these object, and
operations that combine these objects to larger objects. The entitestektbase

have a representation the text. The textbase iscambination of exactlyhose
entitiesthat arerelevant fromthe point ofview of the problem-solvingprocess. It

is possible to find these entitiestire wordproblems weare interesteth, because
these problems are ordinary textbook problems:

The general characteristics of textbook problems: well-defingtd wne
solution whichthe teacher already knows; the solution is obtainable with one's
own recoursesgalculations workingout evenly indicate being on the right
track; confinement to relevance and non-ambiguity: everything that is relevant
to the solution is stated in the text, and everything that is stated is relevant; the
explicit problem question is always presemtd highly informative; all
problems are solvablgReus-88].
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The transformation between the textbase and the testumalof word problem is
implemented by logic grammars. Frdime textbase the TEACHER generates a
group of wordproblems to a certain probleanea. There is specific grammar for
every problem typeone fortriangle problemspne for aggroblems andne for
money sharing problems the present prototypeersion. Each of theggrammars
defines unanimouslthe languagethe TEACHER prototype iable tounderstand
and generate. The grammarg easy tointerpret anceasy to enlarge. So we may
broaden thesystem togenerate moréexical variants from a singléextbase. We
can also im@mentnew grammars for newroblem types. Thus ware able to
enlarge the system in a restrained manner.

To summarise: If we givehe TEACHER prototype an equation as an input, the
systemgenerates a group of wopdoblems to every possible problem type (Table
4). If we do not want to restrict theumber of vord problems in anyway, the
TEACHER generates all those problems that caanadysed byhe prototype. All

of the generategroblemsare understandable anday befound in standard
English or Finnishtextbooks. Een if we donot consider somdrivial lexical
variants, thenumber ofthe wordproblems generated lifae presenpreliminary
version may be counted in tens or hundreds.

5.2. THE TEACHER AS A MODEL OF WORD PROBLEM-
SOLVING PROCESSES

The construction of théogic based modettartedfrom an equation and from a
textbook analysis simultaneously. Thifirst phase gavetwo abstractlevels,
textbase and context-free model as a result. A leeel, the enlarged textbase,

had to be added to maintain the correspondence between objects and relations. For
a similar reason some of the objects or relations had to bedékanrearranged.
Thefinal level to beconstructed was the contesgnsitive model. In this section

we shallshow that the result of the constructign quite surgsingly, analogous

with Polya's way to teach word-problem solving.
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First, weshalloutline themeaning othe words'problem™ and "problem-solving”.
The basic characteristics of a problem are universally agreed:

« The desire to attain songeal.

« Themeangby which this goal is pursued.

« Unawarenes®f the process, hoor by which combination of means) the
goal can be reached.

Eloranta [Elor-74] has comprehensively discussed different problem-solving
methods and heuristics. The above mentiadefohition is also irmccordancevith
Polya's definition of problem-solving:

To have a problem means: to search consciolgglpome action appropriate
to attain a clearly conceived, but not immediately attainable, aim. To solve a
problem means to find such actigtoly-65].

Lewis has studied the specialist skillgie domain of algebra. To solve an algebra
problem meanshat one rastemploy two kinds oknowledge [Lewi-81]. First,
the solver must know an adequatg of correct operation$his corresponds to
the meansof the definition of a problemSecond, the solver must know how to
selectan appropriate operator tse atgiven juncture.This corresponds to the
action of the definition of problem-solving and also tbe combination of means
of thedefinition of a problem. So, we can fiadl the basic principles of problem-
solving in algebraic problem®&escartes tried, anfdiled, toreverse this process.
Here is a rougloutline of theschemehat Descartes expected to dggplicable to
all types of problems [Poly-65]:

« First, reduce any kind of problem to a mathematical problem.

« Second, reduceny kind of mathematical problem to a problem of
algebra.

« Third, reduce any problem of algebra to a solution of a single equation.

"When a highschool boy solves avord problem™ by "setting up equations”, he
follows Descartes' scheme and in doing so pnepareshimself for serious
applications othe underlying idea’[Poly-65]. Polyahimselfconsiders thgeneral
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problems fronthe samenathematical perspective BescartesPolya argueshat
in any problem there must be

« anunknown
« somethinggiven(the data)
« acondition which specifies how the unknown is linked to the data

These concepts can be found in the textbase of the TEACHER. Question,
guestion(A,B,Cin the textbase, is a collection aif the unknowns of thproblem.
Objects,objecs(X,Y,Z) in the textbase, refer to thevenfeatures of theroblem.

This is,however,not astraightforward thing. We should rathgay that what is
given is the explicivaluesof the objects, and those objetitathave no values are
unknown. In the prototype there are jiggntical entities irobjects(X,Y,Z) and in
question(X,Y,Z). Thus it is better to state that imahematical wrd problem we

have some objects, of which some are unknown, and that we have some conditions
thatlink these objectsogether.These conditions are represented in the textbase
with relationsbetween the objects and witperationsthat combinethese objects
together to darger object. In fact we have operations between objects, where
some objects are unknown and someexgressible by known objects or by the
relations of these known objects.

Although great scientists like Poincare and Einstein have been interested in
heuristics, the reaknaissance of heuristics in mathematics beganaitdyPolya
[Elor-74]. Eloranta states that th&olya's heuristicsare probably (and
unfortunately) not widely used in the mathematics teaching.

The "word problems" of the high school are trivial for mathematicians, but not
so trivial for high school boys or girls or teachers. | thilloweverthat a
teacherwho makes an earnest effort to bring Descartes' advice, presented in
the foregoing, down to classroom level and to put it into practideavwoid
many of the usual pitfalls and difficultig®.oly-65]

In the following we shallshow that the TEACHERnodel quiteclosely follows
Polya's guidelines (Fidl1l) and Descartes' scherpeesented by Polya [Poly-65].
Our model is nearlyanalogous with Descartes' scheme.€ehgphasise thiaspect
we use thdollowing notation.Polya'sown words [Poly-65], printed ialics, are
used to explain some features of the TEACHER model.
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HOW TO SOLVE IT

UNDERSTANDING THE PROBLEM
First. You have to understand the problem.

What is the unknown?
What are the data?
What is the condition?
Introduce a suitable notation.
Separate the various parts of the condition.
Can you write them down?

DEVISING THE PLAN

Second. Find the connection between the data and the unknown.
Do you know a related problem?
Look at the unknown.
Here is a problem related to yours and solved before.
Could you use it?
Could you use its results?
Could you use its methods?
Could you think of other data appropriate to determine the
unknown?
Could you change the unknown or the data, so that the new
unknown and the new data are nearer to each other?
Did you use all the data?
Did you use the whole condition?

CARRYING OUT THE PLAN
Third. Carry out your plan of the solution, check each step.
Can you see clearly that the step is correct?
Can you prove that it is correct?

LOOKING BACK
Fourth.  Examine the solution obtained.
Can you check the result?
Can you check the argument?

Figure 11. Polya's guidelines for solving word problems [Poly-45].

First of all, the student should not start doing a problem before he has
understood it. It can be checked to a certain extdrgtherthe student has really
understood the problem. He should be able to repeat the statement of the problem
(objects(A,B,C) in the textbase)point out the uknowns of the data
(question(X,Y,Z) in the textbaseand explain the conditions in h@avn words
(relations and operations in the textbasehe can do all this reasonabiyell, he

may proceed to the main businels.other words, to beable toconstruct a
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textbase is gufficient condition tqoroceed. The textbase represents the notes that
are written down when the student tries to understangrdidem (Fig. 11). If we
consider the samaroblem as in Sectio#.3.1.e. "John, Paul, and Mary delivered
advertising leaflets. Pawlorkedsix times as much a®hn, and Mary wdeed five
times as much as Paul. How should the £285 pay be shared?" then we have:

The Textbase The notes of a student or of a teacher
fact(object(john, paul, mary)). Three persons: John, Paul and Mary
fact(rel (paul, 6, *, john). + Paul works 6*John

fact(rel(mary, 5, *, paul). « Mary works 5*Paul
fact(total_value(285)). « They have to share £285

guestion(john, paul, mary). + How much John gets? How much Paul gets?
How much Mary gets?

"An equationexpresses a part of the condition. The student should be able to tell
which part ofthe condition is expressed by an equation that he brings forward -
and which part isnot yet expressedlh the TEACHERmModel the part of the
conditionthat is notexpressed is problespecific or "Knowledge otontext i* in
Appendix 1, or is in art of "General knowledge" in Appendix 1 lur example

we have toadd a new object to the textbase. The new object is obt&oed
object(john,paul,mary) by adding operatiahst bind these objects to a larger
object:

Enlarged textbase The notes of a student or of a teacher
operations_between_objects[+,+]} How much do John Paul and Mary get
altogether?

"An equationexpresses the same quantity twmo different ways. The student
should be able to teMvhich quantity is so expressedlhe quantity is, in our
examples (Tabld), thesum or difference of ages age problems, the sum of
money inthe abovementioned money sharing problems, éimelsum of angles in
triangle problems. The similar types of quantities can be found in the
corresponding problem types (Fig. 9).

"Of course, the student should possess the relevant knowledge withionthe
could not understand the problenCbmputers camot analysenatural language.
Therefore this kind of relevant knowledge is beyond the system's boundaries.
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"Many of the usual high school problems are "rate problems". Before he is called
upon to such a problem, the student should acquire in some form the idea of
"rate”, proportionality, uniform change.This is alscone of themain aims of the
study: to present a method Wich the student catearn to handle "ras" or to
understand theneaning ofrelations. The TEACHER modebncentrates, ithis
discipline, on representing conditions of te&t byrelations. Tadbuild the textbase

is to build an intermediateepresentation between therbal representation of a
problem and itsymbolicrepresentation as an equation. To teach the students to
use an explicit intermediate representation has proven tosigaucantand long-

term effects orthe student'snathematical wrd problem-solving abilitie§SeBe-

91].

The TEACHER model tries to malexplicit those factors that are known to be
relevant in theteaching of word problem-solving [Poly-65]. The choice of an
inappropriatevariable is acause ofmanyerrorsand the studenhayeven give up
trying to solvethe problem if he doesn't finthe adequateariable. The questions
related to the choice ofvariableare discussed in the next section. Aftkoosing
the variablethe we areable toconstruct a contexdensitive model ofhe problem
(Appendix 1).

The contextsensitive model containall the information, derived frontext and

from extra knowledgehat isneeded to solvehe problem. If a student cdorm a
context sensitive model, he knows all the relevant features of a problem. He knows
exactlywhat extra knowledge is needed and he knows what are the unknowns in
the problem. Often a studeblpasseshe contextsensitive model andgoes
directly tothe context free wdel. Thecontext freemodel hasall the information
needed to fornthe equation, but the context fresodel does notinclude any
informationaboutwhich objects are to be solved. éther words, it is quiteswal

that studentsolve problems by buildingquations, buthey donot know what the
answer represents in thgoblem text. If students want to write thanswer
correctly, they have to go back tive textand do theanalysisprocess once more.

If, however, they have formed @ntextsensitive model, abstractly or formally,
they have at the same time carried along the meaning of the variables.

The benefit of forcingthe students tduild a contextsensitive model ishat it is
thenimpossible torush towards the solution: the studéas to thinkwhat he or
she isreally doing. A teachemight encourage the students nakethe following

notes when he or she teaches how to solve word problems:
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« John = X
«  Paul = 6*John
+  Mary = 5*6*John

« John + Paul + Maryis equal to the total pay to be shared.
« totalpay = £285

The students ar@ot normally encouraged to makeontext sensitive models.
Rather theyare instructed téorm acontext freemodel and then to go back to the

text and check once more what the real question Whis. easilyleads to the
isolation ofthe semantic part ofhe wordproblem fromthe algebraic prt of the

word problem. This might be one reason why so many students solve mathematical
word problemswithout really understanding what thegre doing [Reuss-88]. The
TEACHER model presents one possible way that can be used to avoid some of the
usual mistakes made in mathematicalravproblem-solving. Thushe model may

be of some practical value in delivering instruction on mathematwal problem-
solving. Thismay bedone through ITSersion ofthe TEACHER or through the
traditional algebra curriculum.

5.3. THE TEACHER AS A TEST BENCH OF PROBLEM-
SOLVING PROCESSES

The logic based model of mathematicabrd problems highlights some of the
features of problem solving. The model also raises some new questions. Some old
questions of mathematical problesolving can also beestedwith the prototype.

Before considering these questions we look at what restrictions the model has.

The TEACHERsystem has been designed ireatricted area of theurriculum of
mathematics [Anon-82]. ThEinnish seventh graders are supposed to g
about 15lessons to learthe basic concepts of equatiorSix lessons, or two
weeks, are used mathematical wrd problems.Our selection of awell defined
area haghe following theoretical advantages. First, it is possible to thoroughly
manage a condensedea. Second, new theoriesy bedeveloped andested.
New theories can bested afterwards in mommprehensive settings. In addition
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to these theoretical features, there is alpoagmatical reason: it ispossible to
develop the first version of a system like TEACHER in a complicated area.

In the following we shalldiscuss some dahe theoreticaproblemsthat may be
studied through the TEACHERystem. Some of these questions héeen
discussed in the previous sections. These two are related ¢vetad problem-
solving process and to thinding of anappropriate representationtermediate
between an equation and the text.

TEACHER system can besed to answer thiellowing questions: is it possible to
know when extra knowledge is needed and when extra knowledgéniseded to
solve a problem i.e. when the textual representation ajrd problem contains all
information needed to solvihe problem? The questiomay beunsolvable in
general settingshut it is ineresting to findout if we are able to give arexact
answer to the question in a restricted area. If thipossible, then new and
unexplored questions arise. The ficste is: are weable to enlargehe set of
problems and what kind of problems are outside these well-defined problems?

In order to beable to solvehe abovementioned problems, we have aoalyse
thoroughly the transformation between therdv problem andthe textbase.
Basically,the textbase consists of objects (persons, angles,...) , attributes of these
objects (age, pay, angle), relations between the objects {ithesolder than, 60°
greater than...), operations between the objects (A+B+Cpasslblythe values

of some of the objects (total_pay is 360 mk...). N&lee to considethose features

that we have not been forced to tackle inur simplified examples. Doing this
detailedanalysis ofthe knowledge representati@liows us also tget amore
thorough understanding of the different problem domains.

If a student knows thessential features of aond problem (i.ethe student isble

to formthe textbase) and knows whand of extra knowledge is needed (i.e. the
student isable to form an enlargextbase ), he or sh#ill has a major sub-
problem to solvehow to select the rightariable? If awrongvariable is selected,
the problem may become more complex or even unsolvable for a seventh grader.

Before we can answer the abomeentioned questions we have to answer a
question such as: what are the stiéad are related to thehoice of thevariable

and how many steps are there? If we are able to solve this question, we at the same
time have a logic program that can select an appropriate variable. But there may be
many different ways to attairthe right variable. A variablemay be selected
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according to some technical features: we can s#iectariableaccording to the
position of the object in theext (e.g. wemay select thdirst possible variable) or
we may simply select the object of comparison. These featumesy be
implemented irthe system sdhat thesystem is able tpredict thevariable. It is
still anopen question as to hawanysteps there are and what are the actual steps
of the selection process.

Some psychological features of the text may also have an influence on the student's
ability to solve a problem i.e. ord problemsthat are related to areaghich
studentslike, dislike, are interestedn, that arefrom unknown area®tc. It is
possible to test these featurdsough the TEACHERsystem because the
underlying mathematicaltructure of a worgbroblemmay bekept invariable and
change only the textual form of the word problem.
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6. SUMMARY

In this study a logic based modir mathematical wrd problem-solving was
developed. The model advandbsough several abstractiofevels from aword

problem to an equation. The transformations betwbeenabstractiorlevels are
relational. The modelemphasises relationdleatures of mathematicaivord

problem-solving.

The properties of &égic programming languag@rolog, as anodelling language
for mathematical wrd problem solvingare analysed and appliedProlog's
inference mechanism im@sed on resolution. We poimtit thatresolution is related
to mathematical analysis. Thssudy showghat it ispossible to model a problem
solving process andsimultaneouslyget anexecutable Prolog-program dhhat
model.

The curricula in mathemati@e changing inmanycountries. One explanation for
the change is the use of computérkis study showshat the use ofraphical
calculatorswill force further change in these new curricula in the near future. The
emphasiswill then be on topics iwhich man issuperior to a computer e.g. as
word problems.

The study suggests a new methoddoalysingand categorising the textu@rms

of mathematical wrd problems. It is possible to writdae grammars of different
word problem types usinBCG notation.This methodmay beapplied totextbook
analysis toanswer question such adow many different categorieshere are in
some subset of a curriculum? Do textkshave different amount of categories?
Are there greatlifferences of the grammars withinthe sameproblem domain?
How do thesefeatures of the teachingnaterial affect tostudentsoverall
performance to solve word problems?

As a result of themodelling, we haveconstructed theinner structure of
mathematical wrd problems. This relationatructurecan be used as a framework
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for empirical studies of wrd problem-solving. By keepinghe syntacticalpart
invariable, it is possible to investigag@estions such as: d®manticafactors of
word problems have an affect dhe studentsbverall performance in problem-
solving?

The TEACHER prototype asuch as it is now isnly a minorprototypeand it
should be seen as a framework lwilding larger programs. Oumain purpose
was to build a model of word problem solving arat tobuild anITS. Muchwork

is needed to develop the TEACHER taabust program that could be used to
support education. Weave describethe TEACHER prototype at declarative
level. The procedural detailsre important in large arrélationalProlog programs.
In addition theinner levels ofthe model, the enlarged textbase and the context
sensitive level,areproblem typespecific i. e. theyare not implemented in general
terms. A further research questisnis it possible to implemeall the levels using
DCGs? Or in general: is it possible to implemtér different levels sahat new
problem types cagasily beadded to the sysi? These questiomgould probably
need both a thorough téxdok analysisand experiments in program construction.
In any case, thebi-directional modeltogetherwith its ability to generate word
problems could be used as an essengdl pf anew type of method fateaching
how to solve mathematical word problems.

Taken together, the results of the preseatkwndicate that mathematicalword
problems found in standard textbooks have a logical structure that is inffremted
the equation, i.e. ord problemsareisomorphic withthe underlyingequation. The
analysis of wrd problems can thustartfrom the structure of the equationodic
programming has proven to be useful tool in this modelling process. The
modelling advanceshrough logically connected abstractiolevels towards the
textual form ofthe wordproblem. As a result of thisnalysis we alsget amodel
from word problems to equationshis model quiteclosely follows Descartes'
scheme as presented by Polya.

An answer toour original researctquestion is that tamprove the teaching of
word problems we should introdud®olya's methods of teachingovd problem-

solving. Special emphasis should pet on theintroduction of therelational

features of wrd problems. This study also raiste following question: do the
presentsemanticallypoor textbookproblems teaclonly a proceduralway of

solving word problems?
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