
ABSTRACT

The aim of this study was to develop a model for the

mathematical word problem-solving from logical point of

view. Word problems and the underlying equations were

shown to be isomorphic.

We studied the relevant theories related to word problem-

solving model. First a survey of the history of word problems

and corresponding computer programs was conducted. The

properties of logic programming as a modelling language was

then investigated. The model was developed on the basis of

that theoretical groundwork.

The model is relational, and has several abstraction levels.

The model is called the TEACHER, because we want to

emphasise the similarity of the model and Polya's strategy to

teach problem-solving. Questions concerning natural language

understanding are not covered. The TEACHER is able to

generate exactly those word problems that it is can analyse.

Text analysis and text generation of the word problem is done

with logic grammars.

The result of this study, a logic based model of mathematical

word problem-solving, could be used in different ways. First,

the model is a confirmation of Polya's way to teach problem-

solving. Second, the model may be used as a starting point for

further theoretical development and as a framework for

empirical studies of word problem-solving. Third, the

TEACHER is a computer program that can be used a basis of

an Intelligent Tutoring System.



ii

CONTENTS

1. INTRODUCTION 1

1.1 A logic based model of mathematical word problems 1

1.2 Introduction of the subject and its importance 3

1.3 Short introduction of previous results 4

1.4 Approach method and research objectives 6

1.5 Results 8

1.6 Division to chapters 10

2. RELATED WORK  HISTORY AND MOTIVATION 12

2.1. History of word problems 12

2.2. Computer Assisted Instruction 15

2.3. Situation Problem Solver 21

2.4 A prognostic view of word problems 25

3. PROLOG AS A MODELLING TOOL 31

3.1. Pure Prolog as a modelling tool 31

3.2. Extensions of Pure Prolog 36

4. THE CONSTRUCTION OF THE MODEL 43

4.1. The language of word problems and the problem domain 44

4.2. DCG-grammars 47

4.3 A mapping between an equation and a word problem 54

5. THE BI-DIRECTIONAL SYSTEM 59

5.1 The TEACHER as a word problem generator 59



iii

5.2 The TEACHER as a model of word problem-solving processes 61

5.3 The TEACHER as a test bench of problem-solving processes 67

6. SUMMARY 70

REFERENCES



iv



1. INTRODUCTION

"You can only find truth with logic if you already found truth without it."

G. K. Chesterton

1.1. A LOGIC BASED MODEL OF MATHEMATICAL WORD 
PROBLEMS

This work deals with a fundamental problem in school mathematics: How to

transform a mathematical word problem into an equation? [HaKi-89, KiGr-85,

NaKi-92, Poly-65, Reus-88, Thae-86]. Our aim is to build a logic based model

between an equation and a word problem. There are two didactic reasons that

support the choice of word problems. First, word problems are much more

difficult for students than comparable algebraic problems [HaKi-89, Reus-90].

Second, the significance of word problems is rapidly growing in secondary and

high school curricula [Anon-93]. Thus the main emphasis is on the pragmatic

needs of the modelling of problem-solving process rather than on general cognitive

theories. However, Cognitive Scientists as well as researchers in Artificial

Intelligence and Computer Science have a rich tradition in the investigations of

mathematical word problems [AnBo-90, BaFe-81, Bobr-68, BrLa-84, CoVe-86,

MiCa-83, PsMa-88, Reus-87b, Simo-83, Scho-87]. We use this knowledge as

background information to build a theoretical model that has some practical

implications.

This work is interdisciplinary. We use the methods of Computer Science and apply

them to Educational Science. To be precise, we use the general methods of



2

Artificial Intelligence (AI) and especially the art of Logic Programming [Brat-86,

ClMe-81, GeNi-88, Kowa-79, StSh-86]. The common denominator of AI and the

Didactic of Mathematics is problem-solving. We shall model the problem-solving

process of mathematical word problems that are presented in a textual form.

The starting point of our analysis is the structure of an equation. The equation is

an equivalence relation between two objects that have an inner structure with sub-

objects, relations between sub-objects and operations that bind these sub-objects

together. The identical structure can be found from the word problem. In other

words, a word problem is isomorphic with the corresponding equation. Therefore

it is possible to find the logical structure of a word problem.

The starting point of the previous models of word problem-solving has been the

textual form of an equation [Bobr-68, BrLa-84, CoVe-85a, HaKi-89, KiGr-85,

NaKi-92, Reus-87b]. We are analysing the logical structure of a word problem and

the underlying equation simultaneously. This enables us to build a relational, or bi-

directional, model. A model is called bi-directional if it has two different

interpretations: from a word problem to an equation, and from an equation to a

word problem. We are using logic programming as a modelling language. As a

result we get a model for analysing the mathematical problem solving from logical

point of view. At the same time we also get a computer program that can build an

equation from a word problem. Because the model is bi-directional then so is the

computer program. Thus the program also transforms a given equation to all

possible word problems that it can analyse.

We are not trying to solve questions concerning natural language understanding.

The word problems presented in a textual form are, however, required to be

analysed with a computer program. To do this, we have to create an artificial

language of word problems. It is possible to define the artificial language using

Definite Clause Grammars [PeWa-80, ClMe-81, McCo-87, Brat-86]. At the same

time we get a computer program that can generate all the possible sentences of the

artificial language. We call our prototype the TEACHER1. It can analyse only a

very restricted sub-set of natural language. The TEACHER can analyse only those

word problems that it can generate.

We are not modelling a human problem-solving processes with a computer. The

model can be used and understood without a computer. However, it is not easy to

                                               
1We also call the corresponding  model with the same term TEACHER.



3

separate the computer program and the model2, because we are building a model

using the methods of logic programming. The computer program may be seen as a

validation of the logical correctness of the model. In addition, the computer

program has some interesting features such as the ability to generate hundreds of

meaningful word problems from one equation.

1.2. INTRODUCTION OF THE SUBJECT AND ITS 
IMPORTANCE

Much importance has been placed on mathematics education and on mathematical

word problems in the last few years [HaKi-89, Lehn-88, Mali-92, NaKi-92, Pea-

87, Scho-87, SeBe-91, Silv-87, StSl-91]. The curricula are changing in Finland

and in the International Baccalaureate (IB) high schools around the world during

the next few years (1994-1995) [Anon-93]. The curricula in mathematics are

changing partly because of the use of computers. Many of those tasks that can be

better performed with computers, such as curve-drawing and basic manipulation of

polynomials, are losing their importance. Problems that are presented in textual

form, mathematical word problems, are thus becoming more and more important

in mathematics education at all levels.

Subjects where man is superior to machine, like natural language understanding

and problem-solving, have been the ambitious research topics of AI from its early

days [BaFe-81, Chom-57, Colm-78, Elor-74, NeSi-63]. Word problems have been

studied by the researchers of AI, e.g. [Simo-83, Bobr-68], basically for the same

reason as these problems are now gaining importance in education: namely,

"solving problems is the specific achievement of intelligence and intelligence is the

specific gift of man" [Poly-65].

It has been shown that many students solve algebraic equations without

understanding why the different procedural details are justified [StSl-91]. It is not

difficult to master the procedural way of solving an equation. The difficulty is in

the conceptual understanding of equivalent equations [StSl-91]. This is the main

reason why our starting point is the equation seen as an equivalence relation

between two objects. Students who already master algebraic formalism also have

                                               
2We use the phrase the TEACHER system to denote both the TEACHER prototype and the

TEACHER model.



4

difficulty to find the mathematical entities and relationships presented or implied in

the problem text [HaKi-89].

Students, who are taught to solve word problems considering mathematical

relationships between pairs of quantities, solve certain kind of word problems

efficiently [SeBe-91]. We want to emphasise the role of relations in our model,

because the understanding of relations seems to be the key factor for a true

understanding of the problem-solving process.

1.3. SHORT INTRODUCTION OF PREVIOUS RESULTS

Computer scientists, especially those who have been specialising in AI, have been

interested in word problems for various reasons. In the 1960's and in the 1970's the

main interest areas were computational linguistics, e.g. pattern matching [Shap-87,

p. 718-719] and story analysis [Shap-87, p. 1090-1099], and problem-solving

[Elor-74]. Bobrow's STUDENT was able to solve high school level word

problems [Bobr-68]. Bobrow's aim was to discover how to build a computer

program that could communicate with people in a natural language within some

problem domain. Charniak developed Bobrows work further and "foreshadowed

an interest on a part of the AI community in the 1970's in story understanding"

[Shap-87, p.135].

From the mid 1970's mathematical, physical and chemical school-book problems

have been studied in the field of machine learning [MiCa-83, MiCa-86]. The

problems of natural language are kept aside, although many researchers have

developed a natural language front end [MiCa-86]. Thus the word problems, in a

strict sense, are not included in these studies. However, these studies may enlarge

our understanding about human learning and problem-solving [MiBa-89]. These

issues are essential in machine learning:

I would give a very high priority to research aimed at simulating, and thereby

understanding, human learning. It may be objected that such research is not

AI but cognitive psychology or cognitive science or something else. I don't

really care what it is called; it is of the greatest importance that we deepen our

understanding of human learning, and AI community possesses a large share

of the talent that can advance us toward this goal [Simo-83].



5

Educational scientists have recently found the computer metaphor as a valuable

tool to model, and thus to better understand, the basic questions of learning [Duff-

90, Egge-90, Mali-92, NaKi-92]. Reusser implemented in the mid 1980's the

Situation-Problem-Solver (SPS), a computer simulation model of understanding

and solving word arithmetical problems [Reus-87a, Reus-87b, Reus-88]. Reusser's

studies in word problems were part of the broader research project "on theoretical

relations between text comprehension, situation comprehension, and

mathematization in solving word arithmetic problems, and on the teachability of

these issues" [Reus-87b]. Reusser has continued his work on the psychological

processes of how students understand and solve mathematical word problems

[Reus-88]. He has also developed an Intelligent Tutoring System (ITS) that uses

the ideas of the SPS-model [ReKä-90].

The SPS was one of the first attempts to combine the methods used in the field of

AI with the research on mathematics education. The model had, however, some

weaknesses (Section 2.3). We want to build a parallel model to the SPS in which

we are not considering the complicated time dependent reasoning. The SPS can

analyse only a fixed number of predefined problems. We want to broaden our

model in this issue. Even Bobrow [Bobr-68] saw that word problems found in

standard textbooks form a semantically poor subset of natural language. Thus, it is

possible to define the language of mathematical word problems, or more formally:

to write the grammar of the language that our model is able to analyse. The third

difference between the SPS and our model is the most fundamental one: the SPS

analyses the word problems and the result of this analysis is an equation. We argue

that the problem-solving process is not uni-directional. The problem-solver has

sometimes to go back and re-evaluate the previous facts. Therefore we want to

build a model that also looks at the problem in another direction, from the

equation to the word problems (Fig. 1). We are building a model that can handle

these kinds of relational features (Chapter 4).



6

1.4. APPROACH METHOD AND RESEARCH OBJECTIVES

Lewis [Lewi-81] used the word "algebra problem-solving", when he studied man's

ability to solve algebraic equations. In this study we are mainly interested how

word problems are "translated" into equations and not how these equations are

solved. However, the thoroughly examined area of solving equation can be seen as

valuable background information [Matz-82, MiPa-89, AnBo-90, PaSq-90].

How to solve mathematical word problems? This question has been actual for

hundreds of years. Our starting points are the traditional methods for solving

mathematical word problems, nicely combined and further developed in Polya's

books [Poly-45, Poly-65], and the general theory of problem-solving and heuristics

(with many examples from mathematical word problems) [Elor-74].

WORD PROBLEM

EQUATION

t
u
d
e

t
s

i
e
w

v

n

S T
e

v
i
e
w

x
t
b
o
o
k
s

I

T
E
A
C
H
E
R
S

V

E
W

T
E
A
C
H
E
R
S

V

E
W

I

Figure 1. The Teachers view to word problems is a combination of the students 

pursuit to solve the problem and of the textbook writers intentions to 

find word problems that the student is able to solve.



7

Our objective is to better understand the problem-solving process that is needed to

transform a mathematical word problem into an equation. Our perspective is that

of a teacher. Therefore we first have to analyse ordinary textbook problems, then

build a step by step model from text to equation. Or rather, from the point of view

of a teacher, we know what kind of an equation a student is able to solve at each

level. We have to find a corresponding word problem, whose partial answer is that

equation. In other words, we are analysing the process step by step from equation

to word problem. But a real teacher is not allowed to forget the view of the

student (Fig. 1). To understand how word problems are solved we need to

combine the view of a textbook writer (equation → word-problem) with the view

of a student (word problem → equation).

Our main objective is

to build a bi-directional model between a word problem and an equation.

The model will be logic-based and we need tools for analysing and parsing the

text. The previous models of word problem-solving processes, e.g. the STUDENT

and the SPS, have originally been implemented by LISP, a functional programming

language. LISP has been used by linguistics over two decades. LISP is also a

language that has been widely used by researchers in AI [BaFe-81]. The long and

common tradition of the LISP, linguistics and AI have also had an impact on the

computational models. The main feature that can be found in these models is the

use of functions. However, many of the present models of word problem-solving

processes have relational features [HaKi-89]. Relationality can most naturally be

handled by logic programming [StSh-86]. In this work we use the logic

programming language PROLOG (PRogramming in LOGic) to build a transparent,

relational (bi-directional), program.

Logic programs can be made transparent. In other words logic programs use

facts to represent the static situations and rules to represent the inference

processes between these situations. Logic programming uses a language that

can be understood by people that are not familiar with ordinary (functional)

programming languages [Kowa-79].

The starting point of traditional word problem solvers has been the textual form of

word problem. Therefore, the history of mathematical word problem solvers is

intertwined with the basic problems of natural language understanding. Our



8

objective is not to try to understand and answer questions concerning natural

language text comprehension. However, we do not only want to consider fixed

problems (like SPS). Our aim is to create concise grammars that may be enlarged

to handle a semantically poor subset of natural language, the mathematical word

problems found in standard textbooks [Bobr-68].

Grammars for natural and artificial languages can be written as logic programs.

Grammars that may be analysed by Prolog are called logic grammars [McCo-87].

The basic version of logic grammars, Definite Clause Grammars, briefly DCG, is a

grammar formalism and at the same time effectively executable in Prolog. The

most Prolog implementations offer a build-in DCG-version. We use this tool for

text analysis and text generation. We want to emphasise that our model knows all

the problems that it will encounter. Problems that do not follow the grammar of

the system are out of the systems boundaries.

Our objective is to build a simplified test environment for modelling the word

problem-solving processes. In doing this we have chosen the part of the curriculum

[Anon-82] where mathematical word problems are to be solved by first forming an

equation. This is another difference between the previous models and our system.

The previous models have mainly been interested in elementary arithmetical word

problems [BrLa-84, CoVe-85a-b, Reuss-87a]. We concentrate on the first

introduction of algebraic word problems. This part of the curriculum is important

for further mathematical studies. Many high-school algebra errors of solving

equations are due to the conceptual changes involved in moving from arithmetic to

algebra [Matz-82].

1.5. RESULTS

We shall build a simplified test environment, called TEACHER, between a word

problem and an equation (Chapter 4.). The TEACHER system has been designed

and implemented by logic programming. The main result of this study is that it is

possible to model a problem-solving process and simultaneously get an executable

Prolog program of that model. In fact, it is impossible to separate the abstract

modelling process (TEACHER model) and the implementation process

(TEACHER prototype) with Prolog. This is due to the features of the model.

First, the problem-solving process proceeds through abstraction levels (Fig 2.)



9

Second, deductive reasoning is needed within and between these levels. Third, the

model is basically relational. All the above mentioned three features are embedded

in the art of logic programming. Conversely, logic programming is a useful tool in

refining the model, because the process of implementation forces one to make an

in-depth analysis of the model.

WORD PROBLEM

CONTEXT FREE MODEL

CONTEXT SENSITIVE MODEL

EQUATION

ENLARGED TEXTBASE

             TEXTBASE

Figure 2.  The abstraction levels in the TEACHER model.

The TEACHER transforms a word problem bi-directionally from text to equation

using the same steps as a teacher introduces to a student. The bi-generative

architecture of the TEACHER system (Chapter 5) can be viewed in many different

ways.

First, it may be seen as a test bench of problem-solving processes in a restricted

area: Is it possible to know when extra knowledge is needed and when extra

knowledge is not needed to solve the problem? What are the steps that are related

to the choice of the variable and how many steps are there? How is the variable

selected? What are the psychological and technical, or contextual and textual,

details that have an effect on the choice of the variable?



10

Second, the TEACHER system may be seen as a model of the mathematical word

problem-solving process with phases that a teacher introduces to his students.

These phases follow quite closely to the well-known Descartes' scheme [Poly-65].

The transparency of the Prolog-code makes the features of the model explicit.

Thus the TEACHER forms a basis for an Intelligent Tutoring System (ITS).

Third, the system may be used as a word problem generator. This is due to the bi-

directionality of the system. From a given equation the TEACHER prototype

generates a group of equations all of which might be found in standard textbooks.

The group of word problems that the TEACHER prototype is able to solve, is

explicitly defined by a logic grammar formalism i.e. one can say in advance, by

studying the logic grammar, whether a certain problem is solvable by the

TEACHER. It is easy to enlarge the logic grammars to handle problems of

different languages, in this version Finnish and English, or to widen the scope of

problems the TEACHER prototype is able to solve.

It should be noted that the three features are not separate. For example, the

generation of equations may also be used as a module in the ITS part of the

TEACHER. It is also possible to use the TEACHER as a test-environment for the

studies of problem-solving processes. This can be realised by keeping the

underlying mathematical structure invariable and varying only the semantics of the

text. The TEACHER prototype at present is just a framework for building a larger

environment. The motivation of this study is in forming a new type of a model for

doing all this.

1.6. DIVISION TO CHAPTERS

In Chapter 5 we analyse and discuss the above mentioned three features of the

TEACHER system in detail. Then the restrictions of the model and its

implementational issues are discussed. The special emphasis is put on the common

factors of Polya's way of teaching problem-solving and the TEACHER as a logic

based model.

In Chapter 2 we take a closer look into the history of previous works that have

combined computer programs and mathematical word problems. The history of

Computer Aided Instruction is then covered. The Situation Problem-Solver, an



11

inspiring example for the present work, is discussed in more detail. Finally, the

impact of computers and graphical calculators to modern curricula is surveyed.

In Chapter 3 the main features of logic programming as a modelling tool are

covered. The connections between a logic programming language Prolog and first

order predicate logic are discussed. Then the two different readings of Prolog

programs, declarative and procedural, are presented. An extension of pure Prolog

is Definite Clause Grammars (DCG), a grammar formalism that is used to analyse

and generate text and equations. The expressive power of DCG is shown to be

adequate for analysing the textual form of word problems.

In Chapter 4 we describe how the model was constructed. We start the

construction with a textbook analysis. Then we analyse the equations behind the

textbook word problems. The equations are parsed with the DCGs to an ordered

set of relations, operations and objects. We can not continue the construction

before we have parsed the text to an ordered set of corresponding elements. Some

elements that are found in the equation, objects or relations or operations, are

missing from the text. We add the elements using general mathematical knowledge

or specific knowledge from the problem domain. When we have added the missing

elements we need to express all objects with the help of one specified object. This

object is the unknown. Then, finally, we are able to construct a mapping between

an equation and a word problem.



12

2. RELATED WORK -
HISTORY AND MOTIVATION

Word problems have also been studied by some of the greatest men of science.

"Such men as Descartes, Newton, Leibnitz, and Euler did not find it beneath their

dignity to explain and illustrate at length the application of equations to the

solution of word problems" [Poly-65]. They used mathematical word problems as

a means towards a universal method for solving all problems. Although the quest

for a universally perfect method has not succeeded, it has in many ways influenced

science.

In this chapter we first investigate computer programs that are not intended to

support education. Then we consider computer programs that have been planned

to support education. Intelligent Tutoring Systems are shown to be the only area in

AI research where AI is viewed only as a modelling tool. We consider in detail the

Situation Problem-Solver, a computer program that was the first computer model

for mathematical word problem-solving. Finally, we discuss the impacts of the

computers and graphics calculators on modern mathematics curricula. We show

that the use of these new tools enhances the status of word problems.

2.1  HISTORY OF WORD PROBLEMS

The capabilities for problem-solving and reasoning are generally taken as the

principal factors of an intelligent system in AI research. The concept of an

"intelligent system" has changed its meaning together with the evolution of

computer programs. Usually these "intelligent systems" have been designed to a

restricted problem domain e.g. to chess playing. The search for universal methods

to solve a variety of different problems in different domains have inspired

researchers in Artificial Intelligence from its early days. The first, and perhaps the

best known work in this field is the GPS (General Problem Solver) model by



13

Newell and Simon [NeSi-63]. The GPS is a program that tries to simulate human

thought. Newell and Simon argue that the free behaviour of human can be

understood as a product of the finite and determined set of laws. The GPS model

raises many philosophical questions [Marj-90]. However, the GPS "has led to

generalised schemes of representation for goals and plans, methods for

constructing discrimination nets, procedures for the control of tree search, pattern-

matching mechanisms, and language parsing systems" [NeSi-76].

Word problems have also been used in the field of computational linguistics. Early

implementations in the 1960's were often required to understand their inputs

[Shap-87, p 134-136]. Bobrow wrote his dissertation "Natural Language Input for

a Computer Problem-Solving System" in 1964 [Bobr-68]. In it he developed a

system called STUDENT that solves high-school level algebra story problems

given in a subset of English. The program uses pattern matching and well-chosen

heuristics3. Bobrow developed techniques which allowed a computer problem-

solving system to accept natural language. His main interest was in linguistic issues

and not in educational nor didactic ones. His main motivation for choosing word

problems as the domain was that the algebraic equations may be used to store the

information needed to answer the questions in this context.

The STUDENT became famous partly because of its ability to solve most of the

word problems found in a standard high-school algebra textbook, and partly from

the use of the word "understanding" in his dissertation. He gives the following

operational definition of word "understanding":

A computer understands a subset of English if it accepts input sentences which

are members of this subset and answers questions based on information

contained in the input. The STUDENT system understands English in this

sense [Bobr-68].

If we forget the definition, we may have to conclude that the STUDENT, a

computer program, really understands English. Research about understanding is

still a central theme in word problem-solving, e.g. in Polya's methods for solving

word problems [Poly-65], in Kintsch and Greeno's problem-solving model [KiGr-

85], in Greeno's application of this model to mathematics education [Gree-87], and

in Reusser's cognitive simulation [Reus-90].

                                               
3E.g. in problems like : Mary is 4 years older than Susan..."years older than" is converted to

"plus".



14

Charniak developed Bobrow's ideas and in 1969 implemented the CARPS system,

which could solve calculus word problems at freshman-level. In reflecting on his

work, Charniak noted that, despite its advances over the STUDENT, a very

powerful calculus word problem solver will r equire a good deal of 'common sense'

knowledge. In advancing this claim, Charniak established a new domain in AI,

called the story understanding. One question in the field of story understanding has

been left unanswered: What does it mean to understand a story, and how is it

possible to determine whether a computer program was successful in this

undertaking? [Shap-87, p.135].

One can argue, like Bobrow, that the above mentioned problem ceases to exist if

we use word problems as the domain. This holds, if we think that to understand a

mathematical word problem is to be able to solve that problem. Or more precisely,

we can understand a word problem if we can construct the relevant equation(s).

However, only a few common textbook problems force students to do in-depth

semantic analysis. Thus it can also be argued that sometimes it is easier to solve a

problem than it is to understand it:

The way text problems are formulated and how they work out can provide

subtle hints to the problem solver which may let him accept a solution even if

he does not understand it. To come up with a correct solution and be quite sure

about it may not always mean that one understands it, even if the solution was

inferred by several steps [Reus-88].

Both the STUDENT and the CARPS transformed natural language into a set of

simpler sentences, so-called kernel sentences that were equivalent in meaning4.

These simple sentences were then transformed into a set of equations. Both of

these systems used global information about the problem area, and the systems

were able to ask for missing information from the user. However, Simon has stated

that the STUDENT tried to translate the natural language problem directly into

equations [Simo-83].

                                               
4Kernel sentences belong to the theory of transformational grammar (TG), a theory behind most

of the works in computational linguistics (CL) in the 1960s'. The hypothesis of TG implies that

"an understanding of syntax, or structure, of natural-language sentences can be arrived at on a

solely grammatical basis, without considering the real world properties (e.g., meanings) of the

terms being discussed" [Shap-87].



15

This statement is an oversimplification of these systems. To justify this statement,

we have to look at the more recent work of word problem programs. Most of the

early work prior to mid 1970's concerned computational linguistics. Novak

implemented the ISAAC program in 1976. It solves college-level physics problems

found in standard textbooks. The main difference between the STUDENT and the

ISAAC is that the ISAAC first builds up an internal representation of the situation.

This (physical) representation or "mental model" is constructed with the help of a

special data bank, where the information of the basic physical objects is stored in

the form of schemas. The internal representation does a lot of work, because it

identifies the points where forces have to be equilibrated and therefore identifies

which equations have to be set up. It can be said that the ISAAC in a restricted

sense understands the problems it is given. But as Simon argues the ISAAC

already knows all the physics it's going to know. To be able to really understand

the world of physics the system must also be able to learn, or to create new

schemas from the natural language [Simo-83].

Historical word problem solvers were mainly interested in computational

linguistics. For our purposes two major facts are to be noted: Mathematical word

problems form a strongly restricted subset of natural language, and an internal

representation between an equation and a word problem is needed. Therefore it is

possible to build programs that can analyse the textual form of most word

problems found in standard textbooks. The internal representation of word

problems is a good starting point for modelling the problem solving, too.

2.2  COMPUTER ASSISTED INSTRUCTION

The above mentioned programs had their origin in computational linguistics.

Another branch of programs contains those programs that are originally planned to

support education. Computer-assisted introduction/learning (CAI/CAL) started

with linear programs. Linear programs were designed in late 1950's according to

the behaviourist tradition with very little possibilities for individualisation. They

simply proceeded step by step towards a goal, and accepted only right and rejected

wrong answers. Branching programs were natural successors of linear programs

in 1960's. They used pattern matching techniques to separate right and wrong

answers [Nwan-90]. These programs were able to comment answers to users and

use the answers to select an appropriate next step. The impact of these first trials

can be seen in common teaching materials: linear programs have easily been



16

transcribed easily to ordinary textbooks and branching programs are applied in

textbooks that use "programmed learning"5. Also the use of multiple-choice

questions has been influenced by the technology that made them so easy to use

[ScEd-89]. Generative programs, first implemented in the late 1960's, could

provide something that was not possible from textbooks: they were able to

generate teaching material. A number of adaptive systems were implemented to

provide drill and practice in arithmetic, and to select problems at the level of

difficulty appropriate to the student's overall performance [SlBr-82].

Different forms of CAI failed according to Nwana [Nwan-90] for the following

reasons:

1. They attempted to produce total courses rather than concentrating 

on building systems for more limited topics.

2. They had severe natural language barriers which restricted users' 

interaction with them.

3. They had no "knowledge" or "understanding" of the subject they 

tutored or of the students themselves. Consequently they tended to 

assume too much or too little student knowledge, and they could 

not conceptualise so as to diagnose a students misconception with 

his/her own framework.

4. They were extremely ad hoc. Building tutoring systems was not 

recognised to be a non-trivial task - a task requiring detailed 

psychological theories of learning and mislearning. Anyone with a 

knowledge of computing attempted to build a tutor. Consequently 

there was little or no co-operation among educators, psychologists 

and computer scientists in the development phase of these tutors.

5. They tended to be static rather than dynamic. There was little 

experimentation with systems in order to improve them. Human 

tutors learn about their students and about the subjects they teach 

every day and so should machine tutors.

Basic types of CAI-programs, linear, branching and generative, were developed

over 20 years ago. These programs had to be re-evaluated when micro computers

were started to be purchased for schools in the1980's. The invasion of computers

to school was mainly due to factors that were related to the overall social

                                               
5Textbooks that use the method of "programmed learning" comply with the following idea: "If

you know the answer to this sub task then go to page nn, otherwise go to page mm" [Sein-74].



17

development. The schools did not request computers and at first they wondered

what to do with them [Meis-87]. What the schools needed were educational

programs. In Finland the government supported individual programmers. As a

result plenty of programmers made the above mentioned mistakes. Usually only

those ideas that were easy to implement evolved to CAI-programs. An attempt

was made to reimplement our current curriculum on computers, but we should

have investigated what computers can do to reshape education to answer the needs

of modern society [ScEd-89]. No-one asked, or rather no-one answered the

question: What parts of the curriculum needs to be taught with the help of

computers? Thus the CAI programs stayed didactically on a very modest level

[DuMa-87]. CAI-programs were basically computerised work-books. Word

problems played no role in this CAI-episode.

School practice needs something what CAI-programs in 1980's could not offer.

Will the answer be found in new menu driven programs with advanced user

interfaces? Or are these components only syntactic sugar to unsolvable problems in

CAI-paradigm? Nwana points out [Nwan-90] that CAI-programs do not know

what to teach, who they teach and how to teach it. Clancey and Soloway argue

[ClSo-89] that CAI architecture is inadequate to provide rich and robust learning

environments. This was noticed already in early 1970's by researchers who applied

AI in CAI systems. They started to design and implement ICAI (Intelligent

Computer Aided Instruction) programs.

ICAI-programs have traditionally had the following three components in common

[ClSo-89]:

1. What to teach:
A model of the domain and an expert program that can solve 
problems in the domain.

2. Who to teach:
A model of the student that identifies what the student understands.

3. How to teach:
A tutoring model that can provide instruction to remediate 
misconceptions and/or present new material.

Wenger has suggested for a fourth component [Weng-87], a component whose

importance is growing together with the possibilities of new technology:

4. How to interact:

A model of user interface.



18

Sleeman and Brown's "Intelligent Tutoring Systems" [SlBr-82] gave a new

acronym ITS to ICAI. Researchers who do not want to use the term "intelligent"

use names such as KBTS (Knowledge Based Tutoring Systems), ATS (Adaptive

Tutoring Systems), or KCS (Knowledge Communication Systems) [Nwan-90].

The terminology is as yet unestablished, e.g. term "learning environment" was first

used in open ended systems or systems that support discovery learning like the

LOGO language [Pape-80]. More and more often this term is used to emphasise

the comprehensiveness of the program, or the term "learning environment" is used

as a synonym for ICAI [ClSo-89].

Linear programs 1950s

Branching programs 1960s

Generative programs late 1960s

ITSs 1970s

Computer

Aided

Instruction

1980s

Intelligent

Tutoring

Systems

????s

Theory & First Implementations School Practice

Figure 3. From CAI to ITS in theory and in (school) practice.

Modified from [Nwan-90].

The learning environment as such is nowadays considered one of the most

important topics to be studied in the educational sciences.



19

ITS programs have not yet reached the level of sophistication that is needed to

satisfy the needs of modern education (Fig. 3). Building an ITS is a non-trivial

task. It demands expertise at least from the following disciplines: AI, educational

theory and psychological models of student and expert. It has been suggested that

"ITS research will grow. This is because, apart from their practical needs, the area

appears to provide an excellent test-bed for theories to AI scientists, educational

theorists and cognitive psychologists" [Nwan-90]. One practical need behind the

development work of CAI and ITS has been to reduce the high cost of human

tutors and thus to develop systems for automatic education [AnBo-90].

ITS Domain Reference

ATDSE Basic subtraction Attisha & Yazdani (1983)

ARITHMEKIT Basic subtraction Brown (1983)

ALGEBRALAND Algebraic proofs Brown (1985)

BUGGY Basic subtraction Brown & Burton (1978)

DEBUGGY Basic subtraction Burton (1982)

EDSMB Basic multiplication Attisha & Yazdani (1984)

FITS Basic fractions addition Nwana(1990)

GEOMETRY Tutor Geometry proofs Anderson et al. (1985)

INTEGRATION Tutor Basic integral calculus Kimball (1982)

LMS Basic algebra Sleeman & Smith (1981)

PIXIE Basic algebra Sleeman (1987)

QUADRATIC Tutor Quadratic equations O'Shea (1982)

SIERRA Basic arithmetic procedures Vanlehn (1987)

SPIRIT Probability theory Barzilay (1985)

WEST Basic arithmetic skills Brown & Burton (1978)

Table 1. A reasonably comprehensive list of ITSs in mathematics education 

according to [Nwan-90].

The aim to develop systems for automatic education may never succeed:

I personally do not believe that computers compete with human teachers in

any real sense, or that they can or should replace people in instructional

settings. Teaching as social act simply involves too many dimensions



20

beyond the exact processing of information for which computers are made

and at which they can excel [Weng-87].

We are using the methods of AI to model and thus to better understand the

problem-solving process of word problems. Our aim is not to replace the teacher

but to build a model to be used by the teacher. To advance towards this goal we

need to study the history of ITS, because ITS is the only area in AI research where

AI is only viewed as a modelling tool [ClSo-89].

Mathematical word problems are not included in a comprehensive list of 43 ITSs

[Nwan-90, p. 272]. The fifteen which are related to mathematics education are

listed in Table 1. We might add some new ITSs whose domain is mathematical

word problems. The algebra Word Problem Tutor by Singley et al. [SiAn-91], the

HERON by Reusser et al. [ReKä-90], and the ANIMATE by Nathan et al. [NaKi-

92]. The builders of these systems strove for two goals. The first one was to

develop a pedagogical tool to be used in classrooms and the second one was to

explore some fundamental psychological problems surrounding word problem-

solving.

The Algebra Word Problem Tutor is based on a recent work on tutoring basic

algebraic manipulation skills [SiAn-91], whereas the HERON has been developed

by Reusser for several years [Reus-87a, Reus-87b, Reus-88, Reus-90]. The

ANIMATE presents a representational base to the problem-solving process by

giving situation-based meaning to the equations through computer animation

[NaKi-92]. The ANIMATE and the SPS are both based on the van Dijks and

Kintch's theory of discourse processing [KiDi-78]. We shall closer look at

Reusser's previous work below.

Our main purpose is to build a model of word problem solving and not to build an

ITS. However, we think that the building of an ITS must start in the conceptual

analysis of the situation. Also some kind of a model about the situation must exist

before a robust ITS can be built. The TEACHER is to be understood in this sense.

In fact, the TEACHER is at the moment only a model of the domain, an expert

program that can solve problems in the domain. A tutoring model of word

problem-solving is evolving [HaKi-89, ReKä-90, NaKi-92]. User modelling easily

considers man to be deterministic and mechanistic [Järv-93]. A lot of work must

be done before a real ITS in this domain can be built.



21

2.3  SITUATION PROBLEM-SOLVER

In the following we shall outline the main features of Reusser's Situation Problem-

Solver. The SPS was one of the first attempts to combine the methods used in the

field of AI with the research of mathematics education. Both the SPS and this

work share the same interest, namely how to transform a mathematical word

problem into an equation. The SPS has a strong theoretical background in the

discourse analysis of van Dijk and Kintsch [KiDi-78] and in the process model of

problem-solving by Kintsch and Greeno [KiGr-85]. We argue that the discourse

analysis and the temporal reasoning cause some theoretical limitations to the

model.

Reusser implemented in the mid 1980's the Situation Problem-Solver (SPS), a

computer simulation model of understanding and solving word arithmetical

problems [Reus-87a, Reus-87b, Reus-88]. The SPS uses the general theory of text

comprehension developed by Kintsch and van Dijk [Hoik-90]. The basic idea

behind the theory is that the comprehension process can be decomposed into

components, some of which are manageable at present, while the others can be put

aside until later. Because of the complexity of the natural language, two important

components are excluded from the model. The model will be concerned only with

semantic structures. Furthermore, comprehension always involves knowledge use

and inference processes. The model does not specify details of these processes

[KiDi-78].

If we consider general theories of problem-solving [Elor-74], or the specific

theories on mathematical word problems [Poly-45, Poly-65, Lewi-81], we notice

that some important features are missing if we apply the above mentioned theory

to mathematical word problems. Of course, the details of human inference

processes are unknown and complicated6, but the use of knowledge is an essential

feature in general problem-solving [Chom-72, Elor-74]. The other missing feature

is the inference process from the mathematical text (syntax) to its real meaning

(semantics) (Table 2). This is the first phase in solving a word problem, a phase

                                               
6The difficulties concerning human inference processes are discussed in [Bode-90] and [Sear-

92].



22

that Polya calls Understanding of the Problem (Fig. 11) We will discuss this phase

in Chapter 5.

The SPS also uses Kintsch and Greeno's processing model that explicitly deals

with both text-comprehension and problem-solving aspects of word arithmetic

problems [KiGr-85]. Reusser's studies in word problems were part of the broader

research project "on theoretical relations between text comprehension, situation

comprehension, and mathematization in solving word arithmetic problems, and on

the teachability of these issues" [Reus-87b]. Reusser has continued his work on the

psychological processes of how students understand and solve mathematical word

problems [Reus-88]. These works have been behind the development of the

HERON system [ReKä-90].

The SPS has five modules: 1.) The Text Comprehension module parses and

encodes the Textual input into the Textbase. 2) The Situation Comprehension

module goes beyond the text and concentrates on time-dependent or temporal

reasoning. 3) The Mathematization module puts aside all those elements that are

not relevant to the operational gist of the episode. All elements are presented in the

same order than the children tend to recall a problem episode i.e. in a

chronological order. This phase, the Mathematical Problem Model, is a link

between the semantic and the numerical representation of the problem situation. 4)

The Calculation Module uses different counting strategies for the first graders. 5)

The Answer Interpretation module uses the result of The Situation Comprehension

module, the Episodic Problem model, in answer generation (Appendix 2).

Reusser has done a profound work on refining and extending the ideas of Kintsch

and Greeno in understanding the word problem-solving process. Reusser has also

demonstrated that a computer model which is intended to be a cognitive simulation

model is "an exciting tool both for the study of the phenomena, the generation of

theories as well as for the design of experiments" [Reus-87b]. He has used this

knowledge in the  development of the HERON system. The HERON is "a

computerised didactic tool for facilitating and fostering self-direct and

comprehension-based learning and problem-solving" [ReKä-90]. The HERON

helps the student to solve word problems by providing support in text

comprehension and in building mathematical problem models. The HERON can

handle a fixed number of problems that have been implemented in the system when

it has been developed. These problems vary from two simple sentences and three

figures to problems with over 300 words and over ten different figures.



23

Reusser has concentrated on the psychological issues of text comprehension and

problem-solving process. He has not considered some of the factors that are

crucial for the model in detail. One of these factors is parsing and encoding the

textual input and the other is time dependent reasoning. In the following we

consider time dependent reasoning because time is a central component in the SPS

model and the SPS model has been used as starting point of our work.

The roles of time in problem-solving are [Kahn-89]:

• Storing and retrieving time-varying, context sensitive data

• Detecting temporal relationships from time-ordered data

• Reasoning about change and processes

• Representing dynamical systems

• Reasoning about states and context.

Related research areas are:

• database management

• mathematical modelling

• symbolic knowledge representation

• temporal inferencing

The time problem is not the unique property of word problems. It is a general

problem of all those intelligent systems that reason about the changing world. In

the SPS the time problem is equivalent to the problem of reasoning about change.

A fundamental assumption in constructing intelligent systems is that the problem

solver or reasoning component has an internal model or representation that

captures the essential features of the problem world. This component is called

Textbase in the SPS. The problem solver reasons by manipulating the elements of

this internal world. The enterprise of constructing formalisms for expressing real-

world entities in computer-usable internal models is called knowledge

representation. The difficulties associated with time and change are problems in the

available knowledge-representation techniques for constructing internal models

that successfully and efficiently capture key properties of a dynamic, evolving

world [Kahn-89]. In AI the problem dealing with changing propositions



24

has been called the frame problem7. The simplest solution to this problem invokes

the frame assumption: The only facts that change are those facts that are explicitly

told to be changed.

In the SPS the frame problem is not present. The SPS only uses a static number of

pre-defined problems. The problems are given to the SPS as a list of

micropropositions and not as sentences of problem text (Table 2).

Problem text Input

Walter (PRESENT)
tends to lose (EQUAL X WALTER)
everything. (EVERYTHING)

He got twelve (PAST)
beautiful (LAST WEEK)
shells from (EQUAL Y JULIA)
Julia last (GET X Y)
week as a (12)
birthday (SHELL)
present. (BEAUTIFUL)

(AS-BIRTHDAY-PRESENT)

Today Walter (PRESENT)
has only (TODAY)
eight (HAVE-LEFT X)
shells (8)
left. (SHELL)

(ONLY)

How many (PAST)
shells (LOSE X)
did Walter (HOW MANY)
lose? (SHELL)

Table 2. The natural language version of one of the problems that the SPS is 

able to analyse and the actual input format for the computer 

program.

                                               
7Original definition comes from the situation calculus, where the main problem is to handle the

situation where something changes. In situation calculus, a change in state results in the removal

of logical statements that are no longer applicable, and in the inserting of new logical statements

that are permitted in the new state [McHa-69].



25

Many experiments in Artificial Intelligence have been centred around simple-

looking problems, because they "give us, for the smallest initial structures, the

greatest complexity, so that one can engage some really formidable situations after

a relatively minimal diversion into programming" [Mins-68]. Reusser also used

simple looking problems to investigate the inner structure of word problems:

Anyone who wants to teach children how to understand and solve

mathematical word problems, needs to know by which processes or strategies,

and mediated by which mental representations, mathematical information is

abstracted from verbal problem statements [Reus-90].

2.4 A PROGNOSTIC VIEW OF WORD PROBLEMS

The author of this study has acted as a teacher and a teacher trainer for over ten

years. In the 1980's the calculators changed the teaching practice in schools. The

time spent to numerical calculations diminished and arithmetically more demanding

questions could be set. The computers then came to schools. In this section we

investigate how the computers have changed mathematics education.

The most recent innovation used in high-schools is graphics calculator. As a

teacher, it is easy to predict how graphics calculator will change mathematics

education. In this section, we investigate these possible consequences.

Lewis found out that the experts performance in solving elementary equations was

not sharply different to less skilled solvers [Lewi-81]. The experts make mistakes

and, surprisingly, they don't just look at problems and write down the answers.

Lewis concludes that people don't necessarily improve just by doing something

more frequently [Lewi-81].

Lewis and Matz [Matz-82] use the phrase "algebra problem-solving", when they

studied man's ability to solve algebraic equations. In this study we are mainly

interested how word problems are "translated" into equations and not how these

equations are solved. However, the thoroughly examined area of solving equations



26

can be seen as valuable background information. Many high-school algebra errors

of solving equations are due to the conceptual changes involved in moving from

arithmetic to algebra:

Syntactically similar expressions differ semantically because equal sign,

concatenation, plus and minus have multiple meanings which are distinguished

only by parsing rules and context. Even though equality is mathematically

symmetrical, cognitively and pragmatically it is not. The bi-directionality of

algebraic processes injects a flexibility into algebraic problem-solving which,

in the eyes of some students, makes the activity more complicated [Matz-82].

There are two specific reasons that support the choice of word problems from the

didactic point of view. First, word problems are much more difficult for students

than comparable algebraic problems [HaKi-89, Reus-90]. Second, the significance

of word problems is rapidly growing. The Curriculum in Finnish schools is going

to change from the beginning of the school year 1994-1995 and there is a strong

emphasis in problem-solving and word problems. The general trend to use more

problem-solving and less drilling of basic mathematical manipulation in education

is clearly seen also in the new curriculum for the International Baccalaureate high

schools [Anon-93]. Another argument for the growing significance of word

problems can be found in the advancement of computers. Never in the history of

mathematics education has no single invention opened so many challenges and

demands for educators than the computers. Computers have influenced education

in three ways:

• Mathematics, and the way mathematicians are working has changed.

• From the above fact and from the availability of software that already can

perform many mathematical tasks, it follows that the whole curricula have to

be re-evaluated.

• Mathematics education has gained new possibilities by using computers to

support education.

IB has mandated the use of calculators in mathematics examinations from May

1994 and allowed the use of calculators with graphical display (IB World,

December 1992). Also the Finnish national board for matriculation examination8

                                               
8The board (Ylioppilastutkintolautakunta in Finnish) sent on 11.8.1993 a note to headmasters of

the Finnish high schools. The note admits several interpretations. The most probable



27

has allowed the use of powerful graphic calculators in the Finnish matriculation

examination from March 1994. We will take a closer look what implications this

new technology has for the way mathematics is taught and which items in the tests

are to be replaced. We first examine properties of one of the most powerful

calculators that IB accepts, TI-85.

TI (Texas Instrument) 85 is in fact not a calculator but a small graphics

computer with 32 kilobytes of RAM. It has a 21×8 characters display. Its

equation-solving capabilities allow solving any variable in an equation, solving 30

simultaneous equations, finding roots of polynomial up to the 30th order and

solving differential equations up to ninth order. It solves calculus problems both

numerically and graphically; finds first and second derivatives, integrals, minima,

maxima and inflection points. It has special editors for handling vectors, matrices,

lists, strings and complex numbers. It performs statistical analysis for one or two

variables, is able to use 7 different regression models and is able to display the data

also graphically. In addition it can handle parametric equations and polar functions.

Many of the above mentioned features are not necessary in Finnish matriculation

examination but nearly all of them come into use in Higher Level IB-mathematics

examination. The use of graphics calculators in examinations has not yet started

and therefore there exists no research in this area. However, the subject was

thoroughly examined and discussed in a seminar for European IB-teachers in

mathematics (Lüneburg Germany, March 1993). Three main questions were

addressed by Chief Examiners in IB Mathematics as they pondered the equality

issues of the availability and use of calculators in IB schools around the world:

1. Which mathematics content is most appropriately tested with a 

calculator?

2. How do test items on calculator-based tests differ from those in tests 

not allowing the use of the calculator?

                                                                                                                               

interpretation is that the same calculators can be used in Finnish matriculation examinations and

IB-examinations.



28

3. How can test items be constructed so that they may be calculator-

inactive, calculator-neutral or and/or calculator-active9?

These questions were still found to be mainly unanswered. However, some

findings were stated:

1. Mathematics objectives commonly cited as appropriate for testing 

with a calculator include:

(a) exploration of number patterns,

(b) use of guess-and-check strategy for problem-solving,

(c) processes of hypothesis formulation and verification.

2. Test questions should not measure calculator skills only but should be 

based on the mathematics curriculum.

In the following we shall show how difficult it is to find appropriate test questions

in present school books. But first, what are the benefits of calculator-based items

and what kind of items should they be? Some of the answers that were mentioned

in the Lüneburg conference were:

(i) Students should be enabled to concentrate on strategic approaches to

problems without getting tangled up in memorised computational algorithms.

(ii) The calculators should enhance the validity of items by permitting the use

of more realistic data or numbers, and thereby allowing problem-solving

situations to be more akin to those found in practice.

(iii) The use of calculators should enable the amount of time required to

complete individual questions to be better controlled.

(iv) All items on a test should not require the use of calculator. The items

should also be constructed in such a way that using a calculator might affect

the performance of the student, positively, negatively or not at all.

                                               
9Calculator inactive problems are those for which there is no advantage (perhaps even a

disadvantage) in the use of the calculator. Calculator neutral problem can be solved without

calculator but calculator may be useful. Calculator active problems require the use of calculators

for their solutions.



29

(v) Items should emphasise the testing of problem-solving rather than

computational skills.

How many changes should be made to present test items? To evaluate this

question we chose two recent test papers: the Higher Level IB-mathematics paper,

which was thoroughly evaluated at the Lüneburg conference, from spring 1992

(Appendix 3) and the corresponding higher level paper of the Finnish matriculation

examination from spring 1992 (Appendix 4).

The Finnish examination consists of 10 problems that must be solved during 6

hours. Five of those ten problems had parts a and b. The student should choose

either part a or part b, i.e. there were 15 problems altogether. Five problems

(Problems 2, 3, 6a, 7, and 8) can be solved directly with TI-85 (Calculator active

problems). Considerable part of the problem can be solved in seven cases

(Problems 1, 4b, 5a, 6b, 9b, 10a, and 10b) with TI-85 (Calculator active

problems). Little or no use of the calculator (Calculator neutral problems) is in

three cases (Problems 4a, 5b, 9a). Problem 9a is an abstract geometrical item,

other calculator neutral problems are word problems (4a and 5b and also

calculator neutral part of the problem 6b). No problem was considered to be

calculator inactive.

The IB-examination in Higher Level mathematics has two parts. For the first part

the students have 1.5 hours and they have to solve 20 questions. Correct answers

give full marks, i.e. the students do not necessary have to show their reasoning.

One third of the points could be gained by using the TI-85 (questions 4, 9, 11,

14, 18 and 19). Also the questions 1, 2 and 8 are more easily handled by TI-85
than by a conventional calculator. Part two of the test has four optional topics of

which the student has to solve one. These are mainly abstract mathematical

problems and thus mainly calculator neutral (Appendix 3).

The above mentioned analysis of the use of TI-85 in the tests has been carried

out without considering the programming capabilities of the calculator. The

calculator has quite advanced programming language and enough memory  (32k

bytes of RAM) to store the programs. Students can copy these programs from

other calculators or from MacIntosh or IBM compatible computers. IB

regulations allow the use of stored programs (IB World, December 1992).

Students can invent these programs themselves or they can copy them from the



30

manual or from books that have been published for supporting the use of TI-85
in mathematics education.

The new mathematics syllabus for IB has been published to be used for

examinations from May 1995 onwards [Anon-93]. Higher Level Mathematics has

five major parts: Fundamental mathematics, Probability, Functions and Calculus,

Matrices and Vectors, and one optional topic. Students may use a graphics

calculator with the above mentioned features. Test questions are to be such that

student who do not have the possibilities to use graphics calculator10 are not

disadvantaged. This situation demands some special properties for the test

questions. They must test more deeper and abstract mathematical understanding

than just mechanical manipulation of mathematical formulae11. Lower level

courses, Mathematical Methods and Mathematical Studies in IB and the lower

level mathematics of the Finnish Matriculation Examination, do not handle very

abstract mathematical problems. A considerable part of the curriculum of these

subjects consists of word problems [Anon-93]. The availability of graphics

calculators most probably will increase the number of word problems both in the

lower and higher level mathematics.

                                               
10 Many IB-schools are in developing countries. These schools have problems even in getting

enough ordinary calculators for the examination, because slide rules are no longer allowed from

May 1994 onwards.

11 In the latest (September 1993) matriculation examination of the Finnish higher level

mathematics the four easiest problems were calculator active problems (Appendix 5). This

situation causes some problems because graphical calculators can be used in the next

examination (March 1994).



31

3. PROLOG AS A MODELLING TOOL

In this chapter we investigate which theoretical features does a logic based model

have and how the implementation of the model with Prolog is intertwined with the

abstract modelling process. In section 3.1 we show that Prolog has its roots in

mathematical logic. The Prolog clauses have two different readings, declarative

and procedural. The declarative, or descriptive, reading makes the model easy to

write and easy to interpret. We show that the procedural reading of Prolog

programs is analogous with mathematical analysis. In section 3.2. we investigate

the properties of Definite Clause Grammars (DCG). We show that the expressive

power of the DCG is sufficient to define a reasonable sub-set of the language of

word problems.

3.1. PURE PROLOG AS A MODELLING LANGUAGE

The TEACHER prototype has been implemented by a logic programming language

Prolog (PROgramming in LOGic). The Prolog's syntax is that of the first-order

predicate logic formulas written in clause form, and further restricted to Horn

Clauses [Brat-86]. The language based on Horn Clauses is as expressionable as the

first order predicate calculus [Walk-87]. Horn clauses are also called Definite

Clauses [PeWa-80]. Horn Clauses take the form:

A if  B1 and B2 and ... and Bn

The corresponding Prolog-clause is of the form

A :-  B1, B2, ...,Bn.

This clause can be read, and executed, as a procedure of a recursive programming

language, where A is the procedure head and the Bis are its body [StSh-86]. In

other words this clause can be read declaratively



32

A is true if B1 and B2 and ... and Bn are true.

The clause can also be read procedurally

to solve (execute) A, solve (execute) B1 and B2 and ... and Bn , or

to do A, do B1 and do B2  ... and do Bn  [Kowa-87].

The declarative, or descriptive, reading of Prolog programs is an interesting feature

from the point of view of a modelling process. We are able to write clauses that tell

us how modelling is supposed to happen in general terms and at the same time we

get an executable Prolog program i.e. we can divide a problem into parts that no

longer have to be functionally dependent. We are able to construct recursive

models that share similar relational features. If we can clearly express how the

model is logically constructed, we then have also an executable model on Prolog.

We can notice the difference between the problem solving process and the model

constructed with Prolog. Our model has a definite logical structure that has a

correspondence in reality. We also have some features in the model and in reality

that correspond to each other. The model tells us how we get from a certain

feature to another more general feature. But the model tells us this in logical terms

only. The model does not intend to show how our brains or minds process the

knowledge to get from one feature to another. The model is to be understood in

this sense, i.e. declaratively.

A logic program is a set of axioms, or rules, defining relationships

between objects. A computation of logic program is a deduction of

consequences of the program. A program defines a set of

consequences, which is its meaning. The art of logic programming is

constructing concise and elegant programs that have the desired

meaning [StSh-86].

To understand better the declarative interpretation of our model we have to take a

closer look at the basic constructs used in Prolog. These constructs have their

origin in first order predicate logic. There are three statements in Prolog:

• Facts



33

• Rules

• Queries

Facts are Horn clauses with no Tail. (A if True).

The procedural reading of  a fact is to do A, do nothing.

Rules are Horn clauses with Head and Tail. (A if  B1 and B2 and ... and Bn).

Queries are Horn clauses with no Head (? if B1 and B2 and ... and Bn).

The only data structure in Prolog is logical term. Term can be constant, variable

or structure. Constants are either atoms or integers. Atoms begin with a lowercase

letter or with a special character. Variables start with an uppercase letters or with

the underscore _ 12. Structure is a compound term, i.e. a term that has several

components. The components themselves can also be structures. For example the

structure

triangle(isosceles(top_angle, relation(6,*),base_angle)

may refer to an isosceles triangle whose top angle is six times greater than its base

angle. Interpretation has to be stated explicitly. In this structure triangle is the

(principal) functor of the term.

It is not plausible, and it is naive to believe that we as humans process information

like Prolog machines. However, it is worth noticing how the Prolog programs are

executed procedurally. The procedural meaning of Prolog programs is based on

the principle of resolution [Robi-65]. The resolution principle may be presented

briefly in the following form [Walk-87]:

A A A B

B C C C

A A A C C C

m

n

m n

1 2

1 2

1 2 1 2

∨ ∨ ∨ ∨ ¬
∨ ∨ ∨

∨ ∨ ∨ ∨ ∨ ∨

K

K

K K

                                               
12Variables that need not be named are called anonymous variables. Usual convention of

referring to anonymous variables is to use the single underscore _.



34

In other words, the premises A A A Bm1 2∨ ∨ ∨ ∨ ¬K  and B C C Cn∨ ∨ ∨1 2K  imply

that the statement  A A A C C Cm n1 2 1 2∨ ∨ ∨ ∨ ∨ ∨K K   is true13. If m= 0 and n = 0

then we have two premises ¬B and Band no conclusion. In logical terms we have

¬B

B

Contradiction

Resolution-based theorem proving is behind all reasoning in Prolog-programs. For

instance if we have

f

s f

s

∨ ¬   this is identical to  

f

f s

s

→   which is written  

f

f s

s

:−   in Prolog-notation.

Thus, from fact f  and from the rule:  fact f  implies statement s  we conclude that

statement s is true (Modus Ponens).

Resolution is based on unification. "Unification is the basis of most work in

automated deduction, and the uses of logical inference in Artificial Intelligence"

[StSh-86]. A unification algorithm is presented in Fig 4. Unification, as defined in

many Prolog implementations for efficiency reasons, does not exactly correspond

to unification as defined in logic. However, from a practical point of view this

approximation to unification is quite adequate [Brat-86].

                                               
13 This is a shorthand notation because B and ¬B may include variables that initialise when

B and ¬B unify. This procedure may have an affect the terms Ai  and Ci .



35
Input :

Output :

Algorithm :

   Two terms  and  to be unified

  ,  the most general unifier (mgu) of  and  ,  or a failure.

   Initialize the substitution   to be empty,  the stack to contain the

   equation ,  and failure to .

   while the stack not empty and no failure do

     pop  from the stack

     case

           is a variable that does not occur in :

             substitute  for  in the stack and

             in   add  to 

           is a variable that does not occur in :

             substitute  for  in the stack and

             in   add  to 

           and  are identical constants or variables:

             continue

           is  and  is 

             for some functor  and 

T T

T T

T T

X Y

X Y

Y X

X Y

Y X

X Y

Y X

X Y

X f X X Y f Y Y

f n
n n

1 2

1 2

1 2

1 1

θ

θ

θ θ

θ θ

=

=

=

=

false

( , , ) ( , , )K K

>
= =

0

1

:

             push ,   on the stack

          Otherwise:

             failure:=  

     if failure ,  then output ;

     else output 

X Y i n

true

failure

i i , ,K

θ

Figure 4.  A unification algorithm [StSh-86, p.71]

Has this definition of resolution any counterparts in human thinking? The word

resolution is of Greek origin and its Latin equivalent is analysis. The most famous

description of analysis is that of Pappus (300 AD.):

In analysis, we start from what is required, we take it for granted,

and we draw consequences from it, and consequences from the

consequences, till we reach a point that we can use as starting point

in synthesis. For in analysis we assume what is required to be done

as already done (what is sought as already found, what we have to

prove as true). We inquire from what antecedent the desired result



36

could be derived; then we inquire again what could be the

antecedent of that antecedent, and so on, until passing from

antecedent to antecedent, we come eventually upon something

already known or admittedly true. This procedure we call analysis,

or solution backwards, or regressive reasoning [Poly-65].

The two definitions for word "resolution" are closely related. The greatest

difference is that Prolog uses pure computation [StSh-86], whereas human beings

use different (geometrical) heuristics [Niin-83].

3.2. EXTENSIONS OF PURE PROLOG

The declarative meaning of pure Prolog programs makes the program, or the

model we are building, easy to write and easy to understand. For practical reasons

of executional efficiency pure Prolog programs are not possible. All Prolog

implementations offer system predicates. For example, for arithmetic comparison

there are system predicates  >  and  <  that directly call the underlying arithmetic

functions of the computer. In addition, all Prolog implementations make use of

meta-logical predicates14 to enhance the expressive power of the programs. For

example, the term var(Term) tests whether the given term is at present an

uninstantiated variable [StSh-86].

A special predicate to control and to prevent backtracking is called cut (written as

!). If inserting a cut destroys the correspondence between the declarative and the

procedural meaning of the program, the cut is called red cut. Otherwise it is called

green cut. Use of extra-logical predicates causes side-effects and declarative

interpretation of the program is not possible. Extra-logical predicates are

concerned with I/O, or accession of data and manipulation of the program, or

interface with the underlying operating system [StSh-86].

                                               
14 The name meta-logical predicates denotes to the fact that these predicates are outside the

scope of the first-order predicate logic.



37

We have above briefly described the main features of logic programming as a

modelling language. To summarise:

• Logic programs may be expressed in a language that is easy to

understand.

• Logic programs are build to handle relational features.

• Logic programs can be understood both declaratively and

procedurally (with the above mentioned exceptions).

These features may be applied to modelling processes in general. In the following

we shall introduce a special property of Prolog programs that helps us to model the

word problem-solving process. The TEACHER prototype analyses and generates

mathematical word problems. The TEACHER prototype also analyses and

generates equations. We need a tool to analyse and generate both the artificial

language of textbook examples, and the artificial language of equations.

Prolog has been designed in the early 70's to natural language processing by Alain

Colmerauer and Robert Kowalski. In 1978 Colmeraurer used a grammar formalism

to assist in making a translation between English and French [Colm-78]. Grammars

that may be analysed by Prolog are called logic grammars. An extension of pure

Prolog, Definite Clause Grammars , briefly DCG [PeWa-80], is a grammar

formalism that is build in many Prolog implementations. The TEACHER prototype

makes use of DCG in two modules. Here, DCG is initially used to analyse and

generate word problems and secondly to analyse and generate equations.

In order to understand logic grammars, we need to make explicit some general

features of grammars. If we want to make an accurate definition of a language, we

define a collection of rules called grammar. The rules of a grammar define whether

the given string of words is a valid (generated) sentence of the language. "In

addition, the grammar generally gives some kind of analysis of the sentence, into a

structure which makes its meaning more explicit" [PeWa-80]. It is easy to define

grammars with Prolog. The analysis and synthesis are forms of inference that are

executable by Prolog's inference mechanism. The grammar, being simply an axiom

system or a collection of rules, is declarative in nature, and hence the grammar is

easy to create and understand [McCo-87].



38

Type 0 or General Rewrite Grammar

Productions of these grammars have no limitations. It can be shown that

languages of this type are exactly those languages that a Turing machine is

able to detect [HoUl-79].

Type 1 or Context-sensitive Grammar

There has to be at least as many non-terminals on the right hand side as

there are on the left hand side of the productions.

Type 2 or Context-free Grammar

There is only one non-terminal on the left hand side of the productions.

Type 3 or Finite State Grammar

Productions take the form        X aY X Y→ →  or   

where X  and Y are non-terminals and a is a terminal.

Figure 5. Chomskian hierarchy.

Logic grammars inherit their symbols and notations from linguistics [Chom-57]. A

grammar is defined as a quadruple (VN,VT,P,S), where VN is the set of non-

terminals, VT is the set of terminals, P is the set of productions and S is the

starting non-terminal. The alphabet V of the language is an union of the terminals

VT and non-terminals VN. Chomsky defined four different types of grammars. The

most general one is of type 0 and the most restricted one is of type 3. In this

Chomskian hierarchy (Fig. 5) the higher level grammar is able to produce all the

structures that the lower level grammar is able to produce. In addition the higher

level grammar also produces other kind of structures. All productions take the

form

X Y→

where X  and Y are strings of alphabets V.



39

Type 2 or Context-free Grammars, CFG, and Prolog clauses are analogous. Prolog

clauses have only one term on the left hand side of the rule and many or none on

the right hand side of the rule. Definite Clause Grammars15 are normally used as

level 2 Grammars. In fact DCG is a generalisation of Context-free Grammars.

CFG-grammars are usually defined and represented in notation based on Backus-

Naur Form [PeWa-80]. A CFG-grammar is defined by stating production rules

between the terminals and non-terminal of the language. CFG cannot adequately

describe natural language, nor even many programming languages. DCG

overcomes this inadequacy by extending CFGs in three ways (Fig. 6).

1. DCGs provide for context-dependency in a grammar, so that the

permissible forms for a phrase may depend on the context in which

that phrase occurs in the string.

2. DCGs allow arbitrary tree structures to be built in the course of

parsing, in a way that is not constrained by the recursive structure

of the grammar; such tree structures can provide a representation of

the "meaning" of the string.

3. DCGs allow extra conditions to be included in the grammar rules;

these conditions make the course of parsing depend on auxiliary

computations, up to an unlimited extent.

Figure 6.  DCG in an extension of Context Free Grammars [PeWa-80].

After these extensions a DCG is normally still a Context Free Grammar. "Definite

clause grammars are essentially context-free grammars augmented by the language

features of Prolog" [StSh-86, p. 260].

We are defining a subset of natural language, the language of some word problems

found in standard textbook(s), in DCG-notation. We are able to write the language

of these word problems in DCG-notation (Fig. 7). This task may seem difficult or

even impossible. However, it has been argued that word problems form an

                                               
15The name Definite Clause Grammars comes from logic. Prolog is based on Horn Clauses

(Section 3.1) that are also known as Definite Clauses.



40

semantically poor subset of natural language [Bobr-68]. We shall show in Section

4.3 that with the help of a couple of concise DCGs we are able to analyse and

generate all the word problems (and more) found in one standard Finnish textbook

[PaVo-89]. These simple DCGs are easily translated into other languages, in the

TEACHER prototype we have translated them into English (Fig. 10).

Rules for

'Word-problem-language'

in DCG notation

Word problems

in textual form

Generation Parsing

Figure 7. The language of word problems may be written in DCG-notation. 

This notation is used to generate, and to analyse, other word 

problems.

To clarify how the DCGs are to be understood we take a closer look to DCG-

notation. The productions of CFG may be written with DCG. DCG is also an

executable Prolog program. Therefore we can use it to identify and to generate

sentences that comply with the rules of the grammar. CFG-rules have the following

form:

non-terminal-symbol  →  body.

where "body" is a sequence of one or more items separated by commas. Each item

of the body is either a non-terminal symbol or a sequence of terminal symbols. The

syntax of DCG is presented in Fig. 8 using the notation of its own rules. This is a

modified version of [ClMe-84]. Our version considers also the backtracking



41

mechanism of Prolog i.e. Fig. 8. presents an executable Prolog program that is

tested with LPA-MacPROLOG.

grammar_rule → head, ['→ '], body, ['.'].

head → non_terminal.

head → non_terminal, [','], terminal.

body → element_of_the_body, !.

body → body, [','], body.

body → body, [';'], body.

element_of_the_body → ['!'].

element_of_the_body → ['{'], Prolog_goals,['}'].

element_of_the_body → non_terminal.

non_terminal → prolog_atom(X).

terminal(X) → list(X).

list([]) → [].

list([Head|Tail]) → prolog_atom(Head), list(Tail).

prolog_atom(X) → [X],{atom(X)}.

Figure 8. The syntax of DCG. Modified version of [ClMe-84].

The two first rules state that DCG rules are identical with CFG rules. Third rule

allows both non-terminals and terminals to be written in the head of the rule. The

expressive power of the grammar is enhanced and the grammar is able to present

context dependent properties (Rule 1 in Fig. 6).

The body of the rule consists of one single element or of several elements

separated with commas. The element may also be separated with a semicolon.

Semicolon is interpreted as a disjunction. The use of semicolons is, however, not

recommended because large grammars then have side-effects that are not easily

eliminated. An element of the body may be cut '!'. There are some reservation

against cut, but efficiency is improved when cut is used properly.

An element of the body may also be a Prolog goal or several different Prolog goals

separated with commas. Each of these goals may call another Prolog program

(Rule 3 in Fig. 6). These goals are not satisfied when the logic grammar is

executed. They are satisfied together with other goals when execution continues.



42

Elements of the body may also be terminals or non-terminals. Non-terminals are

Prolog atoms and terminals are empty lists or lists of Prolog atoms [ClMe-84].

Thus the translation16 of these grammars to Prolog becomes easier [StSh-86]. The

features that are relevant for modelling mathematical word problems are

summarised in Table 3.

Property of the program Feature of the model

Logic

programs

may be expressed in a language

that is easy to understand.

are build to handle relational

features.

can be understood both

declaratively and procedurally.

support advancing through

abstraction levels.

Models can be made

transparent.

Models can be made bi-

directional.

Two separate meanings of

the word "understanding".

Models may contain

abstraction levels.

Prolog

programs

have been originally designed for

natural language processing.

have generally a built-in tool, logic

grammars, for language analysis

and generation and at the same

time an elegant way to represent

grammars.

Word problems may be

handled efficiently.

Word problems, and

equations, may be analysed

and generated and the

grammars may be easily

understood and enlarged.

Table 3. The advantages of logic programming in general modelling and the 

advantages of a special implementation of logic programming,

Prolog , in modelling mathematical word problems.

                                               
16For reasons of efficiency DCGs are translated to difference lists [StSh-86]. This can be done

automatically with a help of a short algorithm and the efficiency may be enhanced from O(n2) to

O(n) [ZhGr-88].



43

4. THE CONSTRUCTION OF THE MODEL

In the two previous chapters we have investigated the properties of logic

programming as a modelling tool, and the relevant theories that relate to word

problem-solving. The model we are building between a word problem and an

equation shall be developed on the basis of this theoretical groundwork. The

constructive part of this study is presented in this chapter.

The Situation Problem-Solver, (SPS, Section 2.3), has been used as an inspiring

example for the present work. Some of the names of the different abstraction levels

are inherited from the SPS. However, the SPS and our model look the problem-

solving from different perspectives, and thus the abstraction levels are not

analogous.

The first step in building a word problem solving model is to analyse ordinary

textbook problems. Chapter 4.1 tries to find answers to questions such as: What

are the typical problems that are used as a first introduction to mathematical word

problems that are to be solved using equations? Can we find common features of

word problems to group them into different types?

In Chapter 4.2 we analyse the structure of equations behind different word problem

types. Can we find common features of these equations? Or can we even find

universally applicable features of equations behind word problems? Furthermore,

can we find analogous features from the original word problems and is there a

mapping between these elements?

In Chapter 4.3 we use the answers of the above mentioned questions to construct

the intermediate abstraction levels of the model.



44

4.1. THE LANGUAGE OF WORD PROBLEMS AND THE
PROBLEM DOMAIN

We analyse one widely used Finnish textbook [PaVo-89] and show that the results

can be applied to another famous Finnish textbook [HeKu-88]. Before the

textbook analysis, we shortly describe how the properties of logic programming

(Table 3.) can be applied to word problem solving.

The main advantage of using logic programming as a modelling language is the bi-

directionality of the model. The traditional, LISP-based models of word problem-

solving processes have a strong functional flavour. The starting point of the

analysis has, quite naturally, always been the word problem itself. From the days of

the STUDENT system [Bobr-68], word problems have been used in natural

language processing. Also Reusser's SPS-model is based on the discourse analysis

and text comprehension of van Dijk and Kintsch.

WORD PROBLEMS IN MATH AND PHYSICS

PROBLEM TYPE 1 PROBLEM TYPE nPROBLEM TYPE 2

EQUATION 11

EQUATION 1k

EQUATION 21

EQUATION 2n

EQUATION 31

EQUATION 3p

.

.
.

.

.
.

.

.
.

Figure 9. The starting point of traditional models for word problem-solving 

has been word problems and the problems concerning natural 

language understanding.



45

An overview of the traditional models is shown in Fig. 9. The greatest problem is

the diversity of natural language. In the SPS this problem is bypassed by giving the

word problems to the SPS as a list of micropropositions obtained from the

sentences of the problem text (Table 2). Deriving these micropropositions from the

text is in fact an essential feature of word problem-solving. We can not leave this

important phase without consideration.

We can not analyse natural language with computers, but we want to analyse word

problems presented in textual form with computers. We have solved this anomaly

by creating an artificial language for word problems. The grammar of this language

is written in DCG-formalism. In fact, different problem types (Fig. 9) need their

own DCG-grammars. Textbook word problems are usually presented using

different categories or problem types. Therefore it is possible to define grammars

for different problem types by analysing ordinary textbooks.

Time and change are essential components of situation problems i.e. problems

where states, events and actions play the main role [Reus-87b]. We do not

consider these problems, because it is still an open question, how to represent time-

dependent data in databases (Section 2.3). The situation problem solving is

important for very young children but the algebraic structure of the equation is

more important for older students "who know very well the problem types with

their associated mathematical reasoning strategies" [Reus-89].

We are concentrating on ordinary word problems of secondary school textbooks,

where the problems of time and change are normally bypassed. The theoretical

background of the TEACHER model is quite different from the traditional models.

In the TEACHER model we are interested in those mathematical word problems

where the explicit goal is to construct an equation and solve it. This is the most

common type of word problems in secondary and high school textbooks in Finland.

One can argue like Reusser:

Many textbook math problems are not intellectually challenging because they

are formulated as semantically poor, disguised equations instead of thinking

stories or situation problems, which do not allow students bypass thorough

semantic analysis in order to solve them [Reus-88].

However, the semantically poor word problems are widely used in mathematics

and physics textbooks. We wanted to build a simplified test environment for

modelling the problem-solving process. In doing this we chose that part of the



46

curriculum [Anon-82] where mathematical word problems are to be solved by first

forming an equation. This is another difference between the traditional models and

the TEACHER model. The traditional models have been mainly interested in

elementary arithmetical word problems [BrLa-84, CoVe-85, Reus-87b]. The

TEACHER model concentrates on the first introduction of algebraic word

problems. This part of the curriculum is extremely important because of the

conceptual changes involved in moving from arithmetic to algebra, especially the

maturation of the concept of equality [Matz-82]. This subject is taught in Finland

at the end of the 7th school year to 14 year-old students.

The most widely used textbook in Finland in the beginning of 1990's [PaVo-89]

was chosen as a starting point. First a problem-analysis was carried out. Most of

the examples were mechanical i.e. of the form "solve the equation..." and only 37%

of the problems were of the form "build an equation and solve it". The word

problems could quite easily be divided into four categories (Table 4). The textbook

encourages students to solve word problems by first determining its problem type

or problem category. The first category, literal representation of an equation, is a

simple one and it is not taken into further consideration. The remaining three

categories, age problems, triangle problems, and money-sharing problems, form the

test-problem group for the TEACHER prototype. The test-problems are all,

surprisingly, of the same, and indeed semantically poor, type.

The same problem types were found in another well-known Finnish textbook

[HeKu-88]. Surprisingly, the grammar for the triangle problems developed on the

basis of [PaVo-89] (Fig. 10), was adequate to analyse also the triangle problems in

[HeKu-88].



47

Problem type Typical problem % Equation

Literal
representation
of an equation

Form an equation and solve:
A certain number that is
multiplied by fourteen is
equal to the product where
the sum of the member and
one is multiplied by four

20/32
 =
60%

14x = 4(x+1)

Age problem
Father is three times older
than son. If you add the age
of the father and the age of
the son you get 60 years.
Form an equation and solve
it to find how old the father
and the son are.

3/32
 =
10%

x+3x = 60

Triangle
problem

The top-angle of an
isosceles triangle is four
times greater than the base-
angle. Build an equation and
solve it to find the degrees
of the angles.

3/32
=
10% x+x+4x = 180

Money sharing
problem

Jim, Jane and Bill were
thinning carrots. Jim
worked two times as much
as Bill and Jane worked
three times as much as Bill.
Build an equation and solve
it to find how the 366 mk
pay should be shared.

6/32
=
20%

x+2x+3x = 366

Table 4. The different problem types of a widely used Finnish textbook 
AHAA7 [PaVo-89] for 7th graders. The problems are from that part 
of the curriculum, where mathematical word problems are to be 
solved by first forming an equation.

4.2 DCG-GRAMMARS

In this section we start to discuss the model construction together with

implementational issues. Our main aim is to build a model in terms of logic

programming. The main emphasis on the implementational issues can be found in

this section. The final part of this model (Section 4.3) is implemented problem type

specifically i.e. new problem types can not be added automatically. We are

describing the model and the prototype declaratively. A further research question



48

is: are we also able to implement the rest of the model , Section 4.3, using the same

DCG formalism as we have done in this section?

In the previous section we saw that word problems can be grouped into four

different types. The second step is to analyse the equations behind the textbook

word problems.

Before we start to analyse equations we shortly describe the properties of Prolog

programs (Table 3.) and especially the properties of LPA-MacPROLOG 3.5

[ClMc-88]. The language of the word problem and the language of equations must

first be transformed into a list of tokens. Tokens are basic elements, e.g. words or

numbers, of the text or of the equation. It should be noted that no capital letters

may be used in Prolog. Capital letters start the names of variables in Prolog.

Equations and word problems are given in strings and not as lists of tokens, e.g.

"In triangle ABC the angle A is two times as big as the base angle B and the

angle C is six times as big as the angle B. Form an equation and solve it to find

the angles of the triangle."

or "x + 2x + 3*2x   =   180"

The predicate

tokenise(String, List).

transforms a given string , i.e. a word-problem or an equation, into a list of tokens.

First a string is decomposed into letters, digits and characters such as question

marks, comparison operators (>, <) etc. Capital letters are transformed to ordinary

letters and fill chars such as space, line brake etc. are bypassed. The single

characters are further combined to different kinds of tokens such as words,

numbers, or special characters. If for instance the variable String is instantiated

with "x + 2x + 3*2x   =   180" :

tokenise("x + 2x + 3*2x   =   180", List),

then the variable List is instantiated with: List = [x,+,2,x,+,3,*,2,x,=,180].



49

Before we continue with this list representation of an equation we reiterate that the

basic idea behind the TEACHER system is to look at the mathematical word

problem from the equation (Fig. 1). The word problems we are interested in are of

the form "build an equation and solve...". Therefore the equation can be

represented as a set of objects, operations and relations that all have a

corresponding entity in the word problem.

The equations in Table 4 have all an integer value at the right hand side of the

equation, and the left hand side is a sum or difference of two or three objects. The

equations can be represented in the following general form:

object1  operation  object2  operation  object3   equals   total_value

or

object1  operation  object2   equals   total_value

In the case of the triangle problem in Table 4, the objects are the angles of a

triangle and the operations tell us to sum these objects together. The left hand side

of the equation forms a combined object (sum of the angles of a triangle) and the

right hand side of the equation is another object (180 degrees). Thus the equation

can be seen as an equivalence relation between two mathematical entities, or

objects:

LEFT-HAND-SIDE-OBJECT   equals   RIGHT-HAND-SIDE-OBJECT

The OBJECTs can be decomposed into an ordered set of objects and operations

(left hand side) or the OBJECTs may represent a simple value (right hand side).

The decomposed objects have, in equations that are derived from mathematical

word problems, relationships with each other. In other words the equation can be

decomposed into a set of objects, operations and relations between these objects.

This formal or context free model may be applied to the underlying equations of

the word problems found in Table 4.



50

We are now ready to construct the first transformation of the model. The above

mentioned analysis of an equation is performed using DCG. The starting non-

terminal is 'equation'. The predicate

parse(List, Structure, Grammar_rule).

builds a syntactic structure of the given word problem. The variable List is the

original equation transformed into a list of tokens and Grammar_rule is the starting

non-terminal (Fig. 8) of the grammar. If, for instance, the variable Grammar_rule is

'equation' and the list is [x,+,2,x,+,3,*,2,x,=,180] then the Structure is:

obj(obj(x),obj(2*x),obj(3*2*x),oper[+,+]) , obj(180)

In other words, we have two objects obj(180) and another object that consists of

three sub-objects, obj(x), obj(2*x) and obj(3*2*x), and operations, oper [+;+],

that bind these sub-objects together. We call this structure the context free model.

This general model of an equation, or the context free model (Appendix 1), can be

constructed without knowing the word problem it will represent. The

transformation between an equation and the context free model is implemented

using logic grammars. In grammar formalism we have implemented the usual way

of writing an equation from text. For instance, if we have the following equation:

"x+x+60+2x=180"

we get the left-hand-side-objects:

obj(x)  ,  obj(x+60)  and  obj(2x)

or some other possible combination e.g.

obj(x)  ,  obj(x),  obj(60),  and  obj(2x)

All operations between the objects are '+'. The former combination of objects has a

representation in triangle problems, but the latter does not have a representation in

any of the problem types in Table 4. We may also want to express, which object

we want to process. This is done by using parentheses:



51

"(x)+ (x+60) + (2x) = 180".

The transformation between an equation and the corresponding context free model

is not arbitrary. We are transforming equations into a set of objects that have

corresponding entities in a word problem. Therefore one object, obj(x), has to be

the unknown. Other objects have to be represented using this unknown. In other

words, there has to be a relation between different objects. For instance:

obj(2x)   is   2*obj(x).

If we want a more sophisticated model, we only have to recursively decompose

the objects into smaller objects or entities. This recursive decomposition is needed

in high school physics problems, or more generally in problems where we have

simultaneous equations. But in our model the illustrated decomposition is

sufficient. In fact, relations such as: top-angle is four times greater than the base-

angle, may be represented in a form of a simple equation. Thus also the examples

in Table 4 are formally solved by solving simultaneous equations. However, this is

not the way we introduce the solution process to students. The traditional way of

teaching students to solve these problems starts from noticing the objects, relations

and operations from the textual form of the problem. The traditional way of

teaching to solve mathematical word problems is analogous with Polya's way of

introducing the subject (Fig. 11). This discussion ends the first transformation of

the model, the transformation between an equation and the context free model.

The next transformation starts from the textual form of the word problem. Our

ultimate aim is to find a mapping between an equation and a word problem. We

have described how to transform an equation into an ordered set of objects,

relations, and operations. The transformation from an equation to the above

mentioned general form, context free model (Appendix 1) in the TEACHER

prototype, is implemented bi-directionally by a logic grammar. Logic grammars are

also used in the transformation of a mathematical word problem bi-directionally

into a formal representation that we call the textbase. A logic grammar of the

triangle problems is in Fig. 10. The textbase is composed of certain entities -

objects, relations and operations - that are derived from the text.



52

triangle((P,R,Q)) → problem(P), condition(R), ['.'], question(Q), ['.'].

condition((R1,R2)) → condition(R1), [and], condition(R2).

condition(R) → relation(R).

problem(spec_object(triangle, Name)) → [in, triangle, Name], !.

problem(spec_object(triangle)) → [in, triangle].

problem(spec_object(isosceles_triangle)) → [in, an, isosceles_triangle].

relation(rel(A, C2, '*', B)) → object(A), [is, C1, times, as, big, as], object(B),

{make_num(C1, C2)}.

relation(rel(A, equals, B)) → object(B), [is, as, big, as], object(A).

relation(rel(A, C,'+', B)) → object(A), [is, C degrees, bigger, than], object(B).

relation(rel(A, C,'+', B)) → object(B), [is, C degrees, smaller, than],

object(A).

object(top_angle) → [the, top, angle],!.

object(base_angle) → [the, base, angle],!.

object(Name) → [the, angle, Name].

question(question) →

[form, an, equation, and, solve, it, to, find, the, angles, of, the, triangle].

Figure 10. A simplified DCG grammar to be used with Prolog both to 

recognise and to parse the sentences it defines, and to generate all 

its sentences.

Word problems are given in strings and not as lists of tokens, e.g.

"John is four times as old as Mary. If you subtract the age of John from the age

of Mary you get 60 years. Form an equation and solve it to find out how old

John and Mary are."

The first phase of the lexical analysis is done with the same predicate that is used

to tokenise equations:



53

tokenise(Word_problem, List).

The predicate transforms a word-problem, into a list of tokens. The predicate

parse(List, Structure, Grammar_rule)17

builds a syntactic structure of the given word problem. The variable List is the

original word problem transformed into a list of tokens and Grammar_rule is the

starting non-terminal (Fig. 8) of a fitting problem type (Table 4). If, for instance,

the Grammar_rule is 'triangle' then the program uses a DCG-grammar to parse

triangle problems. A simplified DCG-grammar for triangle problems is presented in

Fig. 10. This grammar may be enlarged by adding more detailed rules for the

language. In fact only a small fraction of the possibilities of DCG-grammars is used

(Section 3.2).

It is possible to build a parse tree of the word problem using DCG-formalism. The

DCG syntax presented in Fig. 8 is able to build the logical form of the word

problem. In Fig. 8 the non-terminal symbols are Prolog atoms. If we allow the

non-terminal arguments be Prolog structures (Fig. 10) then DCG can be used for

building syntactic structures instead of logical forms [McCo-87]. We are using

DCG-grammars to produce the mathematical meaning of the word problem. With

the help of DCG-grammar we are able to separate data and condition, to separate

the different parts of the condition and to state the relations between the data. This

phase is analogous with Polya's scheme (Fig. 11). The same grammar formalism is

used to generate all the word problems the system is able to recognise.

                                               
17The predicate parse is the following:

parse(List, Structure, Grammar_rule):-

X=..[Grammar_rule, Structure, List,[]),

call(X).

If the first clause, with the built-in predicate =.., is true then a new term

X=Grammar_rule(Structure, List, []) is constructed. This new term is not a syntactically

acceptable clause. With another built-in predicate call , whose argument is the goal X, this

problem can be solved.



54

Word problems are said to be semantically poor [Bobr-68, Reus-88]. Our findings

verify this statement. All triangle word problems found in two Finnish textbooks

for seventh graders [PaVo-89, HeKu-89] have the above mentioned grammar. In

other words, the TEACHER is able to recognise and analyse all these problems. In

addition, the TEACHER can generate more (relevant) problems than can be found

in these textbooks. Enlarging TEACHERs ability to solve different types of

problem can be performed by inserting grammars into the system.

4.3. A MAPPING BETWEEN AN EQUATION AND A WORD 
PROBLEM

We have analysed the structure of an equation. The equation, underlying a basic

word problem, has a definite structure. We have shown that it is possible to

transform this structure into a context free model. Nearly analogous structure

(textbase) can be found from the textual form of word problems. The final phase

of the construction is to find out if there exists a mapping between the textbase and

the context free model.

It is possible to define, with DCGs, the language of ordinary mathematical word

problems. Using this grammar we are able to transform a word problem into a

textbase. The transformation between word problem and the textbase is done with

the predicate18:

from_text_to_textbase(Word_problem, Textbase):-

tokenise(Word_problem, List),

parse(List, Structure, Grammar_rule).

For instance, if variable Word_problem is given the value:

"John, Paul, and Mary delivered advertising leaflets. Paul worked six times as

much as John and Mary worked five times as much as Paul. How should the

£285 pay be shared?"

                                               
18The variable Grammar_rule is instantiated with all implemented starting non-terminals of the

DCG-grammars. Only one of them is possible in this prototype.



55

then the result of the lexical analysis, the parse tree of the word problem, is the

Textbase:

textbase(object(john,paul,mary),relation(paul,6,*,john),relation(mary,5,*,paul),

object(tot_value(285), question(all_objects)).

However, the parse tree is not easy to read because it is one single Prolog

structure. We want that the textbase is built during the processing in a more

readable form. For this we apply an uncommon property of Prolog programs.

A special property of Prolog programs is the program's ability to modify itself.

New clauses may be asserted and existing clauses may be retracted during the

runtime19. An excessive use of these facilities may obscure the meaning of the

program. The resulting program may become difficult to understand and difficult

to explain [Brat-86]. We demonstrate these features by asserting only those facts

and rules that logically follow from the program. Adding such clauses will not

affect the meaning of the program, since no new consequences can be derived

from it [StSh-86]. The TEACHER asserts facts (data and conditions) and relations

between the data that are obtained by the above mentioned lexical analysis. The

TEACHER also deduces new facts from the obtained relations. In textbase we

now have objects, relations between these objects and the unknowns.

We are now able to present an instance of the textbase of the above mentioned

word problem in the following form:

fact(object(john, paul, mary)).

fact(rel (paul, 6, *, john).

fact(rel(mary, 5, *, paul).

fact(total_value(285)).

question(john, paul, mary).

We have now shown how to construct two abstraction levels, textbase and context

free model. The context free model is a collection of objects, relations, and

                                               
19  Using extra-logical predicates assert and retract it is also possible to introduce set-predicates

that produce sets as a solution. This is one example of second-order programming [StSh-86].



56

operations. Some corresponding components are missing from the textbase. The

additional components can be derived from the knowledge that has been learned

previously. The textbase is enlarged, we call the new abstraction level the enlarged

textbase, if necessary with the help of general mathematical knowledge

a equals b    if and only if    a is 1*b,

or context specific knowledge

the sum of the interior angles in any triangle is 180°.

In the above mentioned problem type no general mathematical knowledge is

needed, but we need to use the following context specific knowledge: the sum of

the money that each person gets is the total amount of the money to be shared. In

other words, the extra knowledge is : the operations [+,+] bind the sub-objects

john, paul and mary together to a larger object, and this new object is equivalent

with the total amount of money to be shared. The extra knowledge is inserted to

the textbase with the predicate:

enlarge_textbase(Textbase, Enlarged_textbase).

The next phase is to choose the appropriate variable. We then can express all

objects using the unknown. We call this abstraction level the context sensitive

level. It contains information that is needed to build an equation. The following

heuristic is used to select the variable: Try to avoid structures where the unknown

is in denominator. Therefore Mary and Paul can't be selected as unknowns. The

unknown will be John, or in fact John's share. The link between the enlarged

textbase, and the context sensitive model is the predicate

from_structure_to_model(Enlarged_textbase, Context_sensitive_model).

An instance of the context sensitive model of the previous example is

variable(john).

rel(paul, 6, *, john).



57

rel(mary, 5, *, 6, *, john).

objects(john, paul, mary).

operations_between_objects([+,+]).

object(tot_value(285)).

Building a context sensitive model is more or less analogous to phase 2, devising

the plan, in Polya's scheme (Fig. 11): the connection between the data and the

unknown are presented explicitly. Related problems are problems where the total

amount of money has to be shared. Choosing the unknown is done with the

described heuristic.

The predicate

from_model_to_model(Context_sensitive_model, Context_free_model).

transforms the context sensitive model to relations between two objects that are

equal, we call this abstraction level the context free model. The objects may

contain sub-objects and operations between the sub-objects. An instance of the

Context free model of the previous example is:

object(x) + object(6x) + object (5*6x)   equals   tot_value(285)

Here all the connections to the meaning of the word problem are set aside and only

those features that are left are essential to form the equation. The last phase is to

transfer the context free model to the equation. This is done with the predicate

from_model_to_equation(Context_free_model, Equation).

The last phase is trivial if we are looking at the problem-solving process from

word problems to equation (Fig 1). But our starting point was in fact the equation

and not the word problem. We have described in Section 4.2 how to transform an

equation to a context free model. This is done with the above mentioned predicate

where variable Equation is instantiated and the other variable is uninstantiated:

from_model_to_equation(Context_free_model, Equation):-

tokenise(Equation, List),

parse(List, Context_free_model, equation).



58

The predicates between each pair of two consecutive levels, e.g.

enlarge_textbase(Textbase, Enlarged_textbase)., can be used in two ways: to

generate the Enlarged_textbase from the Textbase, or to generate the Textbase

from the Enlarged_textbase. Combining all the above mentioned predicates under

one predicate, we have the TEACHER prototype, without the user interface

module:

from_text_to_equation(Word_problem, Equation):-

from_text_to_textbase(Word_problem, Textbase),

enlarge_textbase(Textbase, Enlarged_textbase),

from_textbase_to_model(Enlarged_textbase, Context_sensitive_model),

from_model_to_model(Context_sensitive_model, Context_free_model),

from_model_to_equation(Context_free_model, Equation).

If variable Word_problem is instantiated (given) then the resulting equation is

formed together with the abstraction levels, the Textbase, the Enlarged_textbase,

the Context sensitive model, and the Context free model. If the variable Equation

is instantiated (given) then the abstraction levels are built. There are usually many

possible Textbases that can be built from one equation. Each of these Textbases is

used to generate all the possible word problems that the DCGs can generate20, e.g.

the grammar in Fig. 10.

In this chapter we have shown how the TEACHER prototype was constructed. At

the same time we have constructed a logic based model for word problem-solving.

We call this model the TEACHER model. It is not easy to separate the abstract

modelling process and the implementation with Prolog. Therefore the result of this

construction is called the TEACHER system that contains both a model and a

prototype.

                                               
20 The program generates also Finnish word problems. This may be avoided by selecting the

language. The selection is part of the user interface module of the TEACHER .



59

5.  THE BI-DIRECTIONAL SYSTEM

In Chapter 4 we constructed the TEACHER model. In this chapter we investigate

the properties of the TEACHER system i.e. the model and the prototype. The

main predicate of the TEACHER prototype, from_text_to_equation(Text,

Equation), is a relation between the textual form of the word problem and the

equation. Other predicates describe the relations between different abstraction

levels of the TEACHER system (Fig. 2, Appendix 1). Prolog programs are

basically relational and therefore we are able to consider the problem-solving

process from the student's view, from text to equation, and from the textbook's

view, from equation to text. In fact, if we are using Prolog as a modelling tool we

can not, strictly speaking, separate these two views (Fig. 1). In this chapter we are

studying the applications of the system.

5.1 THE TEACHER AS A WORD PROBLEM GENERATOR

We have created an artificial language for word problems (Section 4.2). Or rather,

we have invented a method by which the creation of the word-problem language is

possible. We use different grammars for different problem types (Fig. 9). Enlarging

a grammar of a problem type means we can analyse more word problems from the

same problem domain. By changing the lexical part of the grammar we can change

the language, in this version English and Finnish. Using analogous method,

textbook analysis and DCG-formalism, we can widen the scope of the problems

that the system is able to analyse. The system is entirely bi-directional. In this

section we investigate the transformation from an equation to the textbase to word

problems.

As we have seen in Chapter 2, the history of mathematical word problems is

intertwined with the basic problems of natural language understanding. Traditional

models of word problem-solving systems (Fig. 9) look the problems uni-

directionally from text to equation. If we want to build a computer environment,



60

where true word problems are to be solved, we have first to overcome the

manifold problems of natural language. The problem is obviously unsolvable if we

do not restrict the natural language to a simplified subset. This is what Bobrow did

in his STUDENT system. Bobrow showed that

The STUDENT system, which accepts as input a comfortable but restricted

subset of English, can be used to express a wide variety of algebra story

problems [Bobr-68].

Bobrow used simple pattern matching heuristics to build his famous system. The

grammar of the text that was acceptable to the STUDENT was hidden in these

pattern matching statements.

From the context free model of the equation we are able to construct a group of

word problems. The TEACHER first checks which problem types are possible

(Appendix 1, Table 4). The problem type may be, for example, "Triangle

problem", if there are three objects, the operations between these objects are "+"

and there is a natural number 180 on the other side of the equation.

When TEACHER knows the possible and selected context , the system is able to

construct a context sensitive model (Appendix 1). In the present version, we use

fixed expressions e.g. the name of a triangle is ABC and the angles are A, B and C.

When special knowledge of a context and general knowledge are taken off from

the context free model, we get the textbase (Appendix 1).

The textbase is a collection of objects, relations between these object, and

operations that combine these objects to larger objects. The entities of the textbase

have a representation in the text. The textbase is a combination of exactly those

entities that are relevant from the point of view of the problem-solving process. It

is possible to find these entities in the word problems we are interested in, because

these problems are ordinary textbook problems:

The general characteristics of textbook problems: well-defined with one

solution which the teacher already knows; the solution is obtainable with one's

own recourses; calculations working out evenly indicate being on the right

track; confinement to relevance and non-ambiguity: everything that is relevant

to the solution is stated in the text, and everything that is stated is relevant; the

explicit problem question is always present and highly informative; all

problems are solvable [Reus-88].



61

The transformation between the textbase and the textual form of word problem is

implemented by logic grammars. From the textbase the TEACHER generates a

group of word problems to a certain problem area. There is a specific grammar for

every problem type, one for triangle problems, one for age problems and one for

money sharing problems in the present prototype version. Each of these grammars

defines unanimously the language the TEACHER prototype is able to understand

and generate. The grammars are easy to interpret and easy to enlarge. So we may

broaden the system to generate more lexical variants from a single textbase. We

can also implement new grammars for new problem types. Thus we are able to

enlarge the system in a restrained manner.

To summarise: If we give the TEACHER prototype an equation as an input, the

system generates a group of word problems to every possible problem type (Table

4). If we do not want to restrict the number of word problems in any way, the

TEACHER generates all those problems that can be analysed by the prototype. All

of the generated problems are understandable and may be found in standard

English or Finnish textbooks. Even if we do not consider some trivial lexical

variants, the number of the word problems generated by the present preliminary

version may be counted in tens or hundreds.

5.2. THE TEACHER AS A MODEL OF WORD PROBLEM-
SOLVING PROCESSES

The construction of the logic based model started from an equation and from a

textbook analysis simultaneously. This first phase gave two abstract levels,

textbase and context-free model as a result. A new level, the enlarged textbase,

had to be added to maintain the correspondence between objects and relations. For

a similar reason some of the objects or relations had to be taken off or rearranged.

The final level to be constructed was the context sensitive model. In this section

we shall show that the result of the construction is, quite surprisingly, analogous

with Polya's way to teach word-problem solving.



62

First, we shall outline the meaning of the words "problem" and "problem-solving".

The basic characteristics of a problem are universally agreed:

• The desire to attain some goal.

• The means by which this goal is pursued.

• Unawareness of the process, how (or by which combination of means) the

goal can be reached.

Eloranta [Elor-74] has comprehensively discussed different problem-solving

methods and heuristics. The above mentioned definition is also in accordance with

Polya's definition of problem-solving:

To have a problem means: to search consciously for some action appropriate

to attain a clearly conceived, but not immediately attainable, aim. To solve a

problem means to find such action [Poly-65].

Lewis has studied the specialist skills in the domain of algebra. To solve an algebra

problem means that one must employ two kinds of knowledge [Lewi-81]. First,

the solver must know an adequate set of correct operations. This corresponds to

the means of the definition of a problem. Second, the solver must know how to

select an appropriate operator to use at given juncture. This corresponds to the

action of the definition of problem-solving and also to the combination of means

of the definition of a problem. So, we can find all the basic principles of problem-

solving in algebraic problems. Descartes tried, and failed, to reverse this process.

Here is a rough outline of the scheme that Descartes expected to be applicable to

all types of problems [Poly-65]:

• First, reduce any kind of problem to a mathematical problem.

• Second, reduce any kind of mathematical problem to a problem of

algebra.

• Third, reduce any problem of algebra to a solution of a single equation.

"When a high school boy solves a "word problem" by "setting up equations", he

follows Descartes' scheme and in doing so he prepares himself for serious

applications of the underlying idea" [Poly-65]. Polya himself considers the general



63

problems from the same mathematical perspective as Descartes. Polya argues that

in any problem there must be

• an unknown

• something given (the data)

• a condition, which specifies how the unknown is linked to the data

These concepts can be found in the textbase of the TEACHER. Question,

question(A,B,C) in the textbase, is a collection of all the unknowns of the problem.

Objects, objects(X,Y,Z) in the textbase, refer to the given features of the problem.

This is, however, not a straightforward thing. We should rather say that what is

given is the explicit values of the objects, and those objects that have no values are

unknown. In the prototype there are just identical entities in objects(X,Y,Z) and in

question(X,Y,Z). Thus it is better to state that in a mathematical word problem we

have some objects, of which some are unknown, and that we have some conditions

that link these objects together. These conditions are represented in the textbase

with relations between the objects and with operations that combine these objects

together to a larger object. In fact we have operations between objects, where

some objects are unknown and some are expressible by known objects or by the

relations of these known objects.

Although great scientists like Poincare and Einstein have been interested in

heuristics, the real renaissance of heuristics in mathematics began only after Polya

[Elor-74]. Eloranta states that the Polya's heuristics are probably (and

unfortunately) not widely used in the mathematics teaching.

The "word problems" of the high school are trivial for mathematicians, but not

so trivial for high school boys or girls or teachers. I think, however that a

teacher who makes an earnest effort to bring Descartes' advice, presented in

the foregoing, down to classroom level and to put it into practice will avoid

many of the usual pitfalls and difficulties. [Poly-65]

In the following we shall show that the TEACHER model quite closely follows

Polya's guidelines (Fig. 11) and Descartes' scheme presented by Polya [Poly-65].

Our model is nearly analogous with Descartes' scheme. To emphasise this aspect

we use the following notation. Polya's own words [Poly-65], printed in italics, are

used to explain some features of the TEACHER model.



64

HOW TO SOLVE IT

UNDERSTANDING THE PROBLEM
First.You have to understand the problem.

What is the unknown?
What are the data?
What is the condition?
Introduce a suitable notation.
Separate the various parts of the condition.
Can you write them down?

DEVISING THE PLAN
Second. Find the connection between the data and the unknown.

Do you know a related problem?
Look at the unknown.
Here is a problem related to yours and solved before.
Could you use it?
Could you use its results?
Could you use its methods?
Could you think of other data appropriate to determine the 
unknown?
Could you change the unknown or the data, so that the new 
unknown and the new data are nearer to each other?
Did you use all the data?
Did you use the whole condition?

CARRYING OUT THE PLAN
Third. Carry out your plan of the solution, check each step.

Can you see clearly that the step is correct?
Can you prove that it is correct?

LOOKING BACK
Fourth. Examine the solution obtained.

Can you check the result?
Can you check the argument?

Figure 11. Polya's guidelines for solving word problems [Poly-45].

First of all, the student should not start doing a problem before he has

understood it. It can be checked to a certain extent whether the student has really

understood the problem. He should be able to repeat the statement of the problem

(objects(A,B,C) in the textbase), point out the unknowns of the data

(question(X,Y,Z) in the textbase), and explain the conditions in his own words

(relations and operations in the textbase). If he can do all this reasonably well, he

may proceed to the main business. In other words, to be able to construct a



65

textbase is a sufficient condition to proceed. The textbase represents the notes that

are written down when the student tries to understand the problem (Fig. 11). If we

consider the same problem as in Section 4.3. i.e. "John, Paul, and Mary delivered

advertising leaflets. Paul worked six times as much as John, and Mary worked five

times as much as Paul. How should the £285 pay be shared?" then we have:

The Textbase The notes of a student or of a teacher

fact(object(john, paul, mary)).• Three persons: John, Paul and Mary

fact(rel (paul, 6, *, john). • Paul works 6*John

fact(rel(mary, 5, *, paul). • Mary works 5*Paul

fact(total_value(285)). • They have to share £285

question(john, paul, mary). • How much John gets? How much Paul gets?

How much Mary gets?

"An equation expresses a part of the condition. The student should be able to tell

which part of the condition is expressed by an equation that he brings forward -

and which part is not yet expressed." In the TEACHER model the part of the

condition that is not expressed is problem specific or "Knowledge of context i" in

Appendix 1, or is in part of "General knowledge" in Appendix 1 In our example

we have to add a new object to the textbase. The new object is obtained from

object(john,paul,mary) by adding operations that bind these objects to a larger

object:

Enlarged textbase The notes of a student or of a teacher

operations_between_objects[+,+])•• How much do John Paul and Mary get

altogether?

"An equation expresses the same quantity in two different ways. The student

should be able to tell which quantity is so expressed." The quantity is, in our

examples (Table 4), the sum or difference of ages in age problems, the sum of

money in the above mentioned money sharing problems, and the sum of angles in

triangle problems. The similar types of quantities can be found in the

corresponding problem types (Fig. 9).

"Of course, the student should possess the relevant knowledge without which he

could not understand the problem." Computers can not analyse natural language.

Therefore this kind of relevant knowledge is beyond the system's boundaries.



66

"Many of the usual high school problems are "rate problems". Before he is called

upon to such a problem, the student should acquire in some form the idea of

"rate", proportionality, uniform change." This is also one of the main aims of the

study: to present a method by which the student can learn to handle "rates" or to

understand the meaning of relations. The TEACHER model concentrates, in this

discipline, on representing conditions of the text by relations. To build the textbase

is to build an intermediate representation between the verbal representation of a

problem and its symbolic representation as an equation. To teach the students to

use an explicit intermediate representation has proven to have significant and long-

term effects on the student's mathematical word problem-solving abilities [SeBe-

91].

The TEACHER model tries to make explicit those factors that are known to be

relevant in the teaching of word problem-solving [Poly-65]. The choice of an

inappropriate variable is a cause of many errors and the student may even give up

trying to solve the problem if he doesn't find the adequate variable. The questions

related to the choice of a variable are discussed in the next section. After choosing

the variable the we are able to construct a context sensitive model of the problem

(Appendix 1).

The context sensitive model contains all the information, derived from text and

from extra knowledge that is needed to solve the problem. If a student can form a

context sensitive model, he knows all the relevant features of a problem. He knows

exactly what extra knowledge is needed and he knows what are the unknowns in

the problem. Often a student bypasses the context sensitive model and goes

directly to the context free model. The context free model has all the information

needed to form the equation, but the context free model does not include any

information about which objects are to be solved. In other words, it is quite usual

that students solve problems by building equations, but they do not know what the

answer represents in the problem text. If students want to write the answer

correctly, they have to go back to the text and do the analysis process once more.

If, however, they have formed a context sensitive model, abstractly or formally,

they have at the same time carried along the meaning of the variables.

The benefit of forcing the students to build a context sensitive model is that it is

then impossible to rush towards the solution: the student has to think what he or

she is really doing. A teacher might encourage the students to make the following

notes when he or she teaches how to solve word problems:



67

• John = x

• Paul = 6*John

• Mary = 5*6*John

• John + Paul + Mary   is equal to   the total pay to be shared.

• total pay  =  £285

The students are not normally encouraged to make context sensitive models.

Rather they are instructed to form a context free model and then to go back to the

text and check once more what the real question was. This easily leads to the

isolation of the semantic part of the word problem from the algebraic part of the

word problem. This might be one reason why so many students solve mathematical

word problems without really understanding what they are doing [Reuss-88]. The

TEACHER model presents one possible way that can be used to avoid some of the

usual mistakes made in mathematical word problem-solving. Thus the model may

be of some practical value in delivering instruction on mathematical word problem-

solving. This may be done through ITS version of the TEACHER or through the

traditional algebra curriculum.

5.3. THE TEACHER AS A TEST BENCH OF PROBLEM-
SOLVING PROCESSES

The logic based model of mathematical word problems highlights some of the

features of problem solving. The model also raises some new questions. Some old

questions of mathematical problem solving can also be tested with the prototype.

Before considering these questions we look at what restrictions the model has.

The TEACHER system has been designed in a restricted area of the curriculum of

mathematics [Anon-82]. The Finnish seventh graders are supposed to use only

about 15 lessons to learn the basic concepts of equation. Six lessons, or two

weeks, are used in mathematical word problems. Our selection of a well defined

area has the following theoretical advantages. First, it is possible to thoroughly

manage a condensed area. Second, new theories may be developed and tested.

New theories can be tested afterwards in more comprehensive settings. In addition



68

to these theoretical features, there is also a pragmatical reason: it is impossible to

develop the first version of a system like TEACHER in a complicated area.

In the following we shall discuss some of the theoretical problems that may be

studied through the TEACHER system. Some of these questions have been

discussed in the previous sections. These two are related to the overall problem-

solving process and to the finding of an appropriate representation intermediate

between an equation and the text.

TEACHER system can be used to answer the following questions: is it possible to

know when extra knowledge is needed and when extra knowledge is not needed to

solve a problem i.e. when the textual representation of a word problem contains all

information needed to solve the problem? The question may be unsolvable in

general settings, but it is interesting to find out if we are able to give an exact

answer to the question in a restricted area. If this is possible, then new and

unexplored questions arise. The first one is: are we able to enlarge the set of

problems and what kind of problems are outside these well-defined problems?

In order to be able to solve the above mentioned problems, we have to analyse

thoroughly the transformation between the word problem and the textbase.

Basically, the textbase consists of objects (persons, angles,...) , attributes of these

objects (age, pay, angle), relations between the objects (three times older than, 60°

greater than...), operations between the objects (A+B+C) and possibly the values

of some of the objects (total_pay is 360 mk...). We have to consider those features

that we have not been forced to tackle in our simplified examples. Doing this

detailed analysis of the knowledge representation allows us also to get a more

thorough understanding of the different problem domains.

If a student knows the essential features of a word problem (i.e. the student is able

to form the textbase) and knows what kind of extra knowledge is needed (i.e. the

student is able to form an enlarged textbase ), he or she still has a major sub-

problem to solve: how to select the right variable? If a wrong variable is selected,

the problem may become more complex or even unsolvable for a seventh grader.

Before we can answer the above mentioned questions we have to answer a

question such as: what are the steps that are related to the choice of the variable

and how many steps are there? If we are able to solve this question, we at the same

time have a logic program that can select an appropriate variable. But there may be

many different ways to attain the right variable. A variable may be selected



69

according to some technical features: we can select the variable according to the

position of the object in the text (e.g. we may select the first possible variable) or

we may simply select the object of comparison. These features may be

implemented in the system so that the system is able to predict the variable. It is

still an open question as to how many steps there are and what are the actual steps

of the selection process.

Some psychological features of the text may also have an influence on the student's

ability to solve a problem i.e. word problems that are related to areas which

students like, dislike, are interested in, that are from unknown areas etc. It is

possible to test these features through the TEACHER system because the

underlying mathematical structure of a word problem may be kept invariable and

change only the textual form of the word problem.



70

6. SUMMARY

In this study a logic based model for mathematical word problem-solving was

developed. The model advances through several abstraction levels from a word

problem to an equation. The transformations between the abstraction levels are

relational. The model emphasises relational features of mathematical word

problem-solving.

The properties of a logic programming language, Prolog, as a modelling language

for mathematical word problem solving are analysed and applied. Prolog's

inference mechanism is based on resolution. We point out that resolution is related

to mathematical analysis. This study shows that it is possible to model a problem

solving process and simultaneously get an executable Prolog-program of that

model.

The curricula in mathematics are changing in many countries. One explanation for

the change is the use of computers. This study shows that the use of graphical

calculators will force further change in these new curricula in the near future. The

emphasis will then be on topics in which man is superior to a computer e.g. as

word problems.

The study suggests a new method for analysing and categorising the textual forms

of mathematical word problems. It is possible to write the grammars of different

word problem types using DCG notation. This method may be applied to textbook

analysis to answer question such as: How many different categories there are in

some subset of a curriculum? Do textbooks have different amount of categories?

Are there great differences of  the grammars within the same problem domain?

How do these features of the teaching material affect to students overall

performance to solve word problems?

As a result of the modelling, we have constructed the inner structure of

mathematical word problems. This relational structure can be used as a framework



71

for empirical studies of word problem-solving. By keeping the syntactical part

invariable, it is possible to investigate questions such as: do semantical factors of

word problems have an affect on the students' overall performance in problem-

solving?

The TEACHER prototype as such as it is now is only a minor prototype and it

should be seen as a framework for building larger programs. Our main purpose

was to build a model of word problem solving and not to build an ITS. Much work

is needed to develop the TEACHER to a robust program that could be used to

support education. We have described the TEACHER prototype at a declarative

level. The procedural details are important in large and relational Prolog programs.

In addition the inner levels of the model, the enlarged textbase and the context

sensitive level,  are problem type specific i. e. they are not  implemented in general

terms. A further research question is: is it possible to implement all the levels using

DCGs? Or in general: is it possible to implement the different levels so that new

problem types can easily be added to the system? These questions would probably

need both a thorough textbook analysis and experiments in program construction.

In any case, the bi-directional model together with its ability to generate word

problems could be used as an essential part of a new type of method for teaching

how to solve mathematical word problems.

Taken together, the results of the present work indicate that mathematical word

problems found in standard textbooks have a logical structure that is inherited from

the equation, i.e. word problems are isomorphic with the underlying equation. The

analysis of word problems can thus start from the structure of the equation. Logic

programming has proven to be a useful tool in this modelling process. The

modelling advances through logically connected abstraction levels towards the

textual form of the word problem. As a result of this analysis we also get a model

from word problems to equations. This model quite closely follows Descartes'

scheme as presented by Polya.

An answer to our original research question is that to improve the teaching of

word problems we should introduce Polya's methods of teaching word problem-

solving. Special emphasis should be put on the introduction of the relational

features of word problems. This study also raises the following question: do the

present semantically poor textbook problems teach only a procedural way of

solving word problems?



72

REFERENCES

[Ande-81] J.R.Anderson (ed.), Cognitive Skills and Their Acquisition.

Hillsdale, US: Erbaum, (1981).

[AnBo-90] J.R.Andersson, C.F.Boyle, A.T.Corbett and M.W.Lewis, Cognitive

Modelling and Intelligent Tutoring, Artificial Intelligence, vol. 42,

No 1, February, 7-49, (1990).

[Anon-82] Peruskoulun matematiikan oppimäärä ja oppimääräsuunnitelma (The

Course and Syllabus of Comprehensive School Mathematics),

kouluhallitus, Valtion painatuskeskus, (1982) (in Finnish).

[Anon-89] Kognitiotieteen tutkimusohjelma (The Research Programme of

Cognitive Science), Suomen Akatemia, kognitio-tieteen jaosto,

(1989) (in Finnish).

[Anon-93] International Baccalaureate, Group 5 Mathematics Guide,

International Baccalaureate Organisation, Geneva, Switzerland,

(1993).

[BaFe-81] A.Barr and E.A.Feigenbaum, The Handbook of Artificial

Intelligence, vol. I, Pitman, (1981).

[Bobr-68] D.G.Bobrow, Natural Language Input for a Computer Problem-

Solving System, in M.Minsky (ed.), Semantic Information

Processing, The MIT Press, (1968).

[Boch-76] G.V.Bochmann, Semantic Evaluation from Left to Right,

Communications of the ACM 19,2,55-62, (1976).

[Bode-90] M.Boden (ed.), The Philosophy of Artificial Intelligence, Oxford

University Press, (1990).



73

[Brat-86] I.Bratko, Prolog Programming for Artificial Intelligence, Addison-

Wesley , Wokingham (1986).

[BrLa-84] D.L Briars and J.H. Larkin, An Integrated Model of Skill in Solving

Elementary Word Problems. Cognition and Instruction, Vol. 1, No

3, p. 245-296, (1984).

[Chom-57] N.Chomsky, Syntactic Structures, Mouton, The Hague, (1957).

[Chom-72] N.Chomsky, Language and Mind, Enlarged Edition, H.B.Janowich

Inc. New York, (1972).

[Clan-86] W.J.Clancey, From GUIDON to NEOMYCIN and HERACLES, AI

Magazine August, 40-77, (1986).

[ClSo-90] W.J.Clancey and E. Soloway, Artificial Intelligence and Learning

Environments: Preface, Artificial intelligence, vol. 42, No 1,

February, 1-6, (1990).

[ClMc-88] K.L.Clark, F.G.McCabe, N.Johns and C.Spencer, LPA

MacPROLOG Reference Manual, Logic programming Associates

Ltd, London, (1988).

[ClMe-84] W.Clocksin and C.Mellish, Programming in Prolog, Springer-

Verlag, Heidelberg, (1984).

[CoSm-88] A.Collins and E.E.Smith, Readings in Cognitive Science: A

Perspective from Psychology and Artificial Intelligence. Morgan

Kaufman, California, (1988).

[Colm-78] A.Colmerauer, Metamorphosis Grammars, in L.Bolc(ed.) Natural

Language Communication with Computers, Lecture Notes in

Computer Science, 133-189 Springer-Verlag, Berlin, (1978).

[CoVe-85a] E.DeCorte and L.Verschaffel, Beginning First Grader's Initial

Representation of Arithmetic Word Problems. Journal of

Mathematical Behaviour,No 4, 3-21, (1985).



74

[CoVe-85b] E.DeCorte and L.Verschaffel, Influence of Rewording Verbal

Problems on Children's Problem Representations and Solutions,

Journal of Educational Psychology, Vol. 77, No 4, 460-470, (1985)

[CoVe-86] E.DeCorte and L.Verschaffel, Eye-Movement Data as Access to

Solution Process of Elementary Addition and Subtraction Problems,

Paper presented in a symposium on "International research on

children's solutions of arithmetic word problems", held at the

Annual meeting of the AERA, April, (1986).

[CuFa-81] K.Culik and M.Farah, Linked Forest Manipulation Systems- A Tool

for Computational Semantics, in J.T.Tou (ed.) Advances in

Information Systems Science Volume 8, Plenum Press, (1981).

[Drey-90] H.L.Dreyfus, Is Socrates to Blame for Cognitivism? in B.Görantzon

and M.Florin (eds.), Artificial Intelligence, Culture and Language:

On Education and Work, Springer-Verlag, London, (1990).

[DrDR-86] H.Dreyfus and S. Dreyfus, Mind over Machine, The Free Press,

(1986).

[DuMa-87] C.Dudley-Marling and R.Owston, The State of Educational

Software: A Criterion-Based Evaluation. Educational Technology,

March 87, 25-29, (1987).

[Duff-90] J.A.Duffield, Designing Computer Software for Problem-Solving

Instruction, Educational Technology Research & Technology, Vol.

39, No 1, 50-62, (1990).

[EbBr-88] R.E.Eberts and J.F.Brock, Computer-Based Instruction in M.

Helander (ed.), Handbook of Human-Computer Interaction,

Elsevier Science Publishers B.V., North-Holland, (1988).

[Egge-90] A.E.Eggert, A Rebuttal to "A Role for AI in Education: Using

Technology to Reshape Education". Journal of Artificial Intelligence

in Education, Vol. 1(3) Spring, 3-9, (1990).



75

[ElSc-90] R.Elio and P.B.Scharf, Modelling Novice-to-Expert Shifts in

Problem-Solving Strategy and Knowledge Organization, Cognitive

Science No 14, 579-639, (1990).

[Elor-74] K.T.Eloranta, Heuristiikat ja heuristisuus: Käsittelyongelmista ja

niiden ratkaisemisen metodologiasta hallinto-opin näkökulmasta

(Heuristics and the Heuristic Procedure: on Problem Solving and its

Solving Methodologies from the Viewpoint of Administration

Science), Tampereen yliopisto, Kirjapaino Hermes Oy, Tampere,

(1974) (in Finnish).

[Elor-79] K.T.Eloranta, Menetelmäeksperttiyden analyysi

menetelmäkoulutuksen suunnittelun perustana (The Analysis of

Methodological Competence as the Base of Planning

Methodological Training), Tampereen yliopisto, Tampereen

yliopiston keskusmonistamo, (1979) (in Finnish).

[Elst-79] Elstein, Schuman and Sprafka, Medical Problem-solving, Harvard

University Press, London, (1979).

[GeNi-88] M.R.Genesereth and N.J.Nilsson, Logical Foundations of Artificial

Intelligence, Morgan Kaufmann Publishers Inc.,California, (1988).

[Gree-87] J.G.Greeno, Instructional Representations Based on Research about

Understanding, in A.H.Schoenfeld (ed.), Cognitive Science and

Mathematics Education, Lawrence Erlaub Associates, Publishers,

Hillsdale New Jersey, 61-88, (1987).

[GyGu-89] M.Gyssens, J.Paredaens and D. Van Gucht, A Grammar-based

Approach towards Unifying Hierarchical Data Models (extended

abstract), ACM SIGMOND, Oregon, (1989).

[HaKi-89] R.Hall, D.Kibler, E.Wenger, and C.Truxaw, Exploring the Episodic

Structure of Algebra Story Problem-solving. Cognition and

Instruction No 6, 223-283, (1989).

[Haut-88] A.Hautamäki(ed.), Kognitiotiede, Gaudeamus, (1988) (in Finnish).



76

[HeKu-88] M.Heinonen, A.Kupiainen and E.Sainio, Plussa 7: matematiikka

(Plus 7: Mathematics), Otava, Keuruu, (1988) (in Finnish).

[Hein-89] S.Heinämaa, Ajattelun kielioppi (The Grammar of Cognition) in

S.Heinämaa and J.Tuomi, Ajatuksia synnyttävät koneet (The

Machines that Create Thoughts), WSOY, Helsinki, 81-100, (1989)

(in Finnish).

[Hiet-89] P.Hietala, Applications of AI in Education - an overview, in

H.Jaakkola and S.Linnainmaa (eds.) Proc. of the Second

Scandinavian Conference on Artificial Intelligence SCAI ´89,

Tampere, Tampere University of Technology, Finland, (1989).

[Hoik-90] T.Hoikkala, Teun A. van Dijkin diskurssianalyysi (Teun A. van

Dijk's Discourse Analysis), in Klaus Mäkelä (ed.) Kvalitatiivisen

aineiston analyysi ja tulkinta (The Analysis and Interpretation of

Qualitative Corpus), Gaudeamus, Helsinki, (1990) (in Finnish).

[HoUl-79] J.E.Hofcroft and J.D.Ullman, Introduction to Automata Theory,

Languages and Computation, Addison-Wesley, (1979).

[Järv-93] P. Järvinen, Notes on Assumptions of User Modelling, University of

Tampere, Department of Computer Science, Series of Publications

A,  A-1993-2, March, (1993).

[Kahn-89] M.G.Kahn, Model based Interpretation of Time-Ordered Medical

Data. Dissertation, University of California San Francisco, (1989).

[Kilp-87] J.Kilpatrick, Problem Formulating: Where Do Good Problems

Come from?, in A.H.Schoenfeld (ed.), Cognitive Science and

Mathematics Education, Lawrence Erlaub Associates, Publishers,

Hillsdale New Jersey, (1987).

[KiGr-85] W.Kintsch and J.G.Greeno, Understanding and Solving Word

Arithmetic Problems. Psychological Review, 92, No 1, 109-129.

[KiDi-78] W.Kintsch and T.A. van Dijk, Toward a Model of Text

Comprehension and Production. Psychological Review, 85, 363-

394, (1978).



77

[KlSz-85] F.Kluzniak and S.Szpakowicz, Prolog for Programmers, Academic

Press, London, (1985).

[Kowa-79] R.Kowalski, Logic for Problem-solving, Elsevier North Holland,

New York, (1979).

[Kowa-87] R.Kowalski, Directions for Logic Programming in W.Brauer and

W.Wahlster (eds.), Wissenbasierte Systeme, 2. Internationaler GI-

Gongreß, München, Springer Verlag, (1987).

[Lars-88] S.Larsen, New Technologies in Education: Social and Psychological

Aspects, in F.Lovis and E.D.Tagg (eds.), Computers in Education,

Elsevier Science Pub.,Amsterdam, (1988).

[Lehn-88] H.Lehning, Mathematics of Tomorrow, in F.Lovis and E.D.Tagg

(eds.), Computers in Education, Elsevier Science Pub., Amsterdam

(1988).

[LeVa-91] E.Lehtinen, M.Vauras and A.Alaja (ed.), The Fourth European

Conference for Research on Learning and Instruction, abstract

volume, Turku, Dept. of Education, Univ. of Turku, (1991)

[Lewi-81] C.Lewis, Skill in Algebra in J.R.Anderson (ed.), Cognitive Skills and

Their Acquisition. Hillsdale, US: Erbaum, (1981)

[Mali-92] P. Malinen, Looginen ajattelu matematiikan opetuksessa (Logical

Thinking in the Teaching of Mathematics), University of Jyväskylä,

Departmet of Teacher Education, Research 49, Jyväskylä, (1992) (in

Finnish).

[Marj-90] E.Marjomaa, Intentionaalisuus ja tekoäly (Intentionalism and

Artificial Intelligence), Filosofisia tutkimuksia Tampereen

yliopistosta, Vol. XI. Tampereen yliopiston jäljennepalvelu, (1990)

(in Finnish).

[Matz-82] M.Matz, Towards a process model for high-school algebra errors in

D.Sleeman and J.S.Brown (eds.), Intelligent Tutoring Systems,. 25-

50, Academic Press, London (1982).



78

[McHa-69] J.McCarthy andP.J.Hayes, Some Philosophical Problems from the

Standpoint of Artificial Intelligence, in Meltzer and Michie (eds.),

Machine Intelligence 4, New York, p. 463-502, (1969).

[McCo-87] M.McCord, Natural Language Processing in Prolog, in A.Walker

(ed.), Knowledge Systems and Prolog, Addison-Wesley, 291-324,

(1987).

[McDe-87] D.McDermott, A Critique of Pure Reason, in M.Boden (ed.), The

Philosophy of Artificial Intelligence, Oxford University Press, 1990,

206-230, (1987).

[Meis-90] V.Meisalo, Tietotekniikan opetuskäytön uusia virtauksia (New

Ideas in Using Computer Technology in Schools), in V.Meisalo and

K.Sarmavuori (ed.), Ainedidaktiikan tutkimus ja tulevaisuus III

(Subject Didactical Research and Future III), Yliopistopaino,

Helsinki 1990 (in Finnish).

[MiCa-83] Michalski, Carbonell and Mitchell (eds.), Machine Learning: An

Artificial Intelligence Approach, Morgan Kauffmann, (1983).

[MiCa-86] Michalski, Carbonell and Mitchell (eds.), Machine Learning: An

Artificial Intelligence Approach, Volume II, Morgan Kauffmann,

(1986).

[MiBa-89] D.Michie and Michael Bain, Machines that Learn and Machines that

Teach, in H.Jaakkola and S.Linnainmaa (eds.) Proc. of the Second

Scandinavian Conference on Artificial Intelligence SCAI ´89,

Tampere Finland, Tampere University of Technology, 2-27, (1989).

[MiPa-89] D.Michie, A.Paterson and J. Hayes-Michie, Learning by Teaching,

in H.Jaakkola and S.Linnainmaa (eds.) Proc. of the Second

Scandinavian Conference on Artificial Intelligence SCAI ´89,

Tampere Finland, Tampere University of Technology, 413-437,

(1989).



79

[Miet-87] R.Miettinen, Kognitiivisen oppimisnäkemyksen tausta (The

Background of the Cognitive School), Valtion painatuskeskus,

(1987) (in Finnish).

[Mins-68] M.Minsky (ed.), Semantic Information Processing, The MIT Press,

(1968).

[NaKi-92] M.J.Nathan, W.Kintsch and E.Young, A Theory of Algebra-Word-

Problem Comprehension and Its Implications for the Design of

Learning Environments. Cognition and Instruction, Vol. 9, No 4, p.

329-389, (1992).

[Neiss-82] U.Neisser, Kognitio ja todellisuus (Cognition and Reality), Weilin &

Göös, Espoo, (1982) (in Finnish).

[NeSi-63] A.Newell and H.Simon, GPS: A program that simulates Human

Thought, in E.A.Feigenbaum and J.Feldman (eds.), Computers and

Thought, R. Oldenbourg KG., 1963 , Reprinted in Readings in

Cognitive Science, Morgan Kaufman, California, 453-460, (1988).

[NeSi-76] A.Newell and H.Simon, Computer Science as Empirical Enquiry:

Symbols and Search, in M.Boden (ed.), The Philosophy of Artificial

Intelligence, Oxford University Press, 1990, 105-132, (1976).

[Niin-83] I.Niiniluoto, Tieteellinen päättely ja selittäminen (Scientific

Argumentation and Explanation), Otava, (1983) (in Finnish).

[Niin-89] I.Niiniluoto, Informaatio, tieto ja yhteiskunta - Filosofinen

käsiteanalyysi (Information, Knowledge and Society - a

Philosophical Concept Analysis), Valtion painatuskeskus, (1989) (in

Finnish).

[Nwan-90] H.S.Nwana, Intelligent Tutoring Systems: an Overview. Artificial

Intelligence Review, No 4, 251-277, (1990).

[PaVo-89] J.Paasonen, E.Voutilainen and H.Kalla, Ahaa 7: matematiikkaa

(Ahaa 7: Mathematics), WSOY Porvoo, (1989) (in Finnish).



80

[Pape-80] S.Papert, Mindstorms: Children, Computers and Powerful Ideas.

Basic Books, New York, (1980).

[PaSq-90] S.J.Payne and H.R.Squibb, Algebra Mal-Rules and Cognitive

Accounts of Error. Cognitive Science No 14, 445-481, (1990).

[Pea-87] R.D.Pea, Cognitive technologies for Mathematics Education, in

A.H.Schoenfeld (ed.), Cognitive Science and Mathematics

Education, Lawrence Erlaub Associates, Publishers, Hillsdale New

Jersey, (1987).

[PeWa-80] F.C.N.Pereira and D.H.D.Warren, Definite Clause Grammars for

Language Analysis - A Survey of the Formalism and a Comparison

with Augmented Transition Networks, Artificial Intelligence No 13,

231-278, (1980).

[Pew-88] R.W.Pew, Human Factors Issues in Expert Systems in M. Helander

(ed.), Handbook of Human-Computer Interaction, Elsevier Science

Publishers B.V. (North-Holland), (1988).

[Piet-86] J.Pietarinen, Tietokone kaltaiseni? (A Computer, Is it like me?),

Tiede 2000, No 1, (1986) (in Finnish).

[Poly-45] G.Polya, How to Solve It, A New Aspect of Mathematical Method,

first published by Princeton University Press 1945, second edition,

Penguin Books, Great Britain, (1990).

[Poly-65] G.Polya, Mathematical Discovery: On Understanding, Learning, and

Teaching Problem-solving, New York, John Wiley & Son, (1965).

[PsMa-88] J.Psotka, L.D.Massey and S.A.Mutter, Intelligent Tutoring

Systems: Lessons Learned. Lawrence Erlaub Associates, Publishers,

Hillsdale New Jersey, (1988).

[Resn-89] L.B.Resnich(ed.), Knowing, Learning and Instruction: Essays in

Honour of Robert Glaser. Lawrence Erlaub Associates, Publishers,

Hillsdale New Jersey, (1989).



81

[Reus-87a] K.Reusser, SituationProblemSolver SPS: Beschreibung der

Implementation in INTERLISP-D, Universität Bern, Abteilung

Pädagogische Psychologie, Bern, Switzerland, (1987).

[Reus-87b] K.Reusser, The Computer's Effort after Meaning: Word Problem-

solving as a Process of Text Comprehension and Mathematization,

Universität Bern, Abteilung Pädagogische Psychologie, Bern,

Switzerland, (1987).

[Reus-88] K.Reusser, Problem-solving Beyond the Logic of Things:

Contextual Effects on Understanding and Solving Word Problems,

Instructional Science, Vol. 17 No 14, 309-338, (1988).

[Reus-90] K.Reusser, From text to Situation to Equation: Cognitive simulation

of Understanding and Solving Mathematical Word Problems, in

H.Mandl, E. De Corte, N.Bennett and H.F.Friedrich (Eds.)

Learning and Instruction. Pergamon Press, Oxford, 477-498,

(1990).

[ReKä-90] K.Reusser, A.Kämpfer, M.Sprenger, F.Staub, R.Stebler, and

R.Stüssi, Tutoring Mathematical Word Problems Using Solution

Trees. Research report No 8 University of Bern, Switzerland April,

477-498, (1990).

[ScEd-89] R.C.Schank and D.J.Edelson, A Role for AI in Education: Using

Technology to Reshape Education. Journal of Artificial Intelligence

in Education, Vol. 1(3) Winter 1989/1990, 3-20, (1989).

[Scho-87] A.H.Schoenfeld (ed.), Cognitive Science and Mathematics

Education, Lawrence Erlaub Associates, Publishers, Hillsdale New

Jersey, (1987).

[Sear-90] J.R.Searle, Cognitive Science and the Computer Metaphor in

B.Göranzon and M.Florin (eds.), Artificial Intelligence, Culture and

Language: On Education and Work, Springer-Verlag: London,

(1990).

[Sear-92] J.R.Searle, The Rediscovery of Mind, The MIT Press, London,

(1992).



82

[Sein-74] K.Seinelä, Lukion mekaniikan ohjelmoituja tehtäviä (Upper

Secondary Shool Programmed Mechanical Assignments), Otava,

Helsinki, (1974) (in Finnish).

[SeBe-91] D.H.Sellke, M.J.Behr, Using Data Tables to Represent and Solve

Multiplicative Story Problems. Journal for Research in Mathematics

Education, Vol. 22, No 1, p 30-38, (1991).

[Shap-87] S.C.Shapiro(ed.), Encyclopaedia of Artificial Intelligence, J.Wiley &

Sons, New York, (1987).

[Shoh-86] Y. Shoham and D.V.McDermott, Knowledge Inversion, in AAAI

National Conference On Artificial Intelligence, Texas August 6-10,

(1986).

[Silv-86] B.Silver, Precondition Analysis: Learning Control Information in

R.S.Michalski, J.G.Carbonell and T.M.Mitchell, Machine Learning:

An Artificial Intelligence Approach, vol. II. Morgan Kaufmann Pub.

Inc., Los Altos California, (1986).

[Silv-87] E.A.Silver, Foundations of Cognitive Theory and Research for

Mathematics Problem-solving Instruction, in A.H.Schoenfeld (ed.),

Cognitive Science and Mathematics Education, Lawrence Erbaum

Associates, Publishers, Hillsdale New Jersey, (1987).

[Simo-83] H.A.Simon, Why Should Machines Learn, in Michalski, Carbonell

and Mitchell (eds.), Machine Learning: An Artificial Intelligence

Approach, Morgan Kauffmann, (1983).

[SlBr-82] D.Sleeman and J.S.Brown (eds.), Intelligent Tutoring Systems,

Academic Press, London, (1982).

[Sowa-84] J.F.Sowa, Conceptual Structures, Information Processing in Mind

and Machine, Addison-Wesley, (1984).

[Stee-90] Luc Steels, Components of Expertise, AI Magazine, vol. 11, No 2,

Summer, 29-49(1990).



83

[StSl-91] R.M.Steinman, D.H.Sleeman and D.Ktorza, Algebra students'

knowledge of Equivalence of Equations, Journal for Research in

Mathematics Education, Vol. 22, No 2, 112-121, (1991).

[StSh-86] L.Sterling and E.Shapiro, The Art of Prolog, The MIT Press,

London, (1986).

[Szpa-87] S.Szpakowicz, Logic grammars, BYTE 12, 9, 185-195, (1987).

[Thae-86] J.S.Thaeler, A New Solution to an Old Problem - Solving Word

Problems in Algebra. Mathematics Teacher, Vol. 18, No 3, 163-179

Dec., (1986).

[Vout-89] T.Voutilainen, J.Mehtäläinen, I.Niiniluoto, Tiedonkäsitys,

Kouluhallitus and Valtion painatuskeskus (The Concept of

Knowledge) , Helsinki, (1989) (in Finnish).

[Walk-87] A.Walker, Expert Systems in Prolog, in A.Walker(ed.), Knowledge

Systems and Prolog, Addison-Wesley, (1987).

[Weiz-77] J.Weizenbaum, Computer Power and Human Reason: From

Judgement to Calculation. W.H.Freeman and Company, San

Francisco, (1977).

[Weng-87] E.Wenger, Artificial Intelligence and Tutoring Systems:

Computational and Cognitive approaches to the Communication of

Knowledge. Los Altos, California: Morgan Kaufmann, (1987).

[WhFr-90] B.Y.White and J.R.Fredriksen, Causal Model Progressions as a

Foundation for Intelligent Learning Environments, Artificial

Intelligence, vol. 42, No 1, February, (1990).

[Wils-87] W.G.Wilson, Programming Techniques in Prolog, in A.Walker(ed.),

Knowledge Systems and Prolog, Addison-Wesley, (1987).

[ZhGr-88] J.Zhang and P.W Grant, An Automated Difference-list

Transformation Algorithm for Prolog, European Conference on

Artificial Intelligence, Munich, August 1-5, 320-325, (1988).


