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Abstract

TaLE is a specialized editor for developing language implementations in an object-oriented
programming environment. In contrast to conventional language implementation systems, there is no
formal metalanguage for specifying a language; instead, the user edits the classes taking part in the
implementation under the control of a specialized editor. This editor provides a high-level, partly
graphical view of the classes representing language structures. The system supports the reuse and
refinement of the language implementation classes, incremental implementation development,
integration of syntactic and name analysis, and special views for classes representing standard
language features. The expected main advantages of the metalanguageless approach and the
graphical user interface are high usability and fast development cycle.

1 Introduction

TaLE (Tampere Language Editor) is a new tool supporting the development of language
implementation software in an object-oriented programming environment. The design of TaLE is
unconventional in the sense that TaLE emphasizes software engineering qualities rather than
contributions in formal language specification; this makes the system in many ways different from
more traditional language implementation systems. In fact, TaLE employs a different paradigm: the
user is not expected to write a language specification, but to edit the classes representing language
structures under the control of a specialized editor. Currently the target language (that is, the
language of the produced software) is Eiffel [Mey88], but in principle this language could be any
class-based object-oriented language. The system has been implemented in Eiffel 2.3 and is currently
running in Sun3/UNIX.

TaLE is particularly intended for the rapid implementation of application-oriented languages, i.e.
for various nontrivial textual representations of data, specifications, algorithms etc.; typically
these are "little languages" as proposed by Bentley [Ben86]. Since such a language is often only a
small aspect in a large software project, we cannot expect that the user of a language
implementation system would be willing to learn a new formal metalanguage based on a
theoretically oriented specification paradigm. The simpler and the more self-explaining the user
interface of a language implementation system is, the smaller tasks will be included in the
potential applications of the system. Our intention is that an average programmer will decide to use
our system for virtually all nontrivial processing of structured textual data, in the same way as GUI
editors are currently used for implementing graphical user interfaces. This puts high demands on the
user-friendliness and simplicity of the system. In TaLE, these requirements are hoped to be satisfied
through the metalanguageless, editor-based approach, and through high-level, intuitive views of
the classes taking part in the implementation.

Conventional language implementation systems are typically closed: they provide a mapping from
an abstract specification into an executable language processor written in a target language, and the
user is not expected to understand the target language, far less modify the resulting processor.
However, this idealistic view is rarely fully possible in practice because the abstract metalanguage
is not general or efficient enough, or because the produced language implementation is part of a
larger system, and the resulting code must be patched to integrate it with the rest of the software.
The editor-based approach of TaLE leads to an open system in which the use of the base language is
natural and in which the user essentially gets what s/he sees. A necessary requirement for this
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approach is the object-oriented programming paradigm which allows a close relationship with the
concepts of the implemented language and the software units (classes) of the implementation.

In the long run, the crucial factor of the productivity in software development is reuse. In language
implementation this aspect has been mostly ignored (at least in the usual sense of software reuse),
because programming languages have been regarded as indivisible entities that give little
opportunities for sharing common code. However, actually this is not true: there is a lot of almost
identical features in different languages, and it seems reasonable to assume that this could be
reflected in the implementation as reusable units. For example, practically every language has a
notion of an arithmetic expression, with minor variations. This implies that essentially the same
concept is implemented over and over again, and that very similar code is repeated in numerous
language processors. The same holds for concepts like standard constant denotations, control
structures, subprogram mechanisms, type systems etc. The possibility to reuse code is particularly
obvious for special-purpose languages that are under design: in many cases it would be sufficient to
simply pick up a suitable standard form of, say, arithmetic expressions from a library of standard
language features, in the same way one employs a standard data structure from a general library.
Even if a direct adoption of a library feature is not appropriate, it should be possible to easily
modify and extend a library unit according to the needs of a particular language.

In fact, certain kinds of reuse are fairly common, although perhaps not identified as such: special-
purpose languages are often developed by extending a general-purpose language with application-
specific features, or by embedding a particular structure from a general-purpose base language
within a special-purpose language. In both cases one actually reuses all or some of the structures of a
general-purpose language, in the hope that they need not be re implemented. Here we want to
generalize this kind of language development, and regard languages as collections of relatively
independent, replaceable units.

TaLE supports the reuse of language concepts and structures in three ways: first, by employing a
distributed implementation model in which language structures are implemented by highly
independent classes TaLE allows a language to adopt structures (and their implementations) from
other languages; second, general language-independent concepts can be implemented on an abstract
level and refined for individual languages (making use of the subclassing mechanism); third,
standard language concepts and their implementations are built into the system, so that a user can
directly exploit them in his/her language, tailored through high-level specification interfaces.
Together with the high-level views provided by the metalanguageless user interface, the facilities
supporting reuse are expected to speed up the language development process in most cases by an order
of magnitude when compared to traditional systems like LEX/YACC.

This paper is an overview of the design principles of TaLE. In the following section we briefly
discuss the related research. In Section 3 we present a simple application of the system,
demonstrating some of its key features. The underlying basic model of formal languages is discussed
in Section 4. The implementation and efficiency issues are discussed in Section 5. We conclude with
some remarks concerning future work.

2 Related work

Although the overall character of TaLE is unique (as far as we know), there are similarities with
existing systems. Many authors have applied object-orientation in the specification of formal
languages (or programming environments) during the last few years. Object-oriented forms of a
context-free grammar have been introduced more or less independently by Tenma et al [Ten88]
("AND/OR rules"), Lehrmann Madsen and Nergaard [LMNS88] ("structured CFG"), and Koskimies
[Kos88] ("well-structured CFG"), and later by other authors (e.g. [WuW92]: "restricted CFG"); these
forms are roughly equivalent ways of interpreting syntactic alternation as subclassing. Our language
model discussed in Section 4 contains this aspect, too. Attribute grammar based object-oriented
language specification methods have been used by Hedin [Hed89], Grosch [Gro90], and Shinoda and
Katayama [ShK90]. A (weakly) object-oriented language implementation system is presented by
Koskimies and Paakki [KoP87], representing a relatively loose integration of object-oriented
programming and one-pass attribute grammars. Since TaLE is not based on attribute grammars and
has no specification language, the similarities with these systems are limited to the object-oriented
view of language processing. Such a view is also presented in the Muir language development
environment [Win87]; differences in the language model are mainly due to our emphasis on reusable
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language structures. Another major difference is again that we abandon a formal metalanguage, and
that we concentrate on the implementation of a language itself, rather than on the implementation
of its environment. A completely different model of object-oriented grammars is given in [AMH90],
where a grammar as a whole (rather than individual language structures) is subject to inheritance.
Object-oriented language implementation techniques are discussed also in [Gra92] both for a
particular language (Smalltalk) and for a generator system; this work deviates from our
implementation model in that the design is structured according to language-independent concepts
whereas we apply a language-oriented structuring. The reason for our decision is incrementality, to
be discussed in Section 5.

Due to the interactive nature of TaLE, it is essential that language implementations can be
constructed incrementally, that is, changing one part in a language should not necessitate the
reconstruction of the whole implementation. In particular, this requirement is in conflict with
conventional parser generator techniques which assume that the whole grammar is given as input
for the generator. Incremental (non-object-oriented) parsing techniques have been studied recently by
several authors, for varying reasons. A lazy, incremental recursive descent parsing method is
presented in [Kos90]; this method has served as a starting point in the design of parsing in TaLE. The
main difference with other incremental (deterministic) parser generator techniques ([GHKSS],
[Hor89] and [HKR89]) is that we use program-formed (recursive descent style) parsers rather than
table-driven ones.

Many details in the user interface of TaLE have been inspired by existing systems. The "editing-
without-typing" paradigm of the Orm programming environment [Mag90] has been followed to some
extent in TaLE: the typing of an identifier can always be avoided when the identifier is already
known; the user can simply select the identifier from a context-sensitive dynamic menu. The class
browser of TaLE has been designed using the Smalltalk programming environment [Gol84] as a
starting point.

3 An introductory example

We will first give a general impression of TaLE using a small example. Although the example
language is by no means a realistic one or a typical TaLE application, it is sufficiently interesting for
demonstrating purposes. Our example language is a simple desk calculator language: we want to be
able to express sequences consisting of assignments to named variables and output instructions, e.g.:

X:=55; Y= (X+24)*X; Z:=X*Y; OUT Z+220

The produced language processor should carry out the computation of the expressions and print the
expression in the output instruction. We assume that a variable can be referenced only if its value
has been defined before; hence each assignment and output instruction can be "executed"
immediately after it has been analyzed.

Individual language structures are implemented by classes in TaLE; in conventional terminology, a
class corresponds to a nonterminal (this is only a rough correspondence, we will return to this later).
The first task of the language implementer is to consider the existing classes provided by TaLE
either as built-in classes or as classes of some other language: is there something we could directly
apply in our language? The TaLE class browser (Fig. 1) shows e.g. classes Std_Expression (standard
arithmetic expressions) and Std_List (a standard list structure) which seem to be useful to us.
Further, Pascal_id and Pascal_int (subclasses of Identifier and Std_integer) could be candidates for
expressing identifiers and integer constants, and Simple_output seems a promising class for
implementing the output instruction. We can hope to be able to use these classes either directly or as
superclasses in our language.

We use the following textual notations in this paper: if a class (say A) is defined as a subclass of
another class (say B), we write

A =B(.)

where the parenthesized part contains the additional specifications of the subclass. The form of the
specifications depend on the class in question; here we will give them as an informal list of feature
specifications. If A has subclasses B1,...,.Bx, we write

A>B1l ... | Bk
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If the objects of class A has components of class B, ..., Bk (in this order), we write
A -> B1 ... Bk
Our "plan” to implement the example language could be now presented as follows:

Program = Std_list(element: Instruction; separator: ";")
Instruction > Variable | Output

Variable -> Pascal_id ":=" My_expression

Output = Simple_output(keyword: "OUT", body: My_expression)
My_expression = Std_expression(operators: +,-,%,/; types: integer)

Built-in high-level concepts

Let us first define a class for the expression structure we need in our example language. For this
purpose we use the standard facilities provided by the predefined class Std_expression: we give a
"create subclass" menu command for class Std_expression, and the special view for expressions is
displayed to allow the user to construct the subclass with the given name (here My_expression).
This is an example where a standard language notion is reused through a special interface allowing
the fine-tuning of the concept.

E[ 1= TalLE Class Browser

Denoter#

Identifiers
Pascal _id

Keyhlord#

Simple_output

Special

Statement*
Std_azsignment*
Std_blocks
Std_compound#
Std_if_stat#
Std_while_stat®

Std_list#

Undef ined*

Yalued*
Bool_expression
Char_expression

Std_characters
Int_expression#
Std_integers
Fascal_int
Real _expression®
Std_real#*
Std_expression®
String_expression®
Std_string* w

Lo e I O o e Yy N e N e e e e e o o o o o o o o o o e T

Fig.1. The class browser. "C" denotes "conceptual” and "S" denotes "structural” (see Section 4).

The expression view is shown in Fig. 2 after completion: the user has selected the operator symbols
s/he wants, their precedence and associativeness, the allowed type combinations (shown in a
separate window), the representations for constants (as classes; here we need only integer constants
given as class Pascal_int), the name of the class giving the other primitive constituents of
expressions (here we give a new, so far undefined class Variable_access for this purpose), and the
parenthesis convention. Further, the user can specify whether s/he wants static type checking
and/or static evaluation of the expression; in our simple example language we can decide to use
static evaluation. If only standard operations +, -, ¥, /, are needed, this is all that has to be done; in
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the case of non-standard operators the user must give the Eiffel-statements that implement the
operator in a separate text window.

Note that we applied here also another type of reuse: we adopted Pascal's integer representation
(Pascal_int) directly as such in our language, with its full implementation. In this case the reused
structure is a simple token, but in principle all structures (classes) are reusable in this way: due to our
incremental approach a structure is not tied to a particular language but a more or less independent
unit.

The view of the subclasses of Std_expression shown in Fig. 2 is an example of a special view,
tailored for the particular properties of the class. Currently there are other special views for
instance for the standard lexical structures (Identifier, Std_character, Std_integer, Std_real,
Std_string) allowing certain structural properties to be individually selected. In principle special
views can be designed for all sufficiently standard language features.

[J=== Std_eHpression : My_expression

L TYFE CHECEIMNG
L EvALUATION
& [nteger
LEFT
” | literal E
Feal
|| LEFT | literal .

Character
” =7 | literal O

Clazs nameiMy_expression

[
+

Pazscal _int

|| e |

=
1

[0
*

o)
e

String i
literal O
L3

Yalued [ Yariable_access

Parentheses: M ODJI0] L3

Fig. 2. The view for expression class My_expression.

Graphical class views

"

Let us next construct a class for the variable assignment structure (Variable -> Pascal_id ":=
My _expression). This class we will construct from scratch, rather than building on an existing
reusable class. We ask the system to create a new structural subclass for the root class Notion; the
system then displays a general structural class view for constructing the new class. This view is
shown in Fig. 3 after some editing actions.

The upper section of the view contains the feature list, the check list, and buttons for giving the
class certain special properties. The feature list contains all the (visible) attributes and operations
of the class, including the inherited ones (the latter are associated with the defining class in
brackets). The user may introduce new features; the Eiffel code of the features is given in a separate
text window appearing when a feature is added or edited. In this class we need no user-given
features.

The check list contains the semantic checks carried out during analysis (e.g. type checking). Each
check is denoted in the list by a string which serves as the message emitted when this check fails;
the check itself is given as a Boolean expression over the attributes of the class and the attributes of
the components in the pattern. Here we need no checks, either.

The property buttons are actually short-cuts for inheriting certain predefined classes, but they also
cause some additional actions to be carried out automatically by the system. Button "SCOPE" makes
the class a static visibility region, i.e. the language structure it represents will be associated with a
set of named objects. Button "NAMED" associates the class with the properties of a named object
that can be stored in a built-in object base; each object with this property is automatically inserted



into the object base as a member of the set associated with the smallest enclosing "SCOPE" structure.
Button "VALUED" associates the class with a special value attribute of a predefined class;
currently this class is capable of representing all the scalar values of Eiffel. Finally, button
"TOKEN" turns the structure into a syntactic token in the sense that no spaces are allowed between
the different parts of the structure, and that the parser uses this structure as a whole for syntactic
look-ahead. This is the way arbitrary user-defined token categories can be introduced in TaLE, in
addition to the (fairly covering) standard ones provided by predefined classes and their special

views.

Since each variable assignment can be seen as a declaration of the left-hand side variable in our
example language, we tick the NAMED button; consequently, the class inherits a string-valued
attribute key containing the identifying name of the object. Likewise, we tick the VALUED button
since we want that each assignment is associated with a value; as a result, the general value
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attribute is inherited from a system class.

Notion : New
Clasz name?New ‘ I:| SCOFE E WaMED E waLUED D TOKEM by
FEATUEES CHECKS :
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/—\ LABEL
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Valued g Bool _expression
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Int_expression 2
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Fig. 3. The editing window for the assignment structure.
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In the lower section of the view the syntactic structure is given graphically as a "railyard" syntax;
we call this the pattern of the class. A class that has a pattern is called a structural class, other
classes are called conceptual classes. The pattern is constructed and edited directly using mouse-
driven commands and the mode buttons appearing in the upper part of the pattern section. The icons
denoting components of a pattern are selected from a palette appearing when a component is added
or edited. The view of Fig. 3 is shown in a situation where the user is constructing the pattern: the
icons representing the left-hand side and the assignment symbol have been inserted, and the user
has indicated s/he wants a new component (for the right-hand side expression) in the pattern; as a
result, the palette is shown allowing the user to select the kind of the component and the class it
represents. The class can be selected from a hierarchical, dynamic menu showing all the existing
classes; here the user has selected class My_expression. The icons in the palette represent a single
keyword, a single substructure, a list structure, a list separator, a set of alternative keywords, a
secondary structure (a named substructure without a class of its own), a secondary list, and a passing
arc (for making a component an optional one).

Each arrow head in the pattern represents a code location: the user may insert arbitrary Eiffel code
into the pattern by clicking on an arrow head. This results in the opening of an Eiffel window in
which the user may type any sequence of Eiffel statements. These statements will be executed during
the analysis phase at the corresponding point. The system assists the user in the writing of the
statements: the features of the component structures need not be explicitly written but they can be
selected from a menu displayed when the corresponding pattern icon is pointed by the mouse. In this
case we must define the value and key of a variable: we click on the last arrow head (since we want
that these actions are carried out after the analysis of the whole assignment), and write the
following text in the opened text window:

key := Pascal_id_s.src;
value := My_expression_s.value;

That is, the key attribute gets its value from the source string (src) corresponding to the Pascal_id
component, and the value is taken directly from the value of the My_expression component. The
system supports the writing of this code: references to the attributes of the component structures (e.g.
"Pascal_id_s.src") can be produced by selecting the appropriate attribute from a dynamic menu
appearing when the corresponding component icon is clicked with the mouse. Similarly, references
to the attributes of the structure itself (e.g. "key") can be produced by selecting them from the
feature list with the mouse. Finally, we give this class the name "Variable", and exit the class
window.

Reusing an abstract general-purpose class

Let us next create a class for output statements, i.e. class Output. For output structures TaLE offers no
built-in facilities, but what a lucky coincidence, somebody has previously constructed an abstract,
general-purpose class Simple_output which we can now reuse. This is a conceptual class. Part of the
existing specification of Simple_output is shown in Fig. 4.

ul
[ ADD MEW | 1 EDIT | | REMOVE | | JOIN
S[[———-o TalL Text Edi
EEE Valued [ IDENTIFIER | [":="]
print iz
do
outint{valued_s,valuer:
end:|]

Fig. 4. Part of the class window for Simple_output.
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Since Simple_output is a conceptual class, it does not have a pattern. Nevertheless, even a
conceptual class can have components which exist independently of a pattern; we call them abstract
components. In this case there is a single abstract component of class Valued representing the
structure whose value is to be printed. In addition, the class defines an operation called print; this
operation simply prints out the value attribute of the abstract component. The code for the print
operation is shown in a separate text window.

We can now construct the class Output as a structural subclass of Simple_output. The view shown for
this subclass contains initially the inherited abstract components, located in sequence after the
thick arrow symbol. The user must "consume" all the inherited abstract components in the pattern of
the new subclass, by dragging them into their place in the pattern. In this way the user associates
each abstract component with some concrete component position in the pattern. When an abstract
component has been inserted into a pattern, it can be further refined, i.e. its class can be narrowed
from the original one. Fig. 5 is shown in a situation where the user has already inserted the
keyword icon into the pattern (for "OUT"), and is next going to drag the abstract Valued-component
into its place. This component must be further refined to class My_expression (which is a descendant
class for Valued). Note that the inherited components are displayed with thick border, indicating
that they cannot be edited in this view.

ol g

EDIT | 1 REMOWE | | JoIM |

= [ ei— = HEE Valued

Fig. 5. Constructing the Output class.

| ADD MEW

The actual effect of an output instruction can be easily realized using the inherited print-operation:
all we have to do is to insert the call of print into the last arrow head of the pattern of Output.

TaLE is an incremental system: each constructed class is a full-fledged Eiffel class after its editing
has been completed. Usually a class need not even be recompiled when some other classes are
modified, although the class makes use of the modified classes; this is due to the distributed
implementation strategy of TaLE, to be discussed in Section 5. Since for each undefined class is given
a default implementation (an undefined class X is assumed to have a pattern with a single keyword
item "X"), it is possible to test a class at any point, even if it makes use of undefined classes.

We can test class Output by activating a special Test-command in the main menu. The opened tester
window asks for the class to be tested. We select the class Output and write in the input pane:

OUT 2+3*4
We click on an activation button, and observe the result "14" in the output pane.

At this point we could construct class Instruction as well (recall Instruction > Variable | Output).
Since the only purpose of this class in our language is to collect classes Variable and Output under a
common name, it needs no features itself: everything will be specified in its subclasses. Therefore we
create it as a (conceptual) subclass of the root class, Notion. Immediately after giving its name we
exit the Instruction window, and return to the class browser level. There we use a special multiple
inheritance command, forcing Variable and Output to inherit Instruction.

Automated name analysis

Let us next concentrate on the so far undefined class Variable_access, representing the variable
references in an expression. This is a structural class: it has a particular syntactic form consisting of
an identifier. We define it as a subclass of Notion and tick the VALUED button in the appearing
view. We insert a single component to the pattern, and select the class Pascal_id for the component
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(Fig. 6). Since this component must be associated with an existing variable, we qualify it with class
Variable. In this way we make sure that the identifier indeed is the name of an existing Variable
object. Using qualification, the association of named entities and their references in the source is
carried out automatically by the system. An additional advantage of using qualification is that the
parsing process can make use of the qualification information, and avoid LL(1) look-ahead conflicts
that would otherwise arise (although in this case there is no fear of that).

We must further specify that the value of a Variable_access object is obtained from the value of the
Variable object denoted by this object. We click on the arrow head at the end of the rail-yard syntax
and write the following text in the opened text window:

v ?= denot ed;
val ue: = v. val ue

where denot ed is a predefined attribute that automatically refers to the Named (Variable) object
associated with this object. Attribute v is a new feature that must be given to class Variable_access
due to the type rules of Eiffel: since the static class of denot ed is Named, it is not guaranteed that
the denoted object would inherit Valued; therefore we must introduce an additional attribute v of
type Valued, and apply so-called reverse assignment attempt ("?=") which checks the dynamic
class of the right-hand side object (in this case the check never fails).

| id]

ADD MEW | EDIT

Fascal_id
W Lariahle

Fig. 6. The pattern for Variable_access, with a qualified component.

Refining an existing class

Since the entire "program” in our example language is a list of something, we define it as a subclass
(named Program) of Std_list. When the "create subclass" command is issued for Std_list, the view
in Fig. 7 is shown. This view is a so-called refinement view in which the original, inherited
syntactic pattern is shown with thick border lines, indicating that it is not modifiable. What the
user can do is to refine the components in the pattern, i.e. to narrow their classes. This is done by
specifying the class in each refinement icon located under the actual component icon. In the
inherited pattern of Std_list, the list element is specified to have class Notion, implying that any
class will do here. The concept of Std_list also includes a separator, which is specified to be of class
Keyword; this is a special built-in class whose subclasses are implicitly all individual key strings
or sets of such strings (a key string is a class only in a technical sense, allowing conceptually unified
handling of keywords). It is also possible to give new arrow head actions, features and checks in the
refinement view.

In our example language the list element class is Instruction, and the separator symbol is semicolon.
Fig. 7 is shown in a situation where the user has already selected Instruction as the refinement class
of the Notion component, and is currently refining the separator component. Here these refinements
are sufficient for the complete specification of class Program, and this concludes the implementation
of our example language.
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Std_list : Program
Class name:|Progran | O scorE O NAMED O VALUED
FEATURES CHECES
leggal [Motion] b | | ey check®
process [Motion)
s [Motion)
verify [Motion]
ey feature™
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Mofion m{}
Instruction |’| I |

Fig.7. Part of the view shown for giving a subclass of Std_list. The user has just typed in the
separator symbol (";").

Summary

This example demonstrates some of the advantages of TaLE, when compared to more conventional
language implementation systems.

1)  The user need not know any special language implementation paradigm or formalism: we
only expect that s/he understands object-oriented programming and the underlying OO
language (here Eiffel). Most of the work is done using generally understandable
graphical facilities in an interactive environment. The user has the feeling of editing an
Eiffel program rather than that of writing a formal specification.

2)  If the language to be implemented is reasonably compliant with the existing classes of
TaLE, the implementation can be carried out with very little work. In particular,
predefined classes can be either directly adopted in the new language (like Pascal_id in
the example), or general classes can be specialized for the language by few selections of
descendant classes (like using Std_list for Program). The user needs to write code only
few lines, and even this is strongly supported by menus.

3) The system is open. Except for the fact that the implementation classes are viewed
through a specialized editor, there is nothing special in those classes. The interfaces of
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the classes are visible and understandable for the user, and s/he may use them freely in
other software. The internal representation of the source is a normal collection of objects
that can be associated with arbitrary processing. There are no hidden interpreted system
files.

4)  The system is incremental. As long as the interface of a class is not changed (e.g. by
removing a user-given operation), the editing of a class does not necessitate the
reproduction and/or reprocessing of all the other classes, or even the client classes. For
instance, syntactic changes can be freely made in the patterns without affecting the
other classes. There is no global information about a language that should be updated
after each modification. Individual language structures can be tested independently.

4 Basic language model

Class categories and reuse

The TaLE language model is strongly influenced by the requirements motivated by the reuse of
language implementation software. In particular, we aim at a hierarchical model in which new
subclasses can be defined for general-purpose classes by introducing more and more knowledge about
the components of the language structures. This approach leads to different class categories:

1) There are general-purpose classes for representing language concepts without any
structural considerations at all. These classes define no components but only purely
nonstructural, semantic properties of language structures; examples in TaLE are the
universal language construct class and the classes for scope regions, valued structures, and
named entities.

2) There are general-purpose classes for representing language structures in which some
essential components are known on the abstract level only: i.e., their order and syntactic
appearance are not known. Semantic operations of language structures can be thus defined
on the basis of the abstract components, without any syntactic considerations, and these
operations can be inherited by the concrete language classes introducing language-specific
syntactic aspects.

3) There are general-purpose classes for representing language structures in which the order
of the appearance of the components is known, although the exact syntactic form of the
components or delimiting keywords is not fixed. The order may be necessary because
language processing activities may depend on the processing order (e.g. one-pass
processing).

4) There are language-specific classes which fix the syntactic form of the language
structures they represent, possibly using or redefining operations inherited from general-
purpose classes discussed above. This kind of a class can be derived from a general-
purpose class by adding all the information necessary for obtaining the concrete syntax of
the corresponding language structure.

The conventional object-oriented concepts are tuned for language processing along these lines. As
usual, a class defines the features the instances of the class possess; the features are either
attributes or operations. In TaLE, an attribute may be defined as a component, implying that the
attribute refers to an object representing a constituent part of the language structure in question.

A class is either conceptual or structural. A conceptual class is associated with a (possibly empty)
unordered component set. The subclasses of a conceptual class can refine the (static) classes of the
components, extend the component set, or introduce a pattern for the components (see below). A
structural class is associated with a (possibly empty) pattern. A pattern is an ordered set of
components. The subclasses of a structural class can refine the (static) classes of the components in
the pattern, but they cannot introduce any more new components or otherwise change the pattern. For
any class, the subclasses may introduce new non-component attributes or operations, or redefine
existing operations in the usual way. Since a structural class contains more information about the
components than a conceptual one, a structural class can inherit a conceptual class but not vice versa.
A pattern is a final template for the actual syntactic form; hence it is possible to inherit at most one
structural class. Otherwise multiple inheritance is allowed and often necessary. In the list of class
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categories given above, the two first categories are obtained as conceptual classes (in the first
category the component set is empty), and the remaining two categories are obtained as structural
classes.

For technical reasons, we introduce an additional class category, a terminal class. A terminal class is
a special kind of a structural class, named with a string denotation (e.g. "BEGIN"). We define the
pattern of a terminal class as the sequence of the character symbols in this string. All the terminal
classes are subclasses of a predefined class Keyword.

As a (strongly simplified) example of the idea of reuse and hierarchical abstraction levels in TaLE,
consider the derivation of a class for conditional statements in a particular language. A possible
hierarchy is given in the following table, where a class inherits the class above. In this hierarchy,
only the last class is to be given by the language implementer; all other classes are assumed to be
provided by the general-purpose library of TaLE. We will denote component sets as {C1, ..., Ck} and
patterns as [C1, ..., Ck], where Ci (1<i<k) are the classes of the components.

class category component set/pattern (re)defines operations
Notion conceptual process (virtual)
check (virtual)
Cond conceptual {Valued, Notion} process
check
FullCond conceptual {Valued, Notion, Notion} process
StdIfStat  structural [Keyword Valued Keyword
Notion Keyword Notion
Keyword]
MylfStat structural ['IF" MyExpr "THEN"
MyStat "ELSE" MyStat
HENDH]

Here Notion describes the universal features of all language constructs, including two virtual
operations: "process" for activating the dynamic behaviour of the construct, and "check" for
validating its legality. Cond gives two components, one for the condition and one for the construct to
be activated if the condition evaluates to true. The class of the former is Valued; we assume this is a
class defining features required for constructs associated with a run-time value (this is actually a
predefined class in TaLE). The class of the latter is Notion, implying that any language construct
can play the role of the component. Cond could define the implementation of "process” roughly as
follows:

process is
do
cl.process;
if cl.valis_true then
c2.process
end
end;

where c1 refers to the Valued component and c2 refers to the Notion component. Function "is_true”,
defined for Valued objects, returns true if the value represents the truth value "true". Cond also
defines the implementation of "check": this operation verifies that the type of the Valued
component (given by another attribute of Valued) is Boolean.

FullCond extends the primitive conditionality of Cond by an else-part: it introduces a new
component for the construct to be activated in the false-case. It must also redefine the "process”
operation in the obvious way, whereas the "check" operation remains valid.

The rest is straightforward, since only some syntactic issues must be fixed. First, we give class
StdIfStat which introduces a pattern for the components of FullCond: now the components must
appear in a particular order, with certain positions for keywords. However, there is still a
considerable amount of flexibility because the component classes are not refined (and the keywords
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are not chosen). This refinement is done in the last, language-specific step: class MyIfStat is defined
as a refinement of StdIfStat where the component classes (including the keywords) are refined with
language-specific descendant classes. We assumed here that MyExpr and MyStat are language-
specific classes defined as descendants of Valued and Notion, respectively. In the example language
in Section 3, class Program was constructed in this way.

For a conceptual class, the graphical view shows the components in the pattern section, but without
arrows. When a structural subclass is introduced for a conceptual one with components, the inherited
components are shown in the pattern section with thick borders indicating that they cannot be
edited. The user must then construct the actual pattern, and associate each inherited abstract
component with a concrete one in the pattern with mouse. In the example language, class Output was
constructed in this way.

Syntactic model

Syntactic derivation is accomplished by two mechanisms: pattern replacement and descendant class
replacement. The latter is a consequence of inclusion polymorphism in object-oriented languages: if B
is a descendant class of A, any context requiring an A object can also manage with a B object. As usual
in object-oriented versions of context-free grammars, we describe syntactic alternation using this
mechanism. For instance, in a particular language we might have a conceptual class Statement
whose subclasses are AssignmentStat and WhileStat; therefore Statement can be replaced by
AssignmentStat or WhileStat in syntactic derivation. Formally, we define an object-oriented
context-free grammar as follows:

An object-oriented context-free grammar (OO-CFG) is a 6-tuple (S,C,T,P,H,Z), where S is the set of
structural nonterminal symbols, C is the set of conceptual nonterminal symbols, T is the set of
terminal symbols, P is the set of productions of the form N->w (NOS, wO(SOCOT)*), H is the set of
hierarchy relations of the form A > B (AOC, BO(SOC)), and ZO(S) is the start symbol; such that:

1) (SnC=0) (structural and conceptual nonterminals are non-overlapping);

2) AQOS implies (A->w)OP for some w; ((A->w)0OP and (A->w')0P) implies w=w'
(there is exactly one production for each structural nonterminal);

3) A>+A holds for no AOC (no cyclic hierarchies);

4) for each A0(SOCQC): Z=>*uAv=>+w, where u,vO(SOCOT)* and wOT* (no
useless nonterminals).

Here we assumed syntactic derivation => defined as follows: vAu => vwu, if either (A->w)UP or
(w=B and (A>B)OH), where A,BO(SOC), and v,u,wO(SOCOT)*. We use the standard notation R+
for transitive closure and R* for reflexive transitive closure of relation R.

To make the syntactic analysis feasible, we require that those classes participating in syntactic
derivation are sufficiently well-defined: the application of the two derivation mechanisms must
eventually yield a sequence of terminal strings. We say a class is complete if it satisfies this
requirement; informally, a complete class is one which defines a full concrete syntax for the structure
it represents. Usually only language-specific classes are complete.

Let C be a complete class. The language generated by C is defined as L(C) = {w | C =>+w, w contains
no more class names}. Let x(OL(C). Consider a derivation chain for x: C=w1=>w2=> ... =>wk=x (k=1).
The representation of x with respect to C is the collection of objects obtained by the following
algorithm. The algorithm associates an object with each class occurrence in the derivation chain as
follows:

For i:= k downto 2 do

a) if wi-1=>wj applies pattern replacement zAu => zB1...Bhu (n20),
where A is a terminal class, do nothing;

b) if wi-1=>wj applies pattern replacement zAu => zB1...Bhu (n20),
where A is a non-terminal class, then:

1) create an instance of A,

2) associate the created object with this occurrence of A,

3) let each component attribute of this object refer to the object
associated with the corresponding Bj;
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c) if wi-1=>wj applies subclass replacement zAu => zBu, let the object
associated with B be the object associated with A.

As a result, there will be an object associated with C; this is the root object of the representation of x.
The created collection of objects forms a tree structure starting from the root object, according to the
component attributes.

We employ an extended LL(1) parsing technique in which the required starter and follower symbols
are computed dynamically, for the needs of a particular input text (see Section 5). This method
implies syntactic restrictions which are somewhat weaker than in pure LL(1) parsing; in particular,
the method allows dangling-else type ambiguities and the use of symbol table information to
resolve parsing conflicts.

Only complete classes need parsing support, but since the code for a class must not depend on the
definition of other classes (because of the incrementality requirement), the parsing code must be
generated for all potentially complete classes; in this way the code of a class need not be revised
even if the class changes its status from complete to non-complete or vice versa, due to modifications
in some other classes. However, the system refuses to test a language represented by a non-complete
class.

5 Implementation

Syntactic analysis

A major problem in designing the syntactic analysis in TaLE has been to guarantee incremental
language development: the classes taking part in the language implementation should be highly
independent so that they can be put together in various combinations to form different language
implementations, that they can be created and modified without making other classes invalid!, and
that they can be tested independently. A central idea of TaLE is that the concept of a "language” in
the traditional sense is eliminated; instead, the basic unit is a language feature, represented by a
single class or a collection of classes. This philosophy leads to many unconventional decisions in the
implementation model. A detailed account of the TaLE implementation model is given in [JaK93].

Since we want to allow "static" user-defined actions at certain pattern positions (see Section 3), the
natural choice is to use top-down deterministic parsing. To satisfy the requirement of incremental
analyzer construction we have used the idea of lazy recursive descent parsing presented in [Kos90],
and modified it to fit object-oriented context-free grammars. This modification, so-called
metaobject-directed parsing, has been discussed in detail in [KoV92b].

The basic idea of syntactic analysis in TaLE is to distribute the "global" information needed for
syntactic analysis into objects representing the language classes. This information is computed
dynamically, so that classes become statically independent of each other (as far as parsing is
concerned). For efficiency, the information is computed in a lazy fashion only when it is really
needed for a particular input. The objects that carry this information are called metaobjects because
they represent "metainformation” (i.e. nonterminals) and because their task is to create instances of
the actual language classes, on the basis of the input stream. Each actual language class has a
corresponding metaobject that creates instances of this class; the metaobject is in turn an instance of
the metaclass of the actual language class.

When created, each metaobject constructs a so-called starter list for itself; this is a list of the
possible starters of the corresponding language structure such that each starter is associated with
the metaobject that will be responsible for creating the next instance if the current input matches
with this starter. Further, the metaobject must find out whether it can produce the empty string or
not. Slightly simplifying, the starter list of the metaobject of a conceptual nonterminal is the union
of the starter lists of the metaobjects of its subclasses; the starter list of the metaobject of a structural
nonterminal is obtained by taking the union of the starter lists of the metaobjects of the component
nonterminals from left to right until a component not producing empty appears, and by changing the

L Actually, in Eiffel it is not possible to achieve full incrementality due to the so-called problem of
unexpected classes [KoV92]: if a new class is introduced, or if an existing class is removed, the
immediate superclass has to be revised as well.
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second item (see below) of each element in the list to refer to the metaobject itself. Only those
metaobjects are created which are needed for the particular input.

A characteristic feature of metaobject-directed parsing is that there is no conventional global
scanner: such a scanner would ruin the incrementality requirement. Scanning is performed in two
places: when trying to match the starters in the starter list with the current input, a metaobject must
effectively perform look-ahead by scanning the starter symbols; on the other hand, terminal
symbols appearing in the middle of patterns are scanned directly as individual strings. Hence the
scanning is distributed: only those terminal symbols are considered which are really possible in the
syntactic context. Since there are usually very few such symbols in a given context (often exactly
one), the scanning can be made fast; this compensates some of the overhead of the dynamic starter
list construction.

Metaobject-directed deterministic top-down parsing works as follows (see Fig. 8). Assume that the
necessary metaobjects have been created, and that we are expecting an instance of nonterminal A in
the input stream. The metaobject of A gets a request to create an A. It consults its starter list to find
the appropriate structural descendant class of A (say B) that matches with the current input. The
metaobject of A then delegates the creation task to the metaobject of B which creates an instance of
B. During the initialization code of B the metaobjects of the components appearing in the pattern of
B are in turn asked to create the corresponding instances, and the process continues. If A is structural,
it need not consult its starter list because a structural class has exactly one pattern which it can
directly apply.

In a simplified form a starter list is a list of pairs (s, r), where s is a reference to the metaobject of a
starter structure and r is a reference to the metaobject that will be responsible of creating the
appropriate instance in the case of that particular starter. Each metaobject has two essential
operations: one for creating the appropriate instance (make) and one for performing look-ahead
(that is, answering the question: "are you coming next in the input?"). When consulting its starter
list, the metaobject applies the look-ahead operation to the s components of the pairs until it finds
a success, and delegates then the creation job to the metaobject indicated by the corresponding r
component. The look-ahead operation is implemented in class-specific ways for classes representing
various token categories; for instance, for an identifier it is sufficient to verify in the look-ahead
operation that the next input character is a letter (assuming that the possible keywords have been
already checked). The default implementation of look-ahead simply tries to analyze the whole
structure and then restores the input pointer to the original position.

Usually the first item s in a starter pair (s,r) is a reference to a metaobject of a terminal symbol;
hence calling its look-ahead operation has the effect that the terminal symbol is matched against
the input; this corresponds to rather normal decision making in descent style parsing. However, in
principle the first item s can denote any metaobject: the "starter symbol" may also be a normal
nonterminal, in which case - recalling the default look-ahead implementation - the parser tries to
analyze the whole nonterminal before deciding which alternative it takes. For a nonterminal that
wants to act as such a "starter symbol", it is sufficient that its metaobject has a starter list with a
single element (t,t), where t denotes the metaobject itself. This is exactly the effect of the TOKEN
button in the interface (see Section 3). In this way the user can define arbitrary "terminal" structures
that are fully taken into account in LL(1) look-ahead. In principle this would also allow significant
weakening of the LL(1) condition by applying this to non-token structures as well, but so far this
possibility is not included in the system.

Note that the use of metaobjects unify the treatment of different classes appearing in the pattern:
independently of the kind of the class (structural or conceptual), the metaobject of the class is asked
to create the appropriate instance of the actual structural class. Hence the clients of a class need not
know the category of the class they are using.

If a conceptual nonterminal may produce the empty string, its metaobject has an attribute containing
a reference to the structural metaobject (say, s) through which the empty string can be produced
(there can be only one such metaobject in LL(1) grammars). If the conceptual metaobject does not find
a match when consulting its starter list, but the metaobject knows that an empty string may also be
produced by the corresponding nonterminal, it assumes that in this situation the empty alternative
must be the correct one, and delegates the make operation to s. This decision cannot be wrong in the
case of a correct input; in the case of an incorrect input the only drawback is a delayed and possibly
strange error message.
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[Figure 8 is omitted from the electronically distrubuted version of the report.]

Fig. 8. Metaobject-directed parsing.

Since the analyzer always prefers a non-empty choice to an empty one, and selects the empty choice
only as a default move, it is capable of solving LL(1) parsing conflicts which arise from the fact that
the starter of a nonterminal which may produce empty is the same as its follower (provided that
the correct decision in such a situation is to prefer the non-empty choice). A typical practical
example is the dangling else problem.

The distributed scanning of metaobject-directed parsing causes a particular problem. Since a
metaobject knows only those terminals that are its starter symbols, it can in some cases find a
"wrong" match. This can happen if the nonterminal in question may produce the empty string, and a
prefix of some of the possible follower symbols is structurally equivalent with a starter symbol: then
the metaobject would make the false decision that a non-empty alternative must be chosen.
Although this situation is not very common, it does occur in practical languages. We have solved
this problem by maintaining a top-down parse stack consisting of references to the metaobjects whose
nonterminal instances are expected to appear in the rest of the input. If a metaobject is going to make
a decision that could be wrong in the above sense, it first consults the next metaobject(s) in the parse
stack to make sure that a follower symbol does not collide with the selected starter. The cost of using
the additional parse stack is discussed below.

The language processors produced by TaLE are relatively slow: a typical processing speed is 50 lines
per second (including reading the source, scanning, parsing, and the construction of the internal object
form). However, the slowness originates from Eiffel 2.3 rather than from the techniques we have
used. To demonstrate this, we implemented by hand an analyzer for a Pascal subset ("Mini-Pascal"
from [WeMS80]) following the techniques discussed above but using Borland C++ in a 40 MHz 386 PC.
To evaluate the cost of the additional parse stack, we implemented both a complete version with
the stack (MDP) and a reduced one without the stack (MDPred). For comparison, we also
implemented a traditional recursive descent analyzer with global scanner and parser objects (TRD);
this analyzer represents the optimal case as far as efficiency is concerned. We measured the
processor time consumption of source programs of varying length, obtaining Figure 9.
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Fig. 9. Comparison of processing times.
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As can be expected, the time usage is linear for all the analyzers. When compared to the TRD
analyzer, the MDP analyzer is about 50% slower. The time cost of the additional parse stack is
about 15%. Besides the use of the parse stack, the difference between the MDP analyzer and the
TRD analyzer is due to the creation of the metaobjects with their starter lists, and to the heavy use
of virtual functions (which are not needed at all in the TRD case). Yet, the absolute processing speed
of the MDP analyzer is about 4000 tokens per second which is sufficiently good for any practical

purposes.

Name analysis

Metaobject-directed analysis allows a simple technique for integrating parsing with name analysis,
making it possible to use context-sensitive information to resolve parsing conflicts. For instance,
suppose that Statement has descendant classes AssignmentStat and ProcCall both beginning with an
identifier. Then the starter list of the metaobject of Statement has the pairs (id,as) and (id,pc),
where id is a reference to the metaobject of Pascal id (an identifier), as is a reference to the
metaobject of AssignmentStat, and pc is a reference to the metaobject of ProcCall. If there is an
identifier coming next in the input, the look-ahead will succeed for both pairs which is not allowed.
However, the language implementer can solve the problem by qualifying (see Fig. 6) the leading
identifiers.

Assume that for AssignmentStat the leading identifier is qualified with class Variable and for the
ProcCall with class Procedure. Then the items in the starter list are triples (id, va, as) and (id, pr,
pc), where va is a reference to the metaobject of Variable and pr is a reference to the metaobject of
Procedure. When such a triple item is consulted and the look-ahead on the first component (id)
succeeds, the metaobject given by this component is additionally asked to actually create the
instance with the make operation. In the case of an identifier starter this means the scanning of the
whole identifier. The resulting (identifier) object has a dedicated string-valued attribute (key)
that gives a key of an object residing in the object base; by default, this attribute contains the string
representation of the object itself, as appearing in the source text. Object base look-up is then
performed on the basis of this key, and if an object is found having this key and agreeing with the
given qualification class, the look-ahead is considered successful and the make command is issued to
the metaobject denoted by the third component(as or pc).

External analyzers

The distributed parsing philosophy of TaLE makes it possible to mix different analysis methods
easily: each class is supposed to take care of itself only, and it can freely choose the method it
considers the best. The only requirement is that the metaclass acting as an interface for other TaLE
classes is constructed according to the general model; i.e. this class must provide the standard
services for look-ahead and for creating the language structure in question. However, the latter
operation may simply call an external parser to do the job. We have applied this technique in the
implementation of the standard expressions: structures which are defined as subclasses of
Std_expression are actually parsed using the fast and compact method presented in [Han85], instead
of the general (less efficient) lazy parsing method. The use of such external analyzers is supported
in TaLE through a special class whose subclasses can be defined under a view that allows the
explicit giving of the starter symbols.

6 Concluding remarks

TaLE is a step toward “granular languages”; i.e. languages that are composed of relatively
independent, replaceable, partly standardized units. As different application areas become more
mature and systematic, there will be a growing demand for special-purpose languages for those
areas, and we anticipate that these languages make more and more use of standard components:
individualism becomes too expensive. We expect that different TaLE class libraries will be
developed for different application domains, so that the language development can be done
(re)using concepts that are already near to the language. In the simplest case, each language
implementation carried out in TaLE is in fact a specialized class library that can be utilized e.g. in
the development of the next generation of the language.
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Typical applications of TaLE are the implementations of application-oriented languages (say,
process control languages, query languages, robot control languages, document description languages
etc.), processing of intermediate data (or object) descriptions, analysis of ASCII files, generation of
software from its specification, interpreting user interface specifications, experimental implementa-
tions of programming languages, source-to-source translations etc. TaLE is not intended for the
development of production-quality compilers of general-purpose programming languages.

TaLE demonstrates the benefits of the object-oriented programming paradigm in (computer-aided)
language implementation. A unified language model can be developed such that the model can be
followed both in the user interface and in the actual software; this model implies an abstract
internal representation of the source. General, language-independent notions can be presented as
reusable classes, specialized through subclassing. The information concerning a language can be
distributed into more or less independent classes, allowing thus the incremental development of a
language implementation. Through dynamic binding the classes can be individually implemented
without losing the simplicity of the general model. Hence TaLE draws heavily on the properties of
an object-oriented base language; indeed, the use of an object-oriented base language seems to be an
essential requirement for a metalanguageless approach to automated language implementation.

TaLE opens up new research directions particularly in the areas of object-oriented language
implementation techniques and graphical language specification. Work in these directions
continues. The basic problem in the automation of language implementation is to understand the
nature of the tool that is really needed by practical programmers. TaLE tries to bring computer-
aided language implementation and software engineering together, emphasizing issues like code
reuse, incremental software development, object-oriented software development, and graphical
specifications. Although we feel that TaLE is a major step in the right direction, more real-life
experiences are needed to evaluate the advantages and shortcomings of the system. We are currently
applying TaLE to industrial language implementation problems.
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