INFERRING STATE MACHINESFROM TRACE
DIAGRAMS

Kai Koskimies and Erkki Makinen

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF TAMPERE

REPORT A-1993-3

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A
A-1993-3, JULY 1993

INFERRING STATE MACHINES FROM
TRACE DIAGRAMS

Kai Koskimies and Erkki Makinen

University of Tampere
Department of Computer Science
P.O. Box 607

SF-33101 Tampere, Finland

ISBN 951-44-3393-9
ISSN 0783-6910

Inferring state machines from trace diagrams

Kai Koskimies and Erkki Méikinen

Department of Computer Science, University of Tampere,
P.O. Box 607, SF-33101 Tampere, Finland

Abstract

The automatic synthesis of state machines describing the behavior of a class of
objects in object-oriented software modeling is studied. It is shown that the
synthesis can be carried out on the basis of trace diagrams giving possible
sequences of events during the execution of the system. An algorithm
originally developed for the automatic construction of programs on the basis
of their execution traces is applied to the problem, and an experimental state
machine synthesizer is implemented. It is demonstrated that such a
synthesizer is a highly useful component in a practical object-oriented CASE
system.

CR Categories and Subject Descriptors: D.1.2 [Programming Techniques]:
Automatic programming; D.2.2 [Software Engineering]: Tools and Techniques
- CASE; 1.2.6 [Artificial Intelligence]: Learning - Induction.

Additional Key Words and Phrases: inductive inference, synthesis of state

machines, event trace, object-oriented software development.

1. Introduction

Object-oriented (OO) techniques are rapidly becoming prevalent in industrial
software development. This trend is partly explained by the fact that OO
techniques allow a systematic development process in which the conceptual,
abstract world of the application is transformed into an executable program.
During the last few years, a myriad of OO design formalisms and graphical
tools have been presented to support such software development; among the
most popular methods are the ones proposed by Jacobson [Jac92], Rumbaugh et
al. [Rum91], Coad and Yourdon [CoY90], and Shlaer and Mellor [ShMS8S].
Although the proposed OO software design methods differ in their emphasis
and notations, they share much in common. Typically, the static view of the
objects is presented as a kind of entity-relationship diagram, and the dynamic

behavior of the objects is described using some variant of a finite state
automaton.

The work reported in this paper is part of a project aiming at advanced
support for dynamic modeling in OO software development. We will use the
OMT method developed by Rumbaugh et al. [Rum91] as a guideline, but it
should be emphasized that the results can be exploited in other methods as
well. OMT consists of three modeling techniques: object modeling for
describing the static relations and properties of objects, dynamic modeling for
describing the behavior of objects, and functional modeling for describing the
input-output relations of operations. Of these models, OMT emphasizes the
role of the object model - this part is relevant for all applications. Dynamic
modeling is needed for specifying the external behavior of active software like
embedded real-time systems or interactive user interfaces. Since most modern
systems have components falling into these categories, dynamic modeling is
essential in many cases. Functional modeling plays only a secondary role in
OMT: it is used mainly in computation-oriented applications, like spreadsheet

programs, compilers, CAD systems, etc.

In the OMT method, dynamic modeling starts with the construction of so-
called scenarios. A scenario is a sequence of events occurring during a
particular execution of a system. A scenario is presented graphically as a trace
diagram describing in which order certain events are sent from one object to
another. (In [Jac92], scenarios and event trace diagrams are called use cases and
interaction diagrams, respectively.) Scenarios are given first for "normal"
behavior, and then for "exceptional" behavior. Based on an understanding of
the mutual interaction of the objects achieved through scenarios, a state
machine (a state diagram in OMT terminology) is constructed for each class of
objects appearing in the scenarios. The OMT method gives no exact procedure

for constructing the state machines, but only some informal hints.

In this paper we demonstrate that it is possible to carry out the construction of
the state machines automatically on the basis of the trace diagrams. This result
is important for the design of CASE systems supporting OO software
development, because it suggests that the attention in the construction of the
dynamic model can be focused on trace diagrams rather than on state
machines: a state machine is a more or less automatic synthesis of trace
diagrams. Hence, a CASE system should offer an environment for creating

trace diagrams, and a generator synthesizing state machines from these. At

least the latter component is missing from the current systems we know of.
Moreover, the support offered for constructing trace diagrams is modest at the

best: the emphasis has been on the direct construction of a state machine.

A synthesized state machine serves as an initial approximation of the desired
dynamic model. It is likely that the designer wants to directly edit the state
machine later. For this reason the system should also provide a state machine
editor (which is a standard component in current systems) and guarantee that
the state machines are consistent with the trace diagrams. This kind of system

is being implemented in our research group.

Our work is based on an application of the ideas presented by Biermann et al
in their "autoprogramming" system ([BBP75], [BiK76]). We will show how this
technique can be used in the context of trace diagrams and state machines, and
discuss the implementation and first experiences of an experimental state
machine synthesizer. The next section reviews the relevant concepts of the
OMT method. In Section 3 we discuss our problem in terms of inference
theory. A brief introduction to Biermann's method is given in Section 4. In
Sections 5 and 6 we build a bridge between Biermann's method and the OMT
framework, and present our state machine synthesis technique in detail.
Section 7 discusses the implementation and some early experiences of the
proposed technique. Concluding remarks are presented in Section 8. The
paper is self-contained and assumes no prior knowledge of the OMT method

or inductive inference.
2. Dynamic modeling in OMT

In the sequel we will briefly review the concepts of the OMT method
regarding the dynamic model. With few exceptions, we follow the
terminology of [Rum91]. We will leave out some concepts of OMT that are

irrelevant for the present discussion.

As an example system, consider an alarm clock. The clock has a digital display
which shows the current time. The alarm time can be set by "set new alarm
time" function. Otherwise the previous alarm time is valid. The alarm time
set is displayed after setting. The alarm can be turned off and on. "Set new
alarm time" function automatically turns the alarm on. When the selected

alarm time is reached (and the alarm is on), the clock starts buzzing. Buzzing

stops when the alarm is turned off (and the user hopefully gets up) or a new

alarm time is set.

Scenarios
A scenario is a sequence of events that occurs during an execution of a system.
A scenario is presented informally as a sequence of statements in natural

language. For an alarm clock a scenario could be given as follows:

user sets new alarm time

user sleeps

alarm time is reached, and the clock starts buzzing
user wakes up and turns the alarm off

user sets new alarm time

user falls asleep again

alarm time is reached

user turns alarm off

Trace diagrams

A scenario is formalized as a frace diagram. In a trace diagram the objects
appearing in the scenario are drawn as vertical lines, and an event is
represented as a horizontal arrow from the object causing the event to the
object receiving (or reacting upon) the event. Time flows from top to bottom.
Often the objects in a trace diagram are representatives of their classes, but it is
also possible that several objects of the same class appear in a trace diagram (in
different roles).

In Figure 1, a trace diagram is shown for the example scenario. We have

divided the alarm clock into two objects: the control unit and the buzzer unit.

State machines

A state is an abstraction of attribute values of an object. In a system, objects
stimulate each other, causing changes to their states. A stimulus from one
object to another is an event. A change of state caused by an event is called a
transition. A system consisting of states of objects, events, and transitions can
be described as a state machine (or state diagram). A state machine is a directed
graph in which states are represented by nodes and transitions are represented
by directed edges. In addition to values of objects, states can also represent
actions. An action is either a continuous activity ending when leaving the
state (e.g., displaying a moving picture on the screen), or a finite sequence of

operations ending when the operations are completed (e.g., opening a valve);

in both cases the action starts immediately after entering the state. Also, in
both cases the action is interrupted in case an external event causing a state
transition is received. A state machine may have a special initial state and
final states. A state machine describes the behavior of a single class of objects.
The state machines for various classes combine into a single dynamic model
via shared events.

timer unit buzzer unit control unit user
show current time .

set new alarm time

set alarm reqister

show alarm time 5secs

Y

show current time .

alarm time reached

start buzzing _
- 9 flash alarm time

stop buzzing |« turn alarm Off
- show current time

A

Y

set new alarm time

set alarm reqister

show alarm time 5secs

Y

show current time

alarm time reached

start buzzing _
- 9 flash alarm time

stop buzzing | turn alarm Of_f
- show current time

A

Y

Figure 1. Event trace diagram related to the sample scenario.

An action can also be associated with a transition, provided that the action is
instantaneous; i.e. its duration is insignificant as far as the behavior described
by the state machine is concerned. Such an action is executed when the
transition fires. A transition action is written after the event name, separated
by a slash. In many cases it is possible to associate a particular (instantaneous)
action either with a state or with a transition. Note that a transition action can
always be removed by adding an extra state with the corresponding state

action.

A guard is a Boolean function on the values of the attributes of objects. In
contrast to an event, a guard has time duration: it holds (i.e. returns true)
during a certain time interval. A guard can be associated with a transition: a
guarded transition fires only if the guard holds at the time the transition

event occurs. In state machines guards are shown in brackets following the

corresponding event name. State machines are assumed to be deterministic:
two out-going transitions of a state can have the same event only if they are

both guarded and the guards never hold simultaneously.

Figure 2 shows a state machine for the control unit of an alarm clock. Note
that all the events are here unguarded. If a transition has no event, it fires

immediately when the action in the state is completed.

/ \ alarm turned off/stop
do: show buzzing

\ current time)

alarm new alarm time
turned on set/set alarm register

/

new alarm time
do: show alarm | set/stop buzzing (do: flash

time for 5 secs)‘ K alarm time

A \

check alarm time

i

alarm time
> do: show reached /start buzzing

current time
alarm

turned off

Figure 2. A state machine for the control unit of an alarm clock.

Note that there is an intimate relation between the trace diagram given
previously and the above state machine. Following the vertical line of the
control unit object from top to bottom, the events in the trace diagram can be
found on a path in the state machine, starting from the topmost state. Each
leaving event appears as an action and each arriving event appears as a

transition event.
3. State machine synthesis as an inductive inference problem

Inductive inference studies algorithms for inferring general rules from their

application instances. This chapter introduces some basic concepts related to

inductive inference. For a more thorough treatment of the subject, see e.g.

[AnS83, Ang92] and the references given there.

Angluin and Smith [AnS83] give a list of items which must be specified in
order to define an inductive inference problem. First, one must specify the
class of rules considered. Typically, inductive inference research has
considered functions and languages. Second, one must specify a set of
descriptions (called hypothesis space) for the rules considered. If one considers
the inference problem related to languages, a hypothesis space could be e.g.
finite automata or generative grammars. Third, for each rule, one must
specify a set of examples. A sequence of valid examples constitutes an
admissible presentation of the rule to be inferred. In the case of languages,
examples are sentences belonging to the language in question. Fourth, one

must specify criteria for a successful inference.

Examples can be either positive or positive and negative. In the former case
we know that each example follows the rule to be inferred. In the latter case,
we must specifically indicate whether a given example is positive or negative.

In this paper we consider inference from positive data only.

The commonly used criterion for a successful inference, called identification
in the limit, is due Gold [Gol67]. An infinite sequence of examples of the
unknown rule is presented to inference algorithm M. After each example, M
outputs a conjecture. If after some finite number of steps M guesses the correct
rule and never changes its guess after this, then M is said to identify the rule

in the limit (from positive examples).

A fundamental result by Gold [Go67] states that no family of languages
containing all the finite languages and at least one infinite language can be
inferred in the limit from positive samples. This result shows that even the
family of regular languages is too general to be inferred from positive data
only. Later, Angluin [Ang82] has shown that a natural subfamily of regular
languages, the family of reversible languages, can be inferred from positive
data in the limit. Recently, Yokomori [Y091, Y093] has presented an inference
algorithm using only positive data for very simple languages (also known as
left Szilard languages). The family of very simple languages is incomparable

with the family of regular languages.

Following the list of Angluin and Smith, we define the problem of automatic
synthesis of state diagrams as an inductive inference problem. We consider
state machines as rules to be inferred. We do not define any specific
descriptions for state machines, i.e. we do not make any distinction between
state machines and their descriptions. In our case, traces derived from trace

diagrams are used as examples.

State machines bear obvious resemblance to finite state automata. Since it is
not possible to infer a finite state automaton from positive data (sentences),
one might be inclined to conjecture that it is not possible to infer a state
machine from positive data (traces). However, this is not the case since traces
contain essentially more information than sentences. In fact, we do not
consider a state machine as a language recognizer, but as an abstraction of a
process. In Section 5 we show how Biermann's method [BiK76] can be applied
to infer state machines from trace diagrams. The relationship between
Biermann's method and standard inference problems related to languages

will be discussed in greater detail in an accompanying paper [KoM93].
4. Biermann's method

In Biermann's method [BiK76], the user can synthesize a program by giving
example traces of the program as sequences of instructions and conditions; the
latter are Boolean expressions on the variables (or memory contents) of the

program.

We first introduce some notations and definitions related to Biermann's
algorithm [BiK76]. A computation consists of condition-instruction pairs ry =
(ct, it) being executed at discrete times t = 1, 2,... Operation i; operates on
memory contents my.q resulting a new memory contents my; this is denoted
by m¢=i(m¢.1). Branching is made possible by using conditions which are
(possible empty) conjunctions of atomic predicates or their negations. The
value of condition ¢t on memory contents m¢.1 is denoted by ci(m¢). The
value of the empty condition @ is true. The validity of condition c; is checked

before instruction i; is executed.

The set of instructions available is denoted by Iy, I,... Moreover, we have two
special instructions: Ij is the start instruction which does nothing and Iy is the

halt instruction. An instruction may appear several times during a

computation. The appearances are separated by labels; for example, the

appearances of I are labelled by 113, 211, 311 and so on.

A program is a finite set a triples (called transitions) of the form (qj, ck, gj)
where gi and gj are labelled instructions and ck is a condition satisfying the
following restriction: if (q,c,p) and (q,c',p') are transitions and there is a
memory contents m such that ¢(m) and c'(m) are true, then we must have ¢ =
c'and p = p'. Hence, it is not possible that two transitions were applicable at
the same time. Thus, programs are always deterministic. (This is called
incomplete program in [BiK76]. According to their terminology, an
incomplete program is program, if it has the following two additional
properties: (1) Each program has exactly one start instruction 1Iy, and (2) if
there is a transition (q, ¢, p) where c is a non-empty condition, then there must
also be transitions from q for every possible combinations of the atomic

predicates and their negations present in c.)

A trace of a computation is a (2n+1)-tuple T = (my, r1, my, r2, my, ..., In, My),
where each r¢ is a condition-instruction pair such that m¢ = if(m¢-1) and cy(my-
1) is true, for each t = 1, 2,.., n. (This is called partial trace in [BiK76]; trace has
then the additional properties that r1 = (@, Ip) and rn = (cn, IH).)

Programs can be illustrated as directed graphs with instructions as nodes and
transitions as edges. Non-empty conditions are used as edge labels. Figure 3
illustrates the program with transitions (11p, @, 111), (111, {[a}, 1Ix), (111, {a}, 2I1),
(211, @ 11), and (112, @, 1I1). Notice that this is a program even in then the sense
of [BiK76].

1l

i

o oy, Pl

i{a}

i, 21,

Figure 3. The illustration of program P = { (11p, ¢, 1I1), (111, {[a}, 1In), (113, {a},
2Ly), (2I1, @11p),, (112, @1Iy) }.

The input of Biermann's algorithm is a set of traces from which the algorithm
constructs (infers) a program consistent with the traces. As the input traces
contain the instructions used, the problem is to assign labels to the
instructions. Suppose we are given a set of traces with n instructions (which
are not usually all different from each others). A trivial solution is to assign
different labels to each of the instructions in the input. The resulting program
is a linear one with no branching or loops. A more interesting result is
obtained when an order is defined in the set of possible labelling of the
instructions, and the minimum labelling defining a program is chosen to be

the output.

If U = (u1, up,..., un) and V = (vq, va,..., vp) are two labellings of n instructions,
then we denote U < V if uj= vy, fori=1,..,j-1, and uj < vj. Let k be the
number of different instances of instructions in the corresponding program,
i.e. k is the number of nodes in the directed graph illustrating the program.
The order among labelling is defined for pairs of the form (k, U). If (k, U) and
(k', U') are two such pairs, we denote (k, U) < (k', U") if k < k' or if k = k' and
U < U'. Hence, we start with k = 1 and labelling (1,1,..., 1), enumerate all the
pairs, and check which one is the first (according to the given order) defining
an incomplete program. This process will always halt, since the pair (n, (1, 2,...,
n)) defines the linear program mentioned. Notice that this process minimizes
the number of different instances of instructions in the resulting program, i.e.

the number of nodes in the directed graph illustrating the resulting program.

As an example, consider trace (my, (¢, Ip), m1, (¢, I1), mp, ({a}, I1), m3, (@, I2), mg4,
(@ I1), ms, ({[a}, I), me). Since the trace contains four different instructions
(In, I1, I, Iyg) it is useless to try values less than k = 4. The only possible
labelling with k = 4 is (1,1,1,1,1,1). This labelling would give transitions (117,
{a}, 117), (113, @, 111), and (111, {[a}, 1Iy). This set of transitions contradicts the
requirement of determinism. Hence, we set k = 5. Labellings (1,1,1,1,1,1),
(1,1,1,1,2,1), and (1,1,1,2,1,1) imply nondeterminism as above, but labelling
(1,1,2,1,1,1) gives the program illustrated in Figure 3.

We say that a program P can execute trace (mg, (c1,i1), m1, (c2, i2), mp, ...,
(cn, in), mp) if there is a labelling (uj, up,..., un) such that (uji]', Gj+1, uj+1ij+1) is a
transition in P and C]‘+1(1’1’1]‘) is true, for each j = 1, 2,...,, n. Biermann and
Krishnaswamy [BiK76] has proved the following: Given a set of traces, the

program inferred by the above algorithm can execute all input traces.

10

Moreover, if P is any program whose traces are given as input, then the above
algorithm identifies P in the limit in the sense discussed in the previous
chapter.

When traces are long, the enumeration of the labelling candidates may take
quite a long time. Biermann et al. [BBP75] have discussed techniques for

speeding up the algorithm.

Another inference algorithm for synthesizing programs from their traces is
due Takada [Tak92]. This algorithm shows that by restricting the class of
programs one can obtain more efficient synthesis algorithms; Takada's
algorithm has polynomial time complexity. Takada considers programs
(called "processes") similar to those of Biermann, consisting of instructions
(called "non-branch statements") and conditions (called "test statements").
However, Takada requires a process to be historically deterministic. A process
is historically deterministic if for any statement s in process F the following
criterion holds: if s, s2,..., sp are the possible dynamic follower statements of s
then the statements si, s2,..., sp are all different and there are exactly n - 1 test
statements on the path between s and si, sp,..., sp. Notice that this condition

quantifies over all instances of a particular statement in process flowchart.

An execution sequence in a process flowchart is a sequence of statements from
BEGIN to END (special statements for starting and ending a process). Takada's
algorithm infers historically deterministic process flowcharts from execution
sequences. The inference algorithm is interactive. The algorithm predicts the
next statement in step-by-step manner. Algorithm's guess is based on a
conjecture constructed from previous examples. The user confirms correct
guesses, and gives a counterexample in the case of mistakes or when the

algorithm makes a correct but unsatisfactory choice.

Since OMT is intended to be a general software design method, it seems
slightly too restrictive to assume the property of historical determinism.
Moreover, the possibility to use partial traces (i.e traces not starting from an
initial state or ending at a final state) favors Biermann's method: in real time
systems it is often more natural to give such partial traces. In fact, the use of
trace diagrams implies the existence of partial traces because it would not be
sensible to require that a scenario always begins at an initial state for all the

participants. In the sequel we will concentrate on Biermann's method.

11

5. Applying Biermann's method to state machine synthesis

Although Biermann's notion of a program is clearly related to OMT's state
machine, the relation is not trivial. For instance, a guard looks like a
condition in Biermann's method, but they act in somewhat different roles. On
the other hand, an event in OMT acts in the same role as a condition, but
these concepts are rather different. Note that there is also a fundamental
difference between programs and state machines in that a program (together
with its memory cells initialized with some input) is a self-contained process
which needs no external stimuli, whereas the whole purpose of a state
machine is to describe the behavior of an object in the presence of external
stimuli. Hence for a program the flow of control is fully determined by the
program itself, but for a state machine the flow of control depends on the

sequence of events sent by some processes that are in principle unknown.

In OMT, a state is defined as an abstraction of a particular combination of the
attribute values of the object, relevant for responding to certain events
received by the object. However, this definition is somewhat inaccurate
because a state is often characterized by a particular point reach in a
computation rather than by attribute values. Indeed, it is possible that the
object has no attributes (except for the implicit state indicator). Jacobson [Jac92]
makes this more explicit: in his terminology, a computational state describes
how far we have come in the execution of the system, while an internal state
represents a particular collection of attribute values. In Jacobson's method,
states are essentially computational states, and it seems useful to adopt this
higher-level view in OMT, too. This view justifies the unification of the

concepts of a state in OMT and a labelled instruction in Biermann's method.

We will first define a concept corresponding to Biermann's trace. Let F be the
set of events in system S. We suppose that all systems have two special events
called default and null in their event sets; default is an event that is
considered to occur when no other event occurs and null is an event that
never occurs. A trace in S is a sequence of pairs (el,e2) where both el and e2
are elements of F. (We adopt this term from Biermann's method although
the concept is not exactly the same.) Let D be a trace diagram describing a
scenario in S with an isntance from class C. For simplicity we assume that
there can be at most one instance from class C in a trace diagram; the

following discussion can be straightforwardly generalized to the case of

12

several instances. The trace originating from diagram D with respect to C is

obtained by using the following algorithm:

Algorithm 1: Trace derivation.
Input: Trace diagram D with instance of class C.

Output: Trace T originating from D with respect to C.

Let T be an empty trace.
Consider the vertical line corresponding to the C object.
Starting from the top, consider each arriving or leaving arc in
turn until the bottom is reached. For each arc, do the following:
if the current arc is a leaving one with event e then
if the previous arc is a leaving one with event f then
add item (f,default) to trace T
end;
if the current arc is the last one then
add item (e,null) to trace T
end
else
let the event associated with the current arriving arc be e;
if the previous arc is a leaving one with event f then
add item (f,e) to trace T
else
if the previous arc is an arriving one with event f
then
add item (null,e) to trace T
end
end;
if the current arc is the last one then
add item (null,null) to trace T
end
end;

For example, the above algorithm produces the following trace for the control

unit object of the trace diagram in Figure 1:

(show current time, set new alarm time)
(set alarm register, default)

(show alarm time 5 secs, default)

(show current time, alarm time reached)
(start buzzing, default)

(flash alarm time, turn alarm off)

(stop buzzing, default)

(show current time, set new alarm time)
(set alarm register,. default)

(show alarm time 5 secs, default)

(show current time, alarm time reached)

13

(start buzzing, default)

(flash alarm time, turn alarm off)
(stop buzzing, default)

(show current time, null)

We define the concatenation of traces in the obvious way: if Tq is trace
(a1,b1)...(am,bm) and Ty is trace (c1,d1)...(cnh,dn), then T1Tp is trace
(a1,b1)...(am,bm)(c1,d1)...(cn,dn). The empty trace is denoted by A.

A trace item (el,e2) implies that, during a particular execution of the system,
the object sends event el to some other object and then responses to event e2
sent by another object. From the OMT point of view, trace item (el,e2) means
that the execution has reached a state with state action "do: send el" and with
a transition labelled by e2. If el is null, the do-action is missing, and if e2 is
null, the transition is missing. Default is treated like any other event, except
that it cannot be sent. To simplify the presentation we ignore the specification
of the receiver in the sending of an event; we assume that the event name
uniquely determines the receiver. This is of course not true in practice, but it
is straightforward to extend the presentation to include the identification of
the receiver objects: if the same event is sent to different receivers, the

sending actions are considered to be different actions.

Note that we essentially unify the concepts of action and event: from the
receiver's point of view an arc in a trace diagram denotes an event, while
from the sender's point of view the same arc denotes an action. In OMT, other
actions than event sendings can appear as do-actions as well, but we ignore
them here. Usually such actions do not appear in trace diagrams, since an arc
implies some sort of inter-object activity, although sometimes an event has a
"virtual" receiver that is not a true object (like a "user" in the example
scenario in Figure 1). If desired, actions with no receiver can be added to trace
diagrams (although this is not a standard procedure in OMT) and these
actions can be included in the traces (and in the synthesized state machines) in
the same way as the sending actions: our method does not care what is the

meaning of an action.
It should be emphasized that actions are by no means state labels. Thus, there

is no concept of a state in trace diagrams. Different states may very well have

the same action. In a practical system it might be reasonable to allow also state

14

labels in traces (indicating that certain trace items must originate from the
same state), we will discuss this in Section 6.

When viewed from the receiver's side, we regard a guard as a part of an
event: a guarded event e[g] denotes an event "e such that g holds". If event e is
associated with two different guards gl and g2, we assume that gl and g2
never hold simultaneously. Hence, in our method, e[gl] and e[g2] are simply
different events from the reveiver's point of view. It is not allowed that the
same event appears with and without a guard in the outgoing transitions of a
particular state. On the other hand, from the sender's point of view a possible
guard is ignored, i.e. a guard is not sended (in the do-action) but only the

event.

Since a trace diagram does not show explicitly whether an action is associated
with a state or with a transition, we ignore transition actions and consider
every action as a state action (i.e. do-action). For this reason we also assume
that in a state machine every transition action has been removed and replaced
by an additional state with a state action. Transition actions are assumed to be

introduced as a separate step not discussed in this paper.

We require that every state machine has a single initial state with a special
(unique) action "start". This is a slight deviation from OMT which allows
state machines without an initial state. An initial state makes it possible to
relate a trace with a state machine in an unambiguous way, assuming that the
trace starts with the initial state. This is formulated in the sequel as trace
execution, which is an essential concept for establishing the equivalence of
state diagrams in terms of traces.

We say a state machine M can execute trace T from state q if there is a path
starting from q and matching with T; in that case T is called a partial trace of
M. Formally, a path starting from state q coincides with trace T if either T is
empty or T = (b,e)T', q is associated with action b, there is a transition from q
with event e to state q', and there is path starting from q' which coincides with
T'. M can execute trace T if M can execute T from the initial state; in that case
T is called a complete trace of M.

In the synthesis algorithm given below, we assume that there is an unknown

state machine M whose (partial) traces are given as input to the algorithm.

One of the input traces is assumed to contain the start action. The output of

15

the algorithm is a (deterministic) state machine M' which is able to execute all
the given traces. Furthermore, under certain assumptions (we will discuss
these after giving the algorithm), given some finite number of input traces,
M' becomes a minimal state machine such that M can execute trace T if and
only if M' can execute T. Hence, the guess provided by the algorithm becomes
functionally equivalent with the original state machine after some finite
number of sample traces - the algorithm identifies M in the limit. These

arguments follow directly from the results in [BiK75].

For the purposes of the synthesis algorithm, we define a state machine as a 6-
tuple (S, E, A, d, p, I), where S is the set of states, E is the set of events, A is the
set of actions, d is the transition function d:SxE - S, p is the action function
p:S—A,and I OS is the initial state. The transition function defines the next
state on the basis of the current state and the event, and the action function
associates a (possibly empty) action with every state. We require that p(I) =

start for all state machines.

In the algorithm below, we make use of stack G which can store 4-tuples of the
form (i', S', d', p') where i' is trace item, S' is a set of states, d' is a partial
function d":SxE -~ S and p' is a partial function p:S— A. The purpose of the
stack is to store the so far computed state set, transition function and action
function, to be restored when the algorithm backtracks. Function sta associates
a state with each trace item. Set Used(t) gives the set of states so far considered

for trace item t.

Algorithm 2: State machine synthesis.
Input: Traces Tq, Ty, ..., Tx of (unknown) state machine M.
Output: State machine M' = (5,E,A,d,p,I).

let T = T1T7...Tx = t1...t;n (M>0);
letE={el (ae)0T},A={al (ae)dT};
SetEmpty(G);
MAX :=card(A) - 1;
while true do begin
if IsSEmpty(G) then
=1
let p be undefined for all states;
let d be undefined for all states and events;
S:=0;
MAX:= MAX + 1
else

16

(1,5,d,p) := Pop(G);
end;
let Used(ty) =0 fori<r<m;
undefine sta(ty) fori <r <m;
while i <m do begin
if i > 0 and d(sta(tj-1),ei-1) = s then
if p(s) = aj then -- this is already covered
define sta(tj) = s;

=1+ 1;
else

exit -- backtrack
end

else
Cand :={s US\ Used(ti) | p(s) =ai};
if i > 0 and Cand + O then -- add a new transition
pick up a member s of Cand;
Used(t;) := Used(t;)) O {s };
define sta(tj) =s;
define d(sta(tj-1),ei-1) = s;

Push(G,(i,S,p,d));
i=i+1;
else

if card(S) < MAX then -- add a new state
create new state s;
S:=S0{s};
define p(s) = aj;
define d(sta(tj-1),ei-1) = s;
define sta(tj) = s;

i:=1+1;
else
exit -- backtrack
end;
end;
end;
end; --whilei
if i > m then exit end; -- success!

end; -- while
let I = s such that p(s) = start.

Following the basic idea of the suggestions in [BBP75], Algorithm 2
implements the synthesis as a sequence of repeated attempts, each increasing
the maximal state number: if there is no way to associate the trace items with
states using the allowed number of states MAX, the process is repeated for
MAX+1. In contrast to [BBP75], we use the number of different actions as the
initial approximation for the number of states: clearly this is a lower bound.

Moreover, it seems that in those applications we have in mind the number of

17

states is usually close to the number of actions (provided that every state is
associated with a non-null action). In our case the actions are conceptually
high-level since they are part of a relatively abstract characterization of an
object's behavior, whereas in Biermann's framework actions are simple
statements of a program (like variable assignments). High-level actions tend
to be more bound to the "state" of an object than the fairly arbitrary low-level
statements. Note that the algorithm avoids unnecessary attempts if the initial

approximated state number is close to the real one.

Algorithm 2 can be easily modified to work in an incremental mode; i.e., the
traces can be given to the algorithm one by one, and synthesized into the
existing state machine. Assume that we have state machine M and would like
to extend it so that it can execute trace T as well. The updated state machine is

constructed as follows.

Algorithm 3: Incremental state machine synthesis.
Input: State machine M = (S,E,A,d,p,I), trace T = tj...tm.
Output: Updated state machine M'.

letE'=E0O{el (ae)dT};
letA'=A0{al (ae)dT};
MAX := card(S) + card(A') - card(A) - 1;
SetEmpty(G);
while true do begin
if IsSEmpty(G) then
1,5d%p") == (1,5d,p);
MAX:= MAX + 1
else
(1,S',d"p") := Pop(G);
end;
let Used(t;) =0 fori<r<m;
undefine sta(ty) fori <r <m;
while i <m do begin
if i > 0 and d'(sta(tj-1),ej-1) = s then
if p'(s) = aj then -- this is already covered
define sta(tj) = s;

=i+ 1;
else

exit -- backtrack
end

else
Cand :={s0S"\ Used(ti) | p'(s)=ai};
if i > 0 and Cand + O then -- add a new transition

18

pick up a member s of Cand;
Used(t;) := Used(tj) O {s};
define sta(tj) = s;

define d'(sta(tj-1),ei-1) = s;

Push(G,(i,S',p',d"));
=i+ 1;
else

if card(S) < MAX then -- add a new state
create new state s;
S':=S'0{s};
define p'(s) = aj;
define d'(sta(tj-1),ei-1) = s;
define sta(tj) = s;

i:=1i+1;
else
exit -- backtrack
end;
end;
end;
end; -- whilei
if i > m then exit end; -- success!

end; -- while
let M' = (S'/E'/A'/d'/p'll)

The incremental version builds on the existing state machine as if it had been
created by the synthesis algorithm. Note that the initial value of MAX is set to
be the sum of the number of existing states and the number of new actions
introduced by the new trace: this sum is a feasible lower bound since a new
trace can never eliminate existing states, and a new state must be created at

least for each new action.

Algorithm 2 is sensitive to the order of traces in its input. Indeed, there are
some special cases where the state machine outputted may vary depending on
the order of the input traces. On the other hand, the following holds: if
Algorithm 2 is run with input Ty,..,, Tk (in this order), and then the resulting
state machine is given as input with a trace Tk+1 to Algorithm 3, the final
result equals the state machine obtained by running Algorithm 2 with input
T1,.., Tk, Tk+1 (in this order).

6. On the accuracy of the guesses
If we want that the output of Algorithm 2 is excatly equivalent with the
unknown state machine from which the sample traces are taken, then the

concept of "completeness” is essential. As mentioned above, a program was

19

defined to be complete in [BiK76] if in all cases there is a valid continuation of
the program (except after halt statement). This guarantees that the traces will
eventually give sufficient information about the program for inference. If this
condition is satisfied, the original unknown program (state machine) and the
one inferred are indeed equivalent [BiK76, Corollary of Theorem 2]. The
problem is that this condition is hardly ever satisfied in practical state

machines.

The problem is illustrated in Figure 4. If the completeness requirement need
not be satisfied, the source state machine could be the one shown on the left-
hand side. This state machine can execute traces
(al,el)(a2,el)(a4,el)(ab,el)(aZnull) and (al,e2)(a3,e2)(a4,e2)(a6,e2)(a7,null) and
since these cover the whole state machine no other traces are necessary. The
state machine inferred by Algorithm 2 on the basis of these traces is given on
the right-hand side. As can be seen, the inferred state machine is more
general, executing traces that cannot be executed by the original state machine.
In a complete state machine there would be el- and e2-transitions from both
a4 states, this would be shown in the traces, and the a4 states could not be

merged (unless, of course, the transitions were identical).

(=) (&)

ely/ \e2

el e2

Figure 4. The source state machine (on the left) and the inferred state machine
(on the right).

We can solve the problem by completing a state machine with additional

"error" transitions: if there is no transition with event e from state s, the state

20

machine is augmented with such a transition whose target is a new state; this
state has a special "error-and-halt" action and no continuation. In this way the
state machine explicitly indicates which transitions are not allowed, and this
information is passed via traces to the inference process. In the final state
machine the error transitions and states can be again removed, presenting
thus the state machine in the desired form. Since the original state machine is
merely an imaginary concept, in practice this solution means that the user
should be able to express in the traces "negative" cases as well, that is, cases
which end with a forbidden move. Hence, we can use negative information to

replace the missing completeness property.

For instance, in the case of Figure 4 the two given traces should be
accompanied by two other, say (a2,el)(a4,e2)(err,null) and
(a3,e2),(a4,el),(err,null), where err is the "error-and-halt" action. Recall that
the traces can be partial. This is sufficient information for the synthesis
algorithm, which will produce now the exact copy of the original state
machine (assuming that the err-state and its transitions are finally removed).
Note that in this case we need not give similar "negative" traces for the states
a2, a3, a5, a6, and a7 since they are not threatened by inadvertent merge.
However, it may be hard for the user to understand which "negative" traces

are really necessary.

On the other hand, in practice this is not necessarily a problem: we may regard
state machine synthesis as a software construction process rather than as a
learning process. After all, there is no secret state machine which we try to
guess, but our purpose is to construct a state machine describing a new system
component on the basis of primitive behavior descriptions (traces). If we use
non-complete state machines, the method produces the smallest (with respect
to number of states) deterministic state machine capable of executing the
given traces. The fact that the resulting state machine will allow various
combinations of the given traces as well is usually exactly the desired effect.
However, in some cases the algorithm may combine the traces in an

undesirable way.
The limitations of the synthesis method, when applied to non-complete state

machines, are illustrated by the following practical example. Consider a traffic

light controller for which we have got the following two traces:

21

(NS straight, time-out[no cars in NS left lanes])
(EW straight, time-out[no cars in EW left lanes])
(NS straight, null)

(NS straight, time-out[cars in NS left lanes])
(NS may turn left, time-out)

(EW straight, time-out[cars in EW left lanes])
(EW may turn left, time-out)

(NS straight, null)

Here NS denotes north-south and EW denotes east-west; "NS straight” means
a setting that allows the cars to proceed in north-south (or south-north)
direction, and "NS may turn left" switches the lights so that those cars turning
left in north-south direction can proceed. These traces will yield the state
machine of Figure 5 (without the dashed transitions). This is a fairly
successful example of automated state machine synthesis: the result is exactly
the state machine given in [Rum91, p.92] as an example of dynamic

modelling.

ambulance coming in EW

pd

do: _ \ time-out[cars in NS left lanes’ fdo;
NS straight ~| NS straight

time-out[no cars
in NS left lanes time-out

. time-out[no cars
time-out in EW left lanes

do:
NS straight 1 time-out[cars in EW left lanes

F

do:
NS straight

/

ambulance time-out

Figure 5. State machine for traffic light controller.

Suppose now that the user would like to add some behavior concerning the
controlling of lights in case an ambulance arrives. For this purpose the

following trace might be added:

(NS straight, ambulance coming in EW)
(EW straight, ambulance time-out)
(NS straight, null)

22

When this trace is synthesized into the state machine of Figure 5, the
additional traces denoted with dashed lines appear. However, this is not an
acceptable solution, because the "EW straight" phase is interrupted by
"ambulance time-out" also in the normal case, i.e. when there has not been
an ambulance. If ambulance time-out is shorter (as it presumably is) than the
normal time-out, the other transitions are never taken. The algorithm has
merged two states together which represent logically different situations. The
reason for this is that the traces do not give sufficiently information: the
algorithm has no way of knowing that the "ambulance time-out" event is

allowed only after an ambulance has been observed.

Since the problem concerns the actual semantics of the actions and events, it
is very hard to reliably distinguish this kind of undesired merge from the (far
more common) desired one, without some new information included in the
traces. A possible heuristics could be the following "rule of flying visit": a trace
item is not allowed to be associated with an existing state if the trace both
enters and leaves this state with new transitions. In such a case the new trace
makes only a flying visit to an existing path, reusing a single state; this is
suspect and in any case less fruitful combining. Note that this rule is sufficient

to guide the synthesizer in the problem of Figure 5.

As in the traffic light example, an undesirable merge takes place also in the
alarm clock example: the algorithm will merge the two states with the "show
current time" action. This would be wrong because then the state machine
would not preserve the information about the position of the alarm on/off
button: the clock would start buzzing even though the alarm is off. Again, the
"rule of flying visit" would prohibit the algorithm from making the

undesirable merge.

Another way to solve this problem would be to require that the user adds
certain information to the traces (or actually to the trace diagrams; we assume
that the information can be transferred to the traces). In the above example, it
would suffice to give a state name in the trace, and modify the algorithm so
that only trace items with identical (or none) state names can share the same
state. Another piece of information could be a symbol denoting "this is the
only way to proceed" in a trace item; for the above example this could be

given e.g.

23

(EW straight, lambulance time-out).

Since the "ambulance time-out" is marked as the only outgoing transition
("!"), this item cannot be associated with the existing state that has the same

action ("EW straight"), and the correct state machine results.
7. Experiences

The state diagram synthesizer is assumed to be part of an OO software design
environment in which a central tool for dynamic modeling is a trace diagram
editor. The synthesizer provides automatically an initial version of the state
diagram which can then be further edited through a state diagram editor. This
kind of environment for OO dynamic modeling is currently being developed
in our group [MT93]. As a part of this environment, a trace diagram editor
(SCED, SCenario EDitor) has been implemented and integrated with a state
diagram synthesizer. The system is written in Borland C++ and is running
under Windows 3.1 in PCs.

The interface of SCED is shown in Figure 6. On the left, two trace diagram
windows are displayed for a traffic light control system. On the right, the state
diagram synthesized from these scenarios is presented. The resulting state
diagram is equivalent with the one given in [Rum91, p. 92] as an example of

dynamic modeling.

Although the synthesis algorithm makes use of backtracking, it is fast for
practical state diagrams of reasonable size. One reason for this is that there
often is a strong connection between a state and an action: very often a state
has a unique action. Notice that if this holds for all the states, the state
diagram synthesis can be carried out deterministically. Thus, in practice
backtracking is usually not in heavy use. It should also be noted that practical
state diagrams are seldom very large, because such state diagrams would
become hard to understand. In this context state diagrams are above all
specification tools to be read by humans. In all the examples we have tried, the
updating of a state diagram on the basis of a new trace is carried out without

observable delay - the time is usually a fraction of a second.

[Figure 6 is missing from the electronically distributed version of the report.]
Figure 6. The user interface of SCED.

24

The experiments were run in a 20MHz 386 PC. Some of the examples were
taken from [Rum91], namely the phone line (PL) with 11 states, 11 actions, 24
transitions and the automatic teller machine (ATM) with 16 states, 15 actions,
27 transitions. Both for ATM and for PL exactly the state diagram given in the
book [Rum91] was indeed synthesized without problems and very fast. Since
[Rum91] provides only a single example trace diagram for each system, we had
to invent the missing trace diagrams ourselves, trying to imitate a software

designer.

When the algorithm has to backtrack, the order of input traces has its effect to
the time needed. It is possible to find state diagram in which several states
share the same action; this makes the task essentially harder for the
algorithm. Although the number of states, actions, transitions, and trace items
are even smaller than in ATM and PL, the time needed can be considerably
longer (up to 5 seconds in our experiments), especially when the order of

input traces is unfavourable.

It seems that the time needed does not depend directly on the size of the
resulting state diagram, but rather on the state/action ratio: the synthesis
algorithm is very fast when this ratio is close to 1 (ATM), but it becomes
significantly slower for larger values. Although it is difficult to draw
conclusions on the basis of these experiment, the time appears to grow

linearly with respect to state/action ratio.
8. Concluding remarks

We have shown that automatic state machine synthesis is a realistic
possibility that should be taken into account in the design of future OO
software design environments. The application of this technique implies that
the emphasis in the construction of the dynamic model is laid on the
scenarios rather than on state machines. The latter can be considered, at least

partially, as a mechanical summary of the former.

In [Jac92], Jacobson introduces so-called use-case driven design. This is a
software design process based on the idea that the architecture of a system is
controlled by what the users want to do with the system. The users'
requirements are modelled as use cases, which roughly correspond to OMT's
scenarios. Our method supports this view, providing automatic means to

derive the dynamic model automatically from a set of use cases. In Jacobson's

25

methodology this is only one aspect of exploiting use cases since they are the
basis of the whole design, but the idea of emphasizing the role of scenarios is

characteristic to both his and our approach.

So far we have studied the automatic generation of state machines in terms of
rather primitive, general notions. Since we have employed only few OMT
notations, our method is in principle applicable in many contexts making use
of state machines or similar devices. On the other hand, if the aim is to build a
true OMT model, it would be highly desirable to make use of the full set of
OMT concepts in the produced state machines. Some of those concepts can be
added to the state machine afterwards as an automatic or semi-automatic post-
processing step; such features are e.g. transition actions and state hierarchies.
Some concepts may require that the notation of trace diagrams is extended,
allowing the user to give new kind of information (like names of states). Our
future work will deal with these issues.

Acknowledgements

This work is in part financed by TEKES (Finnish Technology Development
Centre) and Academy of Finland. The experiments reported in Section 5 were
carried out by Tarja Systd. SCED has been implemented by Tatu Mannist6 and
Jyrki Tuomi.

References

[Ang82] D. Angluin, Inference of reversible languages, |. ACM 29 (1982), 741-
765.

[Ang92] D. Angluin, Computational learning theory: survey and selected
bibliography, Proc. 24th Ann. ACM Symp. on the Theory of Computing (1992),
351-369.

[AnS83] D. Angluin and C.H.Smith, Inductive inference: theory and methods,
ACM Comput. Surv. 15 (1983), 237-269.

[BiK76] A.W. Biermann and R.Krishnaswamy, Constructing programs from
example computations, IEEE Trans. Softw. Eng. SE-2 (1976), 141-153.

[BBP75] A.W. Biermann, R.I. Baum and F.E. Petry, Speeding up the synthesis
of programs from traces, IEEE Trans. Comput. C-21 (1975), 122-136.

[Gol67] E.M.Gold, Language identification in the limit, Inf. Conrol 10 (1967),
447-474.

[CoY90] P. Coad and E. Yourdon, Object-Oriented Analysis, Yordon Press,
1990.

26

[Jac92] I. Jacobson, Object-Oriented Software Engineering - A Use Case Drive
Approach, Addison-Wesley, 1992.

[KoM93] K. Koskimies and E. Mikinen, A reformulation of Biermann's
algorithm, Manuscript in preparation, 1993,

[M4T93] T. Méannisto and J. Tuomi, The design of the scenario editor SCED.
Manuscript, June 1993.

[Rum91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen,
Object-Oriented Modelling and Design, Prentice-Hall, 1991.

[ShM88] S. Shlaer and S.J. Mellor, Object-Oriented Systems Analysis:
Modeling the World in Data, Yourdon Press, 1988.

[Tak92] Y. Takada, Interactive synthesis of process flowcharts, International
Institute for Advanced Study of Social Information Science (ILAS-SIS), Fujitsu
Labs. Ltd, Report IIAS-RR-92-4E, March 1992.

[Yok91] T. Yokomori, Polynomial time learning of very simple grammars
from positive data, Proc. 4th Workshop on Computational Learning (1991),
213-227.

[Yok93] T. Yokomori, Polynomial time identification of very simple
grammars from positive data, University of Electro-Communications, Dept. of
Computer Science and Information Mathematics, Report CSIM 90-15,
December 1990. Revised March 1993.

27

