LANGUAGE IMPLEMENTATION
MODEL IN TaLE

Esa Jarnvall and Kai Koskimies

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF TAMPERE

REPORT A-1993-1

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A
A-1993-1, FEBRUARY1993

LANGUAGE IMPLEMENTATION MODEL IN TaLE

Esa Jarnvall and Kai Koskimies

University of Tampere
Department of Computer Science
P.O. Box 607

SF-33101 Tampere, Finland

ISBN 951-44-3324-6
ISSN 0783-6910

Language Implementation Model in TaLE

Esa Jarnvall and Kai Koskimies
Department of Computer Science, University of Tampere
Box 607, 33101 Tampere, Finland
email: koskimie@cs.uta.fi

Abstract

TaLE (Tampere Language Editor) is a specialized program editor for developing implementations of
textual languages. The system assumes an object-oriented programming language (currently Eiffel),
and supports the development of language implementations following a particular model. The basic
object-oriented language implementation model, including integrated methods for lexical analysis,
syntactic analysis, name analysis, error recovery, and the construction of an internal (object)
representation is discussed. A central requirement implied by the incremental character of the
system is that the information concerning the language is distributed among the classes representing
structural units of the language (like nonterminals), so that changes in the definition of a particular
unit have minimal effects on the classes representing other units. A general method for solving LL(1)
parsing conflicts using semantic information is included in the model.

1 Introduction

TaLE (Tampere Language Editor) is a new system supporting the editing of classes that take part in
the implementation of a textual language. The intended typical application areas of TaLE are the
implementations and processing of various special-purpose languages; hence TaLE emphasizes user-
interface and software engineering aspects, rather than the properties of a formal metalanguage - in
fact, there is no metalanguage in the traditional sense. We consider TaLE as a program editor
comparable to, say, resource editors used for creating graphical user interfaces. An overview of TaLE
can be found in [JAK93].

TaLE supports the user by offering a graphical, specialized view of the essential classes taking part
in the implementation. The use of an object-oriented language makes it possible to establish a one-
to-one correspondence between the intuitive notions of the source language and the software units;
this is a key requirement for a language implementation system based on the editing paradigm. The
difference between TaLE and a general object-oriented programming environment (say, Smalltalk) is
that TaLE takes automatically care of the uninteresting parts of the software concerning standard
implementation techniques, and hides them from the user. The classes are accessible for the user
indirectly through various high-level, mostly graphical views. The hiding of the uninteresting
parts implies that the non-visible parts associated with a particular language structure are
allowed to depend only on the structure itself; this is essential because otherwise the system should
regenerate (and recompile) the non-visible parts of other classes after the user has edited some
class.

In this paper we present the implementation model implied by these requirements in TaLE. It
should be emphasized that this model is not the same as the language model of TaLE, as seen by the
user of this system (discussed e.g. in [JdK93]); rather, we discuss here how the language model can be
implemented in Eiffel. Most of the aspects considered here are not even visible for the user of TaLE,
and probably not interesting for her. A characteristic feature of the implementation model is that
all the information concerning the source language is distributed among classes representing
particular language structures: for instance, the classes corresponding to a nonterminal contain
statically exactly the information associated with that particular nonterminal, no more, no less.
Since there are no other language-dependent classes in addition to these, the incrementality

2

requirement is satisfied: changing the definition of one nonterminal necessitates the regeneration of
the classes specific to that nonterminal, but no other classes!.

The TaLE implementation model is based on the metaobject-directed LL(1) parsing technique
presented in [KoV92b]. This technique is generalized and improved in TaLE in several ways:

1) keywords, token categories and nonterminals are treated in a uniform manner, allowing
e.g. user-defined token categories;

2) LL(1) parsing is generalized allowing nonterminal symbols as starter symbols used for
resolving look-ahead conflicts;

3) iteration, set, and optional structures are allowed in the syntax;

4) alook-ahead problem implied by the original technique is solved in a general way;

5) a general technique for using name analysis to support parsing is included in the model;
6) asimple but practical error recovery technique is developed.

We concentrate here on these improvements (for a more detailed discussion of the basic ideas of
metaobject-directed parsing, see [KoV92b]).

Related work

Besides [KoV92b], object-oriented language processing has been discussed in several papers recently
(e.g. [CNS87], [Gro90], [Kos91], [Hed92], [Gra92], [AIR92], just to mention few). Our implementation
model is different from these in that we are interested in incremental language implementation
techniques in a framework provided by a general, statically typed object-oriented programming
language - this is a consequence of the TaLE approach in which the user manipulates the actual
implementation classes without a mediating metalanguage. Hence, although the TaLE editor
automatically inserts some "standard" parts of the edited classes, our techniques are sensible in
hand-written language implementations as well as in automated language implementation: the
inserted parts are understandable enough to be written by a human. We do not use any global,
interpreted files (like scanning and parsing tables), but all information and capabilities concerning
the language are distributed among the classes representing individual language structures
(nonterminals, tokens).

A particular requirement in our model is incrementality: each class knows (statically) only the
information directly associated with the language structure in question. This makes it possible to
develop and test a language piecewise one structure at a time. Incremental language implementation
techniques have been investigated (in non-object-oriented environments) by several other authors,
too. In particular, incremental LR or LL parser construction methods have been discussed in [HKR89],
[Hor90], and [Gyi88]. All these works consider incrementality in the context of a metalanguage-
based compiler writing system with table-driven parsers, whereas we use directly an object-oriented
progamming language and techniques in which the parsing code is distributed among the
nonterminal-specific classes. A program-formed incremental LL(1) parser construction technique is
presented in [Kos90]; this technique has been a starting point in [KoV92b] and is therefore a basis of
our work, too.

It should be emphasized that we are interested in "meta-time" incrementality rather than in
"compile-time" incrementality; i.e. we aim at the incremental construction of the language
processor, not at the incremental construction of the programs processed through that processor.
With some exceptions (e.g. Orm [Mag90]), these issues are usually studied separately.

IWe consider here only the standard syntactic and semantic analysis. If the user introduces additional
semantic attributes for a nonterminal, the classes may become interdependent in a way that is assumed to be
controlled by the user.

3

The paper is organized as follows. In the following section we present the basic model as a
simplification and generalization of the model in [KoV92b]. Later sections introduce various
extensions to this skeleton: In Section 3 we introduce a stack-like structure for keeping track of the
expected right context; this is necessary for solving generally a problem arising from a certain "non-
uniqueness” of syntactic atoms in typical languages and from the distributed character of the model:
the parser may in some cases misunderstand the look-ahead symbol and make a wrong move. In
Section 4 we show how the model can be extended with special syntactic structures, namely
iteration, keyword sets, and optionality. In Section 5 we introduce an extension for storing named
static program objects in an object base, and for using the classes of these objects as a resolving criteria
for LL(1) parsing conflicts. This technique results in local backtracking which turns out to be useful in
many practical situations. A simple syntactic error recovery technique is finally integrated with
the model in Section 6. We conclude with some remarks concerning future work.

We assume that the reader is familiar with object-oriented programming. We use Eiffel [Mey88],
but the techniques are in no way tied to this particular language. Except for the error recovery
discussed in Section 6, the presented solutions have been tested in a slightly revised form in Eiffel.

2 The basic model

Object-oriented context-free grammars

Since we aim at an object-oriented implementation model, the application domain (in this case
formal languages) must be viewed in terms of classes. This is done by interpreting each nonterminal
as a class, and by regarding syntactic alternation as the basis of subclass hierarchies (i.e. each
alternative form of a nonterminal gives rise to a subclass of that nonterminal). Consequently,
nonterminals have to be divided into two categories: those that have a set of subclasses (and no
other structural specification), and those that have a single structural specification (and no
subclasses). Following the terminology of TaLE, we call the former conceptual nonterminals and the
latter structural nonterminals. This kind of an object-oriented version of context-free grammars has
been used by many authors, sometimes even without explicit object-orientation (for an overview, see
[Kos91]). To make the distinction between conceptual and structural nonterminals more explicit, we
give the production of a conceptual nonterminal in the form A > B | By | ... | Bk (i.e. Bj, 1<i<k, are
subclasses of A), and the production of a structural nonterminal in the form A -> B B2 ... Bk (i.e. Bj,
1<i<k, are components of A).

Example 1

Consider a CFG given as follows: A ->a B, A->C, B->b, C -> c. This is not an OO-CFG, because A
has two alternative productions that cannot be presented in the form A > B1 | Bp. The grammar can
be transfomed easily into an OO-CFG one by introducing an additional nonterminal: A>D | C,D >
aB, C -> ¢, B -> b. Note that a production of the form A -> B in a conventional grammar can be
interpreted in two ways when viewing the grammar as an OO-CFG (assuming that A has no other
alternatives): it may denote a subclass relation (B is A's subclass) or a structural definition (A
consists of a single B). The choice is fairly arbitrary, but in our notation this choice is anyway made
explicit (A > B or A -> B). (end of example)

Formally, we define an object-oriented context-free grammar (OO-CFG) as a 6-tuple (S,C,T,P,H,Z),
where S is the set of structural nonterminal symbols, C is the set of conceptual nonterminal symbols,
T is the set of terminal symbols, P is the set of productions of the form N->w (NOS, wO(SOCOT)*),
H is the set of hierarchy relations of the form A > B (AOC, BO(SOC)), and ZO(S) is the start
symbol; such that:

1) (SnC=0) (structural and conceptual nonterminals are non-overlapping);

2) AQOS implies (A->w)OP for some w; ((A->w)0OP and (A->w')0P) implies w=w'
(there is exactly one production for each structural nonterminal);

3) A>+A holds for no AOC (no cyclic hierarchies);

4) for each A0(SOCQC): Z=>*uAv=>+w, where u,vO(SOCOT)* and wOT* (no
useless nonterminals).

Here we assumed syntactic derivation => defined as follows: vAu => vwu, if either (A->w)OP or
(w=B and (A>B)0H), where A,BO(SOC), and v,u,wO(SOCOT)*. We use the standard notation R+
for transitive closure and R* for reflexive transitive closure of relation R. The language generated by
an OO-CFG G = (5,C,T,P,H,Z) is L(G) = {wOT* | Z =>+w}. In the following sections we assume that a
language is generated by an OO-CFG.

Above we have generalized the definition given in [KoV92b] by allowing multiple inheritance, i.e.
relations of the form A > B, C > B. Although the above definition does not rule out multiple
inheritance of the same ancestor class through different paths (for instance A>B,C>B,D> A | C),
this situation becomes illegal on the basis of parsing requirements - this kind of grammar is
necessarily syntactically ambiguous.

Metaobject-directed parsing
Our aim is to represent an OO-CFG as a collection of Eiffel classes as follows:

1) there is exactly one class for each nonterminal called the actual nonterminal class; if
A>B then the actual class of B is a subclass of the actual class of A;

2) in addition to the actual class, other auxiliary classes may be given for a nonterminal;

3) in addition to the nonterminal-specific classes, there are language-independent classes
providing general implementation services.

The object representation of an input program i, obtained by instantiating the actual class of the
start symbol, is a collection of the instances of the actual classes corresponding to structural
nonterminals. This collection of objects is constructed as follows. Let ST(i) be the syntax tree of i, as
defined by the OO-CFG. The object representation of i is OR(ST(i)), where OR is defined as:

OR(t) = nil (null object), if root(t) U T;

OR(t) = OR(t"), if root(t) O C and t' is the subtree of t;

OR(t) = inst(actual(root(t)), OR(t1),..., OR(tk)), if root(t) O S and t1,...,tk are the
subtrees of t.

Here root(t) gives the label associated with the root node of tree t, actual(A) gives the actual class
corresponding to nonterminal A, and inst(E, s1,...,5k) gives an instance of class E with attributes
referring to objects sq,..., sk. In other words, the object representation follows the structure of the
syntax tree, except that conceptual nonterminals and terminal symbols are removed (conceptual
nonterminals are represented by ancestor classes of the structural classes)?.

We first note that an instance of an actual nonterminal class is created because a certain pattern has
been recognized in the input program: this pattern signals that a particular actual nonterminal class
should be instantiated. Since we want to distribute the information concerning nonterminals, this
decision must be made in a decentralized way by an actor that is specific to a particular
nonterminal. Hence we conclude that each nonterminal must have an object whose task is to create
instances of the appropriate actual nonterminal class. We call this object the metaobject of the
nonterminal, following the conventional OO terminology (see e.g. [Fer89]); the class of the
metaobject is called a metaclass.

The metaobject of a nonterminal knows all the necessary operations and information required for
creating an instance of the actual nonterminal class on the basis of input text. In particular, the
metaobject has three basic operations, look_ahead , match, and make. look_ahead is a Boolean
function returning true iff the corresponding nonterminal appears to be coming next in the input. This
function is the essence of deterministic parsing, which is our primary aim (although in Section 5 we

2We will use the terms "conceptual” and "structural" freely for classes and metaobjects as well: if a
nonterminal is conceptual (structural), the corresponding actual class or metaobject is likewise called
conceptual (structural).

5

will relax this requirement a bit). Function make is the instantiation operation returning a new
instance of the actual nonterminal class (and parsing the corresponding portion of the input while
doing it).

To understand the meaning of the match operation, recall that only instances of structural
nonterminals are created in the OO-CFG model; conceptual nonterminals are represented only as
superclass layers of those instances. Hence, when it is decided that an occurrence of a particular
conceptual nonterminal appears next in the input text, it is not the class of this nonterminal that
should be instantiated but the class of some structural nonterminal that is a descendant of the former
class. The purpose of match is to select and return the metaobject of that structural class, on the basis
of the current input. This function is called by the make-operation of a conceptual nonterminal class,
to decide and activate the correct metaobject.

In the case of a structural nonterminal the make-operation is implemented simply by calling the
creation operation of the actual class. This operation will in turn ask the metaobjects of the
component nonterminals to create their instances, and in that way analyze the whole input
corresponding to the original structural nonterminal and construct its object representation. In the
case of a conceptual nonterminal the make-function calls the match -function, and asks the returned
metaobject to create the desired instance calling its make-function; that is, make delegates its task
to another metaobject of a structural nonterminal. The overall idea of metaobject-directed analysis
is depicted in Fig. 1.

ol
E Metaclazs E

Clazs &

T ||||{l I ey
:III.IIIM :III.II IIIIIIE -IIIIIIIJIIIIIIIIJ
z Metaclaas = = Metaclams :
z ford = I forE z :Clh=b :
T r 1 H

nunununnnf -..............x:.

' ——
- -~

'd ~~

—

/
IIIIIIIIIII* Instance of
\
\

7/

E
y Crbject re pre sentatiop
Input \\-:ut' the souree text /
handler ~__ 7
|] Houree text
B
boxes arrows and line
EEEEEEEEEEEN cl&ﬂ - USES
i Metaclazs """“"' creates

- delegates
Ohject
........... [iz-ingtance-of

s TTetaohject)
1z-subclass-of

Fig. 1. Simplified structure of the basic implementation model. B is a structural
descendant class of A.

6

The top-level parsing code for a structural nonterminal appears in the creation operation of the
actual nonterminal class; this code resembles the traditional recursive descent code for a particular
alternative production of a nonterminal. The reason for putting this code in the actual class is rather
technical: it is often necessary to examine the attributes of the component structures and set the
attributes of the structural nonterminal itself during its processing (i.e. during syntax analysis), and
these attributes are conveniently accessible only within the actual class. Hence such "semantic"
code, embedded within the parsing code, must be located in the actual classes rather than in the
metaclasses. In general the idea of a metaobject would imply that all the activities associated with
the instantiation of an actual class would be located in the metaclass, and in our case the parsing
actions are certainly such activities. Hence it would be natural to place the parsing code entirely in
metaclasses, but this would make the parse-time semantic processing technically cumbersome.

To be able to function correctly, a metaobject needs to know the starting symbols of the corresponding
nonterminal. It also needs to know which structural metaobject must be activated in the case of each
starter symbol. In addition, the metaobject must know whether the corresponding nonterminal can
produce the empty string, and if so, through which structural metaobject. All this information must
be collected dynamically to avoid dependencies between the metaclasses.

A starter symbol can be in principle any identifiable structure (keyword, token category,
nonterminal) that does not produce the empty string. Since a starter symbol will be the unit which is
subject to backtracking, restricting the set of allowed starter symbols is the means to regulate the
degree of backtracking in our method. We will discuss this later in more detail; so far the reader
may assume that starter symbols are keywords and token categories.

The starter symbol information associated with a metaobject can be represented as a list of
metaobject pairs; in each pair, the first metaobject denotes the starter symbol, and the second
denotes the metaobject of the structural nonterminal (class) that has to be instantiated in the case of
that starter symbol. We name the components of these pairs with starter and struct .In
addition, a Boolean flag eps indicates whether the nonterminal may produce the empty string or
not, and if so, an extra attribute eps_struct gives the metaobject of the structural nonterminal
through which the empty derivation is possible.

Example 2

Consider the following OO-CFG:

Z->S"" A>FIG

S -> "begin" B "end" F->id G

B>SIDIEIA G -> "skip"

D -> "decl" id id -> ...conventional identifier...
E >

The only conceptual nonterminals are A and B. This grammar will give rise to the following
metaobjects and starter symbol lists. Each line describes a metaobject.

name eps/eps_struct starter/struct starter/struct starter/struct starter/struct
Z no/- "begin"/Z

S no/- "begin"/S

B yes/E "begin"/S "decl"/D "skip"/G id/F
D no/- "decl"/D

E yes/E

A no/- "skip"/G id/F

F no/- id/F

G no/- "skip"/G

id no/- id/id

"begin" no/- "begin"/"begin"

"end" no/- "end"/"end"

"decl" no/- "decl"/"decl"

”Skip” no/_ ”Skip”/”skip”

non no/_ n H/H "

(end of example)

Implementation of metaclasses

Assuming that the starter lists have been constructed, the match function can be implemented as
follows: it processes the elements of the starter list one by one, until an element is found whose
starter metaobject returns true when its look_ahead function is called. Intuitively, the
metaobject asks each potential starter: "Are you coming next in the input?" If no starter is found, but
eps is true, the eps_struct metaobject is returned. If no starter is found and eps is false, an error
message is given. If the starter is found, the corresponding struct metaobject is returned as result.

The method is highly independent on the way look_ahead itself is implemented: in principle any
language structure can decide what is sufficient for inferring that this structure is coming next in the
input. In particular, we will normally redefine this operation for each token category. Below we
give a default implementation which simply tries to analyze the whole structure, and if this
analysis succeeds, true is returned. In any case, the original position of the input pointer is restored.
This implementation is of course always valid, but since it implies backtracking it is used only
exceptionally (see below).

We assume that there are additional mechanisms which guarantee that 1) the same metaobject
does not appear twice in the same list as starter component (with the exception discussed in Section
5), 2) at most one of the token metaobjects in a list returns true when being subject to call of
look_ahead, 3) if there are two keyword metaobjects as starter ~ components in a list such that
one keyword is a prefix of the other, then the longer is examined first, and 4) the items with a
keyword metaobject starter are examined before the items with a token metaobject starter

Note that match and look_ahead share a common part implemented below as function screen .

The superclass of all metaclasses, META_NOTIONis given in Eiffel as follows:

deferred class META_NOTION
export make, look_ahead, match, eps, eps_struct, starter_list
inherit
SOURCE;
EXCEPTIONS
feature
starter_list: SLIST[START_ITEM];
eps: BOOLEAN,;
eps_struct: META_NOTION,;

merge(other: META_NOTION) is
local
sl: SLIST;
do
sl.Clone(other.starter_list);
from
sl.start
until sl.offright
loop
starter_list.add(sl.item);
sl.forth
end;
if other.eps then
if eps then
raise("Grammar error")
else
set_eps(other.eps_struct)
end
end
end;

augment(other: META_NOTION) is
local
it: START_ITEM
do
from
other.starter_list.start
until other.starter_list.offright
loop
it.Clone(other.starter_list.item);
it.set_struct(Current);
starter_list.add(it);
other.starter_list.forth
end
end;

add_starter(sta: META_NOTION) is
local
it: START_ITEM
do
it.Create(sta, Current);
starter_list.add(si);
end;

set_eps(m: META_NOTION) is

do
eps:= true;
eps_struct:= m
end;

make: NOTION is deferred end;

screen: META_NOTION is
do
from
starter_list.start
until starter_list.offright or else not Result.Void
loop
if starter_list.item.starter.look_ahead then
Result:= starter_list.item.struct
end;
starter_list.forth
end;
end;

look_ahead: BOOLEAN is

local
temp: NOTION;
failure: BOOLEAN;
do

if failure then Result:= false else
if eps then raise("Grammar error”) else
scan.mark;
temp:= make;
scan.resume;
Result:= true
end
end
rescue
if is_programmer_exception("Syntax error") then
failure:= true;
retry
end
end;

match: META_NOTION is
do
Result:= screen;
if Result.Void and then eps then
Result:= eps_struct
elsif Result.Void then
raise("Syntax error")
end;
end;
end -- META_NOTION

This is a deferred class, meaning that it contains virtual routines (in this case only make) to be
defined in its descendant classes. The purpose of the operations merge and augment will be
explained later. Here SOURCEs a class providing the global source handler object called scan ; in
Eiffel this must be done by defining scan as a once function in SOURCJreating the global object when
called for the first time, and returning this object whenever called thereafter. scan offers various
services needed by the subclasses of META_NOTIONwe will return to these later. EXCEPTIONSIs an
Eiffel library class providing exception handling services (e.g. raise for raising an exception and
is_programmer_exception for checking the name of the current exception). NOTIONis the root
class of all actual nonterminal classes. Void is a general function returning true iff the object
reference it is applied to is nil.

In look_ahead , the backtracking is controlled by two operations of scan : mark stores the current
input pointer in a stack, and resume pops the stack and changes the value of the input pointer
according to the top element. We assume that the entire input is loaded into memory before the
processing begins, allowing free moving of the input pointer. After the input position has been
stored, the make operation is called, yielding the analysis of the corresponding structure. If this
analysis fails, an exception will be raised (within make), and control is passed to the rescue part
where the retry instruction reactivates the operation, returning eventually false. Hence
look_ahead never fails to return a value.

Starter list is implemented by class SLIST. This is a class for list structures inheriting a library
class LINKED_LIST[START_ITEM] , with inherited operations start (set cursor at the beginning of
the list), item (the list item at the cursor position), forth (move the cursor forward), and
offright (is the cursor over the right end?). In addition, SLIST has operation add that inserts a
new item into its right place in the list; this operation takes care of the requirements mentioned
above for a starter list. LINKED_LIST is a generic class parameterized with the item class; in this
case START_ITEMis given simply:

class START_ITEM
export starter, struct, set_struct
feature
starter: META_NOTION;
struct: META_NOTION;
set_struct(str: META_NOTION) is

do
struct:= str
end;
Create(sta,str: META_NOTION) is
do
starter;= sta;
struct:= stu;
end

end -- START_ITEM

The duty of each specific metaclass (i.e. a subclass of META_NOTION is to provide an
implementation for the virtual make function (and at the same time refine the result class), and
redefine - if necessary - the implementation of the look_ahead function. (Actually the default
implementation of look_ahead given by META_NOTIONwill be used only for "real" nonterminals,
never for keywords or token categories.)

10

Metaclass for keywords

Since keywords have trivial content and structure, it is not necessary to introduce a separate
metaclass for each keyword, but the metaobjects of keywords can be created as instances of a class
common to all keywords - note that this is in contrast with nonterminals and tokens having each a
metaclass of their own. The actual keyword string is given as a parameter in the creation operation
of the metaclass for keywords:

class META_KEY

export
repeat META_NOTION, length, rep

inherit
META_NOTION

redefine look_ahead

feature
rep: STRING; -- string representation of the keyword
length: INTEGER,; -- length of the keyword

make: KEYWORD is
do

scan.keyword(rep)
end;

look_ahead: BOOLEAN is
do

Result:= scan.is_next(rep)
end;

Create(r: STRING) is
do
rep:=r;
length:=r.count;
end
end -- META_KEY

Nobody will ever consult the starter list of a keyword metaobject; hence this list need not be even
initialized (although in principle we could put there an item whose both components refer to the
metaobject itself, as in Example 2). Class KEYWORB a dummy (no features) class needed only for
technical reasons. We used here two operations of the scanner: keyword scans the given string in the
input and moves the input pointer accordingly; iS_next returns true iff the current input matches
with the argument string (without moving the input pointer). If the current input does not match
with the argument, keyword emits an error message. Further, the following heuristic rule is
applied in keyword : if the argument string begins with a letter, the string must be followed in the
input by a non-letter, non-digit character (this prevents the analyzer from picking up a prefix of a
word as a separate keyword).

Note that the redefinition of look_ahead in META_KEY works exactly as the default
implementation: the whole structure (in this case the keyword string) is analyzed without moving
the input pointer. Hence the default implementation would also work, but this is a bit simpler.

Metaclasses for token categories
The rest of the metaclasses depend on the structural specification of the nonterminal or token

category in question. As an example of a token metaclass, we could give the metaclass for a
conventional identifier as follows:

11

class META_ID
export
repeat META_NOTION
inherit
META_NOTION
redefine make,
redefine look_ahead
feature
make: ID is
do
Result.Create
end;

look_ahead: BOOLEAN is
do

Result:= scan.next_is_letter
end;

Create is
do
starter_list.Create;
add_starter(Current);
eps:= false
end
end -- META_ID

We made here use of an additional service of scan : next_is_letter returns true iff the current
input character is a letter. Note that for the look-ahead of an identifier a single letter is sufficient -
then a legal identifier can always be found. This demonstrates the freedom we have in
implementing the look-ahead operation. Recall that the token metaobjects are consulted after the
keyword metaobjects in the implementation of match - hence identifier-like keywords are correctly
recognized.

Note that when some structural nonterminal makes use of a keyword, it knows that the component is
indeed a keyword and therefore does not try to find out its "starters”; hence the starter list need not
be built. In contrast, the name of the token category looks exactly the same as any nonterminal name,
and therefore a token category must be treated in the same way as nonterminals by the structural
nonterminal using it. For this reason the starter list of the token category must be constructed,
although it is not used by the look-ahead - it can be used by the starter list construction of other
nonterminals. To achieve the desired effect, a token category metaobject like the one for an
identifier must insert a starter item in which both the starter and the struct components refer to
the metaobject itself.

Similar metaclasses can easily be given for other token categories whose analysis and look-ahead
are defined by special code. In some cases it may be necessary to implement the look-ahead in a very
peculiar way; for instance, to distinguish integer and real constants in the look-ahead, the look-
ahead of a real constant must find the decimal point before it can return true. We make an implicit
assumption that there are never two token metaobjects in the same starter list such that their look-
aheads both return true in a certain input situation - it is the language implementor's duty to make
sure that this holds. To be on the safe side, the look-aheads of all tokens should be unique in every
case.

In Eiffel, the metaobjects are accessed using once functions which create the objects when called for
the first time, and after that simply return the identity of the existing object. This technique
requires an additional class which must be inherited by every class needing access to the metaobject.
Hence, for each token or nonterminal A we define class ACCESS_Aas follows:

12

class ACCESS_A
export metaobj_a
feature
metaobj_a: META A'is
once
Result.Create
end
end -- ACCESS_A

Metaclasses for nonterminals

The form of the metaclass for a nonterminal depends on the kind of the nonterminal. As an example
of a conceptual nonterminal, consider the metaclass for nonterminal B in Example 2:

class META B
export repeat META_NOTION
inherit
META_NOTION;
ACCESS_S;
ACCESS_D;
ACCESS _E;
ACCESS_A
feature
make: B is
do
Result?= match.make
end;
Create is
do
starter_list.Create;
merge(metaobj_s);
merge(metaobj_d);
merge(metaobj_e);
merge(metaobj_a);
end
end -- META_B

Here we used the merge operation: it adds copies of the elements in starter list of the argument
metaobject into the starter list of the current metaobject, taking into account the requirements of
starter lists mentioned previously. Further, it updates the eps -attributes in case the nonterminal of
argument metaobject produces the empty string. See the code in META_NOTIONThe reverse
assigment attempt, denoted "?=", is a type-safe way to assign an object to a variable when the static
class of the left-hand side (here B) is a descendant of the static class of the right-hand side (here
NOTION: a dynamic check guarantees that the assignment is possible (here it always is). Note that
the body of the creation operation consists of a call of merge operation for all the metaobjects of the
subclasses of B. Since B (or META_B must know here its subclasses statically by name, the
introducing of a new subclass of B (or removing an existing one) necessitates the regeneration of
META_Bas well - a fact that is not quite in line with our incrementality requirements but that cannot
be avoided in Eiffel (see [KoV92a]). Nevertheless, changing the definition of some of the subclasses
does not cause regeneration of META_B

For a structural nonterminal, the make function of the metaclass simply calls the creation operation
of the actual nonterminal class, containing in turn the creation of the component structures. For
instance, the metaclass of Z in Example 2 would look like:

class META Z
export
repeat META_NOTION
inherit
META_NOTION;
ACCESS_S
feature

13

make: Z is
do

Result.Create
end;
Create is
local

kw: META_KEY;
do

starter_list.Create;

augment(metaobj_s);

if metaobj_s.eps then
kw.Create(".");
add_starter(kw)

end

end
end

In principle the creation operation "augments" the starter list with the starter lists of the
metaobjects of the items in the pattern of the structural nonterminal from left to right, until an item
that does not produce the empty string appears. The augment operation works otherwise like
merge, but in each added starter element taken from the argument metaobject, the second component
(struct) is changed to refer to the metaobject given as the second parameter (see the code in
META_NOTION If a keyword is encountered, its metaobject has to be constructed here and put in the
starter list; this of course concludes the construction of the starter list because a keyword cannot
produce the empty string. If there is no item that would not produce the empty string, the metaobject
itself concludes that it may produce the empty string, and sets eps using set_eps .

Actual nonterminal classes

What remains is to show how the actual nonterminal classes are constructed. In the case of a
conceptual nonterminal, the actual class is trivial: it contains nothing that is associated with
syntactic analysis. It only needs to inherit its actual superclass(es), if any; if there is no actual
superclass, it inherits NOTION

For a structural nonterminal the actual class is more interesting. It contains the structural attributes
giving the component objects, and the parsing code setting the values of these attributes. For
example, consider the actual class of S in Example 2:

class S
export
repeat NOTION
inherit
NOTION;
SOURCE;
ACCESS B
feature
b_component: B;
Create is
do
scan.keyword("begin");
b_component:= metaobj_b.make;
scan.keyword("end");
end
end

Note that e.g. "scan.keyword("begin") " has exactly the same effect as calling the make
function of the metaobject of "begin" - here it would only be difficult to access that metaobject. We
assume that the structural attributes are suitably named, taking into account possible name clashes.

14

Actual token classes

The actual classes of token categories follow in principle the model of structural nonterminals (i.e.
the creation operation is responsible for syntactic analysis of the structure), but in the case of tokens
the analysis is carried out using more primitive scanning operations, and there are no internal
structure (i.e. no structural attributes). For instance, an actual class could be given for id in Example 2
as follows:

class ID
export
repeat NOTION
inherit
NOTION;
SOURCE;
EXCEPTIONS
feature
is_id_char(c: CHARACTER): BOOLEAN is ... end;
Create is
do
from
if not scan.next_is_letter then
raise("Syntax error")
else
scan.advance
end
until not is_id_char(scan.nextchar)
loop
scan.advance
end
end
end --1ID

Here we have again used some additional services of scan: nextchar returns the character at the
current input position, and advance moves the input pointer forward with one character. An
internal function is used for character classification: is_id_char returns true iff the argument is one
of the characters allowed within this particular identifier type (say, letter, number or underscore).

The processing of an input program is started by calling metaobj_z.make , where Z is the start
symbol of the grammar; this call returns the root object of the internal representation of the whole
input program.

Note that the method is lazy in the sense that metaobjects are created only when they are really
needed for a particular input. For instance, if a programmer uses only a subset of a source language
implemented in this way, only metaobjects of the subset will be created. In conventional terms this
would correspond to a method in which some parts of the scanner and parser are constructed
dynamically, as required by the input program. This feature is important particularly when
analyzing small input programs of a large language: a non-lazy but dynamic metaobject construction
would make the analysis of such input programs slow.

Tokenized nonterminals

Above we have examined token categories whose analysis and look-ahead code is assumed to be
given in a token-specific way. If a language implementation system is supposed to synthesize this
code automatically, it must either know something about the nature of the token category in
question, or allow some general specification method to be used by the language implementor for
expressing the code. We do not want to assume a separate lexical specification method, and
therefore abandon the latter approach. The former approach is applicable as far as "standard"
token categories are concerned, but it should also be possible to use arbitrary token categories that
can act as look-ahead symbols exactly as keywords or fixed token categories.

15

The obvious choice is to allow the user to define the structure of a token category in the same way as
the structure of a structural nonterminal, and produce similar look-ahead and analysis code. The
analysis of such tokens then becomes slightly slower (since they are parsed rather than "scanned"),
but assuming that such token categories are less common this is not a serious drawback. This is also a
way to associate special attributes, operations, or non-standard analysis-time actions with token
categories.

To allow a structural class to act as a token category, we must take care of two things: first, the
starter list of the corresponding metaobject must be constructed in a way that makes the metaobject
"terminal”; second, the analysis of the input belonging to the token must be done in a special mode
that prohibits the scanning of interleaving spaces. The latter requirement is easy: we can assume
special operations of scan , say token_mode and parse_mode , which switch the mode of the
scanner. To satisfy the first requirement, the starter list of the metaobject should contain a single
item in which both components refer to the metaobject itself, and eps must be false. The default
implementation of look_ahead is valid for such metaobjects: this means that during the look-
ahead the whole token is analyzed (in contrast to e.g. META_ID). Note that the using metaobjects
are not allowed to know (statically) if a particular metaobject represents a token category or not.

As an example, suppose that we "tokenize" the structural nonterminal Z whose metaclass was given
previously. The "tokenized" metaclass looks like follows:

class META_Z_tokenized

export
repeat META_NOTION
inherit
META_NOTION;
ACCESS_ S
feature
make: Z is
do

scan.token_mode;
Result.Create;
scan.parse_mode;

end;

Create is

do
starter_list.Create;
add_starter(Current);

end

end -- META_Z_tokenized

If tokenized structural nonterminals can be nested, the mode switching operations must be
implemented using an integer counter: each token_mode increments the counter and each parse_mode
decrements the counter; the mode is token_mode as long as the counter is positive. Note that the
possible parse-time semantic actions will be executed even if the look-ahead of a tokenized
nonterminal fails; hence the language implementer should take care that such actions have no
global effects.

Optimizations

There are several sources of inefficiency in the simplified model discussed above. First, to match the
starter keywords with the current input, the metaobject should more explicitly know the string
representations of the starter keywords, in a form convenient for comparing the keywords efficiently
with input. This can be arranged e.g. by maintaining the keywords in a separate list, hashed
according to the first character. In this way it is sufficient to examine only those keywords that
have the same hash address as the next input character - usually this set of keywords contains only
one element, namely the keyword that is indeed coming next.

Second, the method contains a lot of rescanning. The most obvious is the analysis of starter
keywords: the look-ahead operation of a keyword actually scans the keyword (when a nonterminal
metaobject is consulting its starter list), although it does not move the input pointer, and later the

16

call of scan.keyword (re)scans the keyword and moves the pointer. This can be avoided by noting
that whenever the look-ahead operation of an item succeeds during the processing of a starter list,
this item will indeed be analyzed next, be it a keyword or a token. Hence, if a keyword item in a
starter list succeeds in its look-ahead, the scanner should be informed that for the next activation of
the scan.keyword operation it is sufficient only to move the input pointer forward by the length of
the argument keyword, without actually analyzing the input.

Third, another type of rescanning occurs when two or more metaobjects of conceptual nonterminals
examine the same input symbol for deciding the appropriate structural metaobject. Consider a
grammar A ->B..,B>C | ..,,C->D..,,D>E | .., E->"e". Assume that the input is "e". The call of
metaobj_a.make leads to the call of metaobj_b.make , which in turn lets the match operation
select the appropriate structural metaobject. This is done by comparing current input with B's starter
keywords "e", etc. Since "e" matches, the metaobject of C gets control, and its make operation is
activated. This will call the creation operation of C's actual class, where metaobj_d.make is in
turn called. D's metaobject uses its match operation to compare current input with its starters. Again,
"e" matches, and control is passed to the metaobject of E. Finally, this metaobject calls the creation
operation of E's actual class where "e" is truly scanned by call scan.keyword("e") . Hence in this
case "e" would be examined two times even if the optimization discussed above is implemented.
This situation is probably less frequent, but some improvement might be achieved by eliminating
the rescanning here, too. This could be done by carrying more information with the starter items. In
this example the starter item "e" associated with the metaobject of C should indicate which is the
nonterminal (metaobject) that caused this starter; i.e. it should have an additional pointer to the
metaobject of D. Since this item is directly copied into the starter list of B, this information would
be present already for the metaobject of B when it selects the structural nonterminal to be
instantiated. When doing this, it could therefore inform the metaobject of D that the next time it
gets control, it can directly pass control to the metaobject associated with "e" (i.e. E), without
examining the input. Since this technique implies some overhead, it is not clear what would be the

actual advantage; this should be investigated in practical experiments.

Deterministic vs. backtracking analysis

Basically we want to offer deterministic analysis: this is important for efficiency and for allowing
sensible parse-time semantic actions. However, we also want to offer easy ways to circumvent the
restrictions of deterministic analysis locally, and in that way solve parsing conflicts either
manually or automatically. Above we already employed this for implementing arbitrary user-
defined token categories acting as look-ahead symbols; in Section 5 we use this for name-analysis
based look-ahead. Here we briefly discuss the relations our techniques have with general
backtracking parsing.

As demonstrated above in the case of "tokenized" nonterminals, the technique allows any
nonterminal to be used as a starter symbol, as long as the nonterminal does not produce the empty
string. This could be generalized (assuming that no nonterminal produces the empty string): we could
construct the starter list of a structural metaobject always as a single item in which both the
starter and the struct components refer to the metaobject itself. Using the default
implementation of look_ahead , the metaobject of a conceptual nonterminal would then try to
analyze the leading structures of each alternative until one is found whose analysis succeeds. The
structural metaobject responsible for this alternative would then get control, performing the actual
parsing.

This technique implies backtracking, although not quite in the same sense as in the usual top-down
backtracking parser. Hence this technique is not applicable to all context-free grammars - as general
backtracking parsers - but to "generalized" LL(1) grammars in which it is required that (the
grammar is given in the OO-CFG form and) for each structural choice of a nonterminal, there is a
starter structure of the choice which does not produce empty and which produces a unique terminal
string with respect to the starter structures of other choices. We leave the question about the general
usefulness (and about the precise characterization) of this new grammar class open, but it seems
certainly useful to apply this idea locally, and in that way fix the limitations of LL(1) parsing in
the case of some problematic structures.

17

Example 3
As a simple example of a possible way to make use of local backtracking, consider the grammar

Z>X1Y
X->A"a"
Y->B"b"
A _> D Haﬂ
B _> D Hb”
D _> Hd”

The grammar accepts two sentences, "d a a" and "d b b". A conventional LL(1) parser cannot handle
this, because both choices begin with "d". However, if A and B are treated in the way described
above, the conflict will be resolved: in the starter list of Z, the metaobject of A is the starter
component yielding X, and B is the starter component yielding Y. When the look-ahead operation is
executed on the metaobject of A, A will actually be parsed (assuming that the look-ahead is
implemented as above), including the second input symbol. If this symbol is "a", the parse succeeds,
and the input is analyzed as X. If the parse fails, the process is repeated for the second item in the
starter list, which will succeed (if the input is correct); hence the input is parsed as Y.

3 Solving a look-ahead problem with work list

The problem

A central feature of the method presented above is localized scanning: there is no global scanner in
the traditional sense but information about lexical atoms is distributed: each nonterminal
(metaobject) knows the lexical atoms that can start the nonterminal; those lexical atoms which do
not start a nonterminal appear only as actual parameters in the call of scan.keyword . This kind of
distributed analysis causes a particular problem.

First note that if a metaobject decides that none of its starter symbols matches with the current
input, the fact that it does not know all the atoms of the language does not matter - the decision is
correct anyway. If it makes a positive decision, however, the situation is more complex. In the
absence of global information about all the atoms of the language, this decision is guaranteed to be
correct only if the lexical atoms are unique in the sense that at most one atom of the language
matches with any given input situation3.

Unfortunately, this condition is not satisfied in typical languages. In particular, there are three
kinds of conflicts which create problems in this respect: 1) one keyword may be a prefix of another,
2) an instance of a token category (e.g. integer constant) may be a prefix of an instance of another
token category (e.g. real constant), and 3) identifiers and keywords may have the same structure. In
conventional language implementations these conflicts are solved using two basic rules: a keyword is
always preferred to a token, and a longer match is preferred to a shorter one.

Our requirement is that the analyzer must handle all correct input programs correctly, and reject all
incorrect input programs. With respect to this requirement, a metaobject can make a mistake when
finding a match in its starter list, if a) it represents a nonterminal which can produce the empty
string, and b) it confuses one of its starter symbols with the legal followers of the nonterminal in one
of the three ways listed above. If so, the metaobject can make the false assumption - in the case of
correct input - that there is a non-empty instance of the nonterminal, and proceed accordingly. Since
in fact there was an empty instance, the analyzer will fail to analyze the input correctly. Note that
if a nonterminal cannot produce the empty string, it cannot confuse its starters with its followers in
the case of a correct input. If it does so in the case of incorrect input, the worst that can happen is a
misleading error message.

3in fact, a slightly weaker condition would guarantee the correctness, but we will not discuss this in detail.

18

Example 4
Consider the grammar:

Z ->"#"'Ss"m="
S>B I E
B->""

E->

Suppose the input is "# :=" (that is, S produces empty here). The problem is that the metaobject of S
has no knowledge of the keyword ":="; hence when it sees that the next input character is ":" it
assumes that it has found a match in its starter list, and gives control to B. Since the remaining input

n_mn

is "=", it cannot anymore analyze the rest of the input correctly, and reports an error (something like

:= expected").
Example 5

Consider the grammar

Z _> ”b" S He"

S>B I E

B ->id (conventional identifier)
E >

Suppose the input is "b e" (again S becomes empty). The metaobject of S recognizes identifier as a

starter symbol, but has no knowledge of the keyword "e". Hence, when seeing "e" in the input it
assumes there is an identifier, and decides that a non-empty S has been used - a fatal mistake.

(end of examples)
Presentation of right context: work list

The general idea to solve this problem is to maintain information about the right context of a
nonterminal instance in the form of a work list. This is a list of metaobjects representing
nonterminals that will be instantiated in the future, but that so far have not been seen. In top-down
deterministic parsing this information is always known, although in conventional techniques it is
not explicitly constructed.

The work list is constructed in a stack-like fashion as follows: Initially the metaobject of the start
symbol is pushed into the list. Each time a structural nonterminal instance is created, the top
element is replaced by the metaobjects of the right-hand side of the nonterminal, pushed in the
reverse order. Hence the top elements in the stack indicate what is to be expected next in the input.
The look-ahead problem can be solved using the work list as follows: if a metaobject decides that a
non-empty alternative of a nonterminal that can produce empty must be taken, it consults the work
list before accepting this decision. This is done simply by applying the look-ahead operation to
each element of the work list from top to bottom, until a metaobject that does not allow empty
derivation is encountered, or until a metaobject whose look-ahead overrides the original decision is
encountered. If none of the look-aheads succeeds, the original decision holds. If a look-ahead on an
element in the list succeeds, it competes with the original decision using the following rules:

1) a keyword always wins a token;
2) a longer keyword wins a shorter keyword.

To apply rule 2), the analyzer must know the lengths of the keywords and store them in the
corresponding metaobjects. We will ignore the case in which a token competes with another token
because it would imply the actual parsing of the tokens (to find out their lengths) - although this
would be possible, we consider this kind of conflict so rare that is not worth the trouble. Hence we
rely on the language implementer in that the look-ahead operations are sufficiently uniquely
defined for token categories.

19

Note that this technique does not corrupt the lazyness of the analysis: the metaobjects that are
pushed into the work list would be created anyway, although a bit later. The only additional object
that has to be created is the work list object itself. Nevertheless, there is some overhead due to the
maintaining of the list and particularly to the additional look-ahead operations applied to the
list elements. In normal languages we expect this overhead to be relatively small, because
maintaining a stack-like list is rather cheap, the additional look-ahead is required only for
nonterminals producing the empty string, and a non-empty nonterminal is likely to appear quickly in
the work list.

Implementation of work list

The class of the work list is defined as a subclass of a general list as follows:

class WORK_LIST
export
repeat LINKED_LIST, check_followers
inherit
LINKED_LIST[META_NOTION]
feature
wins(m1, m2: META_NOTION): BOOLEAN is
local
k1, k2: META_KEY
do
k1?=m1; k2?=m2;
if not k1.Void then
if not k2.Void then
Result:= k1.length > k2.length

else
Result:= true
end
else
Result:= false
end

end; --wins

check_followers(orig: META_NOTION): BOOLEAN is
-- Walk through the work list until a winner or metaobject with
-- eps = false is encountered. A token or keyword metaobject t
-- is a winner if wins(t,orig); a nonterminal metaobject n is a
-- winner if wins(s,orig) for some starter metaobject in n's
-- starter list. If a winner is found from the worklist, return
-- true, otherwise false.
end; -- check_followers
end -- WORK_LIST

As usual in Eiffel, the global work list object is accessed using a once function given by an additional
class:

class RIGHT _CONTEXT
export
worklist
feature
worklist: WORK_LIST is
once
Result.Create
end
end -- RIGHT _CONTEXT

The metaclass definition has to be revised accordingly:

deferred class META_NOTION
export make, look_ahead, match, eps, eps_struct, starter_list

20

inherit
SOURCE;
EXCEPTIONS;
RIGHT_CONTEXT
feature

screen: META_NOTION is
do
from
starter_list.start
until starter_list.offright or else not Result.Void
loop
if starter_list.item.starter.look_ahead
and then (not eps or else
not worklist.check_followers(starter_list.item.starter))

then
Result:= starter_list.item.starter.struct
end;
starter_list.forth
end;

end; -- screen
end -- META_NOTION

The nonterminal-specific classes have to be revised as well. The task of updating the work list is
given to the metaobjects of structural nonterminals. For instance, the metaclass of Z in Example 2
becomes:

class META_Z
export
repeat META_NOTION
inherit
META_NOTION;
ACCESS_S
feature
metal: META_KEY is
once
Result.Create(".")
end;
make: Z is
do
worklist.remove;
worklist.put(metal);
worklist.put(metaobj_s);
Result.Create
end;
Create is
local
si: START_ITEM;
do
starter_list.Create;
augment(metaobj_s);
if metaobj_s.eps then
si.Create(metal, Current);
starter_list.add(si);
end
end
end

That is, before giving control to the creation operation of the actual structural class, the make
operation removes the top element (corresponding to Z) and inserts the metaobjects for the
components of Z, in the reverse order. Note that the metaobject of keyword "." must be stored in the
metaobject of Z since it must be put into the work list every time Z is entered; previously this was not
necessary because such metaobjects were needed only for constructing the starter list. The metaobject
is conveniently created by a once-function when it is needed for the first time.

21

Here we have used two additional operations on lists: remove deletes the list item at the cursor
position, and put inserts a new item at the cursor position. Since the cursor position remains all the
time (except for the execution of check_followers) at the left end of the list, the list behaves
dynamically like a stack.

In the case of a keyword, the make operation must also remove the top element of the work list (i.e.
the keyword), without adding anything;:

class META_KEY

make: KEYWORD is
do
worklist.remove;
scan.keyword(rep)
end;

end -- META_KEY

Similarly, the make operations of the metaclasses of token categories must remove the top element
without adding anything (e.g. META_ID above).

The actual classes of structural nonterminals have to be revised, too. Since the metaobjects of the
component structures can be found at the top of the work list, it is not necessary to inherit the
identities of these metaobjects from the access classes - in this way the actual classes become more
independent of the metaclasses. However, since the dynamic classes of the metaobjects in the work
list are not known, we must use the inverse assignment attemp ("?=") instead of usual assignment -
but note that the system guarantees that the class check never fails. The actual class of S in
Example 2 becomes (we assume NOTIONinherits RIGHT_CONTEX)E

class S
export
repeat NOTION
inherit
NOTION;
SOURCE
feature
b_component: B;
Create is
local
dummy: NOTION;
do
dummy:= worklist.item.make; -- "begin”
b_component?= worklist.item.make; -- B
dummy:= worklist.item.make; --"end"
end
end

Since the keyword objects are not needed for the internal representation, the results returned by
their metaobjects are stored in a dummy variable.

The metaclasses or the actual classes of conceptual nonterminals are not changed.

4 Iteration, set, and optional structures

In practice it is rather cumbersome to give the syntax of a language using simple sequences of
nonterminals and keywords as structural specifications. In typical languages a source program
consists of various lists, like lists of statements, declarations, parameters etc. Although a list
structure can be described using recursive nonterminals, the description becomes unnecessarily

22

complicated. For this reason usual syntactic definition formalisms introduce some notation for
iterative structures. In a system like TaLE lists are more or less obligatory facilities in practice.

Other special structural notations are also often useful. We will here show how the method can be
easily extended to implement various list structures, optional structures, and set structures. An
optional structure is one which can produce empty in addition to its actual definition. A set structure
is a structural nonterminal whose structure is defined as a set of alternative keywords. Lists,
optional structures, and sets are similar in that they introduce unnamed substructures that affect
only the analysis of the structural nonterminal using them. This gives a hint to implement them: we
create a local metaobject that represents the unnamed substructure. It is natural to create this
metaobject when creating the host metaobject for the structural nonterminal, and store the
metaobject in an attribute of the host metaobject. Then the unnamed substructure can be treated in
exactly the same way as "normal” named structures. This demonstrates that the metaobject-directed
analysis is rather flexible, because the operations of particular special metaclasses can be easily
redefined without affecting the basic analysis principles.

List structures

In the TaLE interface, syntactic specifications are given in a graphical form containing special icons
for lists, but here we use a simple textual notation: List(A,S) denotes a list of A's, separated by S's
(i.e. A or ASA or ASASA or ...), where A and S can be any nonterminals, tokens or keywords.
Opt(List(A,S)) denotes a possibly empty list.

Because a list introduced by a list notation is unnamed, it is not expected that semantic actions would
be associated with it; a list is merely a syntactic convention. The operations that can be applied to
such a list are supposed to be standard, built-in list operations (like a conceptual execution of the
standard evaluation operation of all the list elements). In TaLE, there is a separate predefined
class LIST which should not be confused with the list notation - the user may define (named)
subclasses for LIST by giving certain semantic actions to be carried out during the processing the list,
and by specifying the element and separator classes, and in that way obtain specialized list classes.
An unnamed list notation, in contrast, is not a specialized subclass but only a simple list
"parameterized" with the element and separator classes. The implementation model reflects this: a
list notation is implemented using a standard metaclass and actual class; the creation operation of
the metaclass has parameters indicating the element metaobject, the separator metaobject, and a
Boolean flag indicating whether the list can be empty or not.

The standard metaclass for list notation with a nonempty separator structure is given as follows:

class META_ITERATION[T->NOTION]
export
repeat META_NOTION
inherit
META_NOTION;
EXCEPTIONS
feature
-- iterated structure:
body_meta: META_NOTION;
-- separator structure:
sep_meta: META_NOTION;

make: ITERATION[T] is

local

elem: T;

sep: NOTION;
do

worklist.remove;
Result.Create;
if look_ahead then
from
worklist.put(body_meta);
elem?= body_meta.make;

23

Result.add_left(elem);
until not sep_meta.look_ahead
loop

worklist.put(sep_meta);

sep:= sep_meta.make;
worklist.put(body_meta);
elem?= body_meta.make;

Result.add_left(elem);
end

elsif not eps then
raise("Syntax_error")
end;
end;

Create(opt: BOOLEAN; body: META_NOTION;
sep: META_NOTION) is
do
body meta:= body;
sep_meta:= sep;
eps:= opt;
starter_list.Create;
augment(body);
if body.eps then
augment(sep);
end;
if sep.eps then
raise("Grammar_error")
end;
if (opt and then body.eps) then
raise("Grammar_error")
elsif opt or else body.eps then
set_eps(Current)
end;
end;
end -- META_ITERATION

Because a list has a certain predefined structure, the make operation must take explicit control over
the work list: before starting the analysis of each list element it inserts the metaobject of the
element into the work list. After that the make operation of the element is called, which in turn
replaces this metaobject by the metaobjects of its component structures. If the separator structure
appears next in the input, its metaobject is put into the worklist and control is given to its make
operation, after which the same is done for the metaobject of the element structure.

The creation operation constructs the starter list in the usual way. If the element structure may
produce empty, the starter symbols include also the starters of the separator structure. For
simplicity we make the assumption that the separator structure cannot be empty (otherwise we
could not control the loop using the look-ahead of the separator).

The actual class of an iteration is simply a list that can appear as an actual class, that is:

class ITERATION[T->NOTION]
export
repeat NOTION, repeat LINKED_LIST
inherit
NOTION;
LINKED_LISTI[T]
feature
... some standard list operations ...
end -- ITERATION

If a list is given as optional (possibly empty), the object returned by the make operation of
META_ITERATIONcan be an empty list, but never Void .

24

The metaclass for a list without a separator structure is given in a similar way; we do not give it
here.

A list metaobject is created by (the metaobject of) every structural nonterminal using the list
notation in its syntactic specification. For instance, suppose we have A -> B Opt(List(C,D))
List(E,",") ".". The metaclass of A is given as follows:

class META A
-- A = B Opt(List(C,D)) List(E,",") "."
export
repeat META_NOTION
inherit
META_NOTION
redefine make;
ACCESS_B;
ACCESS_C;
ACCESS D
feature
-- local metaobjects:
metal: META_ITERATIONIC] is -- Opt(List(C,D)
once
Result.Create(true,metaobj_c,metaobj_d)
end;
meta2: META_KEY is -
once
Result.Create(",")
end;
meta3: META_ITERATIONIE] is -- List(E,",")
once
Result.Create(false,metaobj_e,meta2)
end:
metad: META_KEY is -
once
Result.Create(".")
end;
make: A is
do
worklist.remove;
worklist.put(meta4);
worklist.put(meta3);
worklist.put(metal);
worklist.put(metaobj_b);
Result.Create;
end;
Create is
do
starters.Create(my_class);
augment(metaobj_b);
if metaobj_b.eps then
augment(metal);
augment(meta3);
if meta3.eps then
add_starter(metad)
end;
end;
end;
end -- META_A

The actual class of A treats the list notation as any other substructure: since all the metaobjects of
the substructures are taken from the work list, it does not matter whether they are named or not. The
creation operation of the actual class looks like:

25

Create is

local
dummy: NOTION

do
b_component?= worklist.item.make;
c_list?= worklist.item.make;
e_list?= worklist.item.make;
dummy:= worklist.item.make

end

where c_list and e_list are structural attributes defined by class A. The names of these
attributes may have to be made unique e.g. by suitable numbering; we do not discuss this problem
here.

Set structures

A set is defined as a structure producing one of the alternative keywords; we use here the textual
notation "{... alternative keywords ...}", e.g. given S -> A {",",";"} B, S can be of the form A "," Bor A
";" B. A set structure is understood to have only syntactic significance, and (in contrast to lists) it
will not be stored in the internal representation of the program. As for lists, in TaLE there is a
predefined class for set structures (SET) that should not be confused with unnamed sets; named
specialized set classes can be thus created as subclasses of this class. Each such subclass has its own

metaclass in the usual way, whereas the unnamed set classes have the following common metaclass:

class META_SET
export
repeat META_NOTION
inherit
META_NOTION
feature
make: KEYWORD is
do
worklist.remove;
from
starter_list.start
until not Result.Void or else offright
loop
if starter_list.item.starter.look_ahead then
worklist.put(starter_list.item.starter);
Result:= starter_list.item.starter.make
end;
starter_list.forth
end
end;
Create is
do
starter_list.Create
end
end

The idea is simply to go through the starter list containing all the elements of the sets; if the look-
ahead of one of the elements succeeds, the corresponding keyword metaobject is pushed into
worklist, and its make operation is called. Recall that KEYWORR only a technical dummy class. No
actual class is needed for a set. In contrast to the usual case, the starter list must be effectively
constructed in the metaclass of the nonterminal making use of the set notation (because the elements
are known there, and it is difficult to pass them as parameters of the creation operation). For

"o

instance, consider nonterminal A with specification A -> B {";",":"}. The metaclass of A is given:

class META A
export
repeat META_NOTION
inherit

26

META_NOTION
redefine make;

ACCESS_B

feature

metal: META SET is

once
Result.Create

end;

make: A is

do
worklist.remove;
worklist.put(metal);
worklist.put(metaobj_b);
Result.Create;

end;

Create is

local
kw: META_KEY

do
starter_list.Create;
kw.Create(";");
metal.add_starter(kw);
kw.Create(":");
metal.add_starter(kw);
augment(metaobj_b);
if metaobj_b.eps then

augment(metal)

end

end

end

In the actual class of A the set notation is treated as any other substructure; i.e. its metaobject is
obtained from the work list and called to analyze the set element. The resulting actual object is a
dummy one that need not be stored permanently.

Optional structures

An optional structure is helpful in many practical situations, and conventional syntactic formalisms
usually include some notation supporting it. As for lists and sets, TaLE provides a special graphical
symbol for an optional structure; here we denote optionality by Opt(A), where A is some other single
named or unnamed structure: Opt(A) denotes a structure that is either empty or equal to A. A is not
allowed to produce empty itself (because then there would be two ways to produce the empty string,
which would make the specification ambiguous).

We use the same strategy as before: for each occurrence of the optionality notation in the structural
specifications, a metaobject is created by the metaobject of the structural nonterminal using this
facility. The metaobject of the unnamed optional structure is an instance of a general metaclass for
optional structures given as follows:

class META_OPT[T->NOTION]
export
repeat META_NOTION
inherit
META_NOTION
redefine make
feature
body: META_NOTION;
make: T is
do
if look_ahead then
Result?= body.make
else
worklist.remove

27

end

end;

Create(b: META_NOTION) is

do
body:= b;
starter_list.Create;
augment(body);
set_eps(Current)

end

end

If the optional structure produces empty, make returns Void. There is no actual class for an optional
structure because the result class of make is the class of the nonempty choice. Again an optional
substructure is treated in the creation operation of an actual structural class in the same way as other
substructures: the result returned by the make operation is stored in an attribute whose type is the
class the nonempty choice.

5 Name analysis directed parsing
Principles

An essential part of language processing is the management and analysis of various entities named
statically in the source program, like variables, constants, types, subroutines etc. Usually this part
of analysis is implemented using symbol tables containing descriptors of all the static entities of the
input program. Sometimes a symbol table is also used to support parsing: a parsing conflict can be
solved using information found from the descriptors in the symbol table. This is a rather important
feature particularly if the parsing method is somewhat restrictive, like the recursive descent
method.

Perhaps the most typical case is a situation in which the parser has to make a choice between two
alternative structures both beginning with an identifier. Since a normal recursive descent parser
cannot make this decision on a purely syntactic basis, practical language processors consult the
symbol table to find out the kind of the entity associated with the identifier appearing in the input.
Usually this information is enough to make the decision. A concrete example is e.g. the analysis of
assignment statements and procedure calls: since both are statements beginning with an identifier, a
recursive descent parser runs into a conflict. The conflict can be solved using the symbol table, because
an assignment begins with a variable identifier while a procedure call begins with a procedure
identifier.

Our object-oriented implementation model offers a particularly amenable basis for developing a
general technique both for maintaining "descriptors" of named entities (i.e. a symbol table) and for
using this information to support parsing. This is due to the fact the objects needed for these
extensions mostly already exist - we only need to reorganize them a bit. Further, the information
needed by the parser is also naturally present in those objects: it is the dynamic class of the objects.
We make the following basic decisions:

1) The named objects to be stored are some instances of actual nonterminal classes, belonging
to the internal object representation of the program. We postulate that these objects are
exactly those objects which inherit a predefined class NAMEDA string-valued attribute
key of NAMEDgives the name of the object. The collection of named objects is called the
object base.

2) The named objects are collected into disjoint sets associated with certain instances of
actual nonterminal classes, namely with those instances inheriting a predefined class
SCOPEA named object becomes a member in the set associated with the nearest ancestor
SCOPBobject (with respect to the tree structure of the internal program representation).

28

3) The analyzer can use the (dynamic) classes of the named objects as additional information
to support the solving of parsing conflicts. Only those named objects that correspond to
structures preceding the conflict point are taken into account.

4) Any occurrence of nonterminal or token category in the pattern of a structural nonterminal
can be associated with a qualifier, the corresponding instance of the actual class of such
nonterminal or token category is called a denoter object. A qualifier is the name of some
descendant class of NAMEDIf a nonterminal or token category symbol has a qualifier, it
matches with the input text only if it matches syntactically and there is a named object (a
resolving object) in the object base whose name is the same as the value of a dedicated
attribute (denoted_name) of the denoter object, and whose dynamic class is a descendant
of the qualifier.

The last point implies that qualifiers can be used to distinguish between two syntactic alternatives
beginning in the same way, as long as there is a named object in the object base such that 1) its name
is known to the denoter object, and 2) its (dynamic) class is sufficient information to resolve the
conflict. This is a generalization of the usual case in which two alternative structures both begin
with an identifier denoting different things: we do not demand that the qualification is associated
only with an identifier but it can be associated with any structure - even with a nonterminal -, and
we do not assume that the name of the resolving object is directly given by the source text, but it can
be freely defined by the denoter object. The former generalization is a direct consequence of the
incrementality requirement of TaLE: a structural nonterminal using some named substructure in its
pattern cannot make specific assumptions about the nature of the substructure (e.g. that it denotes an
identifier); the pattern must be valid even if the definition of the substructure is completely
changed. The latter generalization is in turn a consequence of the first one: in the case of a qualified
nonterminal it is unlikely that the name of the associated object would be the whole text generated
by the nonterminal, but the name can be determined in an arbitrary way.

We use here the following textual notation for qualification: [Q]JA denotes A qualified with Q. The
fact that B inherits N is shown by notation BN; we use this for indicating the inheriting of NAMED
and SCOPE

Example 7
As a simple example of the use of qualification, consider the grammar:

Z->DU""
D>AIB
A ->"a"id
B ->"b" id
U>VIW
V ->id "a"
W ->id "b"

We require that in V the identifier must have appeared in A, and in W the identifier must have
appeared in B; i.e. the following sentences are legal: "a x x a", "b x x b"; but the following are not: "a
x x b", "a x y a". This analysis problem falls beyond the range of context-free parsing, but it can be
solved easily with qualification:

Zscope>D U ™"
Dnaves> A | B

A ->"a"id (key := ... string of id ...)

B->"b"id (key := ... string of id ...)

U>VIW

V -> [A]id "a" (denoted_name := ... string of id ...)
W -> [B]id "b" (denoted_name := ... string of id ...)

The necessary attribute assignments for the named objects (above) and for the denoter objects (below)
are shown on the right. This example is a rough abstraction of the usual parsing conflict arising from
two kinds of statements both beginning with an identifier.

29

(end of example)

Although motivated primarily by incrementality, the generalizations discussed above are actually
useful for implementing certain features in programming languages. An example is the conventional
dot notation which can move the critical identifier beyond the reach of the syntactic look-ahead.
For instance, assume that both an assignment and a procedure call can begin with "x.y.z...". Hence it
is not the leading identifier that determines the kind of the statement, but the last one (variable or
procedure) which can appear arbitrarily far in the input text. In our method the whole identifier
sequence can be qualified, assuming that the last identifier determines the value of the denoted
attribute, and that the correct object can be found from the object base. The following example
illustrates this.

Example 8

Variableyamep—> Identifier ":" Type
Procedurenamep> "PROC" Identifier ...

Assigment -> [Variable]Denoter ":=" Expression
Call -> [Procedure]Denoter ActualParamPart
Denoter -> List(Identifier,".")

(end of example)

Revisions of language-independent classes

Let us now consider the required new classes and revisions of the existing ones. Since any class can be
qualified, the name of the resolving object must be given as an attribute of NOTION we also need an
attribute identifying the resolving object directly (denoted_obj), an operation setting this
attribute (set_denoted), a function returning the portion of the source text corresponding to this
object (source_text), and a function associating the current object with a named object found in the
object base with the same name, given a qualifier (attach); the latter simply calls a function (with
the same identifier) provided by the object base.

class NOTION
export

inherit
NAMED_OBJECTS
feature
denoted_name: STRING;
denoted_obj: NAMED;
set_denoted(d: NAMED) is

do

denoted_obj:=d
end;
source_text: STRING is
do

Result:= ... the source text corresponding to this instance ...
end;
attach(qua: META_NOTION): BOOLEAN is
do

Result:= objectbase.attach(Current,qua)
end;

The collection of named objects is organized as a tree of SCOPEobjects, each associated with a set of
NAMEDobjects. It should be emphasized that the NAMEDand SCOPEobjects are the same objects
appearing in the internal representation of the input program - the tree actually contains only
references to these objects. We assume that one of the SCOPEobjects in the tree is current at any one
time. This global tree is accessible in the usual way through a once function:

30

class NAMED_OBJECTS

export objectbase

feature
objectbase: OBJECT_BASE is
once

Result.Create

end

end

Class OBJECT_BASEHS given below. Since the exact implementation of the operations look_up and
insert in this class may depend (and therefore will be redefined) on the language to be
implemented, we will explain them only informally*.

class OBJECT_BASE
export
look _up, insert, attach,
enter_scope, exit_scope
inherit
COMPACT_TREE[SCOPE];
EXCEPTIONS
feature
look _up(obj_name: STRING): NAMED is
-- return the named object whose key attribute equals to
-- obj_name; if none exists, return Void
end;

attach(arg_obj: NOTION; qualifier: META_NOTION): BOOLEAN is
local
n: NAMED
do
n:= look_up(arg_obj.denoted_name);
if not n.Void then
if not n.creator.compatible(qualifier) then
Result:= false
else
arg_obj.set_denoted(n);
Result:= true;
end;
end;
end; -- attach

insert(x: NAMED): BOOLEAN is

-- insert x into the current scope of the object base;

-- if an object with the same name already exists in the
-- scope, return false, otherwise true
end;

enter_scope(s: SCOPE) is

do
-- insert a new scope node s into the object base as the
-- son of the current scope, and let the new scope
-- be the current scope

end;

exit_scope is

do
-- let the parent node of the current scope be the new
-- current scope

end;

4In fact, it would be likely sensible to define a somewhat richer collection of operations for OBJECT_BASE
allowing the implementation of various non-trivial scope rules; we are here contented with simple lookup and
insert routines, and scope entrance and exit routines. The implementation of non-trivial scope rules falls
beyond the subject of this paper.

31

end -- OBJECT_BASE

Function attach makes the association with the denoter object and the corresponding named object,
using function look_up to locate the named object in the object base. If the association is successful,
the function returns true, otherwise false. The function makes use of a new function compatible
defined for all metaobjects; this function returns true iff the actual class of the nonterminal
represented by the current metaobject (executing the function) is a descendant of the actual class of
the nonterminal represented by the metaobject given as parameter.

Class NAMEDdefines the string-valued key attribute. Further, to allow the checking of class
compatibility, a named object must know the metaobject that created it: this metaobject represents
the dynamic class of the named object. The creating metaobject is given by attribute creator
Operations are needed for setting creator and for inserting the object into object base:

class NAMED
export key, creator, set_creator
inherit
NAMED_OBJECTS;
ERROR_MSG
feature
key: STRING;
creator: META_NOTION;
set_creator(m: META_NOTION) is
do
creator:=m
end;
insert is
do
if key.Void then
error("Naming error")
elsif not objectbase.insert(Current) then
error("Naming error")
end
end;
end -- NAMED

Class SCOPHlefines an attribute (obj_set) that gives the associated set of named objects. Further,
the class defines scope operations, namely the operations for entering and exiting a scope; these are
implemented directly using the corresponding operations of OBJECT_BASE

class SCOPE
export obj_set, enter_scope, exit_scope
inherit
NAMED_OBJECTS
feature
obj_set: OBJECT_SET;
enter_scope is
do
object_base.enter_scope(Current);
end;
exit_scope is
do
object_base.exit_scope;
end;
end -- SCOPE

Class OBJECT_SETdescribes a set of named objects associarted with the scope. It defines operations
for inserting a new object into the set, and for finding an object with a given name in the set; these
operations are employed by the lookup and insert operations of class OBJECT_BASEThe class is
implemented as a hashed structure; we will not present this class here in detail.

32

We also have to revise the structure of the starter lists by introducing an additional component in
each starter item; this component gives the qualifier (metaobject) of the associated starter symbol,
if any. Hence, we have:

class START_ITEM
export starter, struct, set_struct, qualifier
feature
starter: META_NOTION;
struct: META_NOTION;

qualifier: META_NOTION; — <
set_struct(str: META_NOTION) is
do

struct:= str
end;
Create(sta,str,qua: META_NOTION) is
do

starter:= sta;

struct:= stu;

gualifier:= qua - <
end

end -- START_ITEM

Class META_NOTIOMeeds some revisions, too. Function compatible has to be defined as a deferred
routine, to be defined separately by each actual metaclass (see below). The make operation has to
be augmented with a parameter giving the possible qualifier (as a metaobject): note that in
different contexts the same structure symbol may be associated with different qualifiers or with no
qualifier at all. Finally, the implementation of the screen operation has to changed; this is
actually the core of the technique:

deferred class META_NOTION
export
make, look _ahead, match, eps, eps_struct, starter_list,
compatible

];éature
compatible(other: META_NOTION): BOOLEAN is deferred end:
'r.riake(qua: META_NOTION): NOTION is deferred end;

screen: META_NOTION is
local
candidate: START_ITEM
do
from
if not failure then
starter_list.start

else
starter_list.forth
end
until starter_list.offright or else not Result.Void
loop

candidate:= starter_list.item;
if candidate.starter.look_ahead then
if candidate.qualifier.Void then
Result:= candidate.struct
else
scan.mark;
temp:= candidate.starter.make(candidate.qualifier);
scan.resume;
if not temp.Void then
Result:= candidate.struct;
end
end
end;

33

starter_list.forth
end;
rescue
failure:= true;
scan.resume;
retry
end; -- screen

add_starter(sta, qua: META_NOTION) is
local
it: START_ITEM
do
it.Create(sta,Current,qua);
starter_list.add(it)
end; -- add_starter

end -- META NOTION

The new implementation of screen operation needs some explanations. If there are no qualified
items in the starter list, the operation works exactly as before. However, if a starter item is
qualified and its look-ahead succeeds, the starter item has to be actually parsed so that the name
analysis can be made. Hence in that case we call the make operation of the starter metaobject (in
the case of an identifier starter, which is presumably the usual case, this means that the identifier
is scanned). If the parse was successful and the corresponding object was found in the object base, the
resulting instance is stored in temp . If the parse succeeds but there is no corresponding metaobject,
temp becomes Void, the state of the input pointer is restored, and the processing of the starter list
continues. If the parse fails, an exception is raised within make, and the exception is caught by the
rescue clause where the input pointer is again restored so that the processing of the starter list may
continue. Note that in all cases the screen operation does not change the state of the input pointer.
Also note that the calls of screen may be recursively nested, but for a particular call of screen, mark
and resume are always called pairwise, guaranteeing that the desired state of the input pointer is
obtained.

Revision of language-dependent classes

The basic machinery for implementing name analysis and name-dependent syntactic analysis is now
completed; the remaining task is to revise the language-specific classes so that they make use of
this machinery. We retain the principle that the duty of a metaobject is to take care of all the
preparatory actions associated with the creation of an instance belonging to the internal
representation of the input program. These actions include the maintaining of the object base; hence
the metaclass construction for individual nonterminals must be revised

In the creation operation of a metaclass, the starter list is constructed as before, but qualified
symbols are treated as primitive symbols: they cause a single starter item like keywords. For
simplicity, we assume here that qualified structures cannot be empty; hence the search for possible
starter symbols need not proceed behind a qualified symbol. Actually we could easily relax this
requirement, but since it seems that qualified structures producing empty are extremely rare in
practice, we do not consider this restriction essential.

The metaclass of a conceptual nonterminal remains the same; recall that the role of a conceptual
metaobject is merely to dispatch the call for a make operation to the appropriate structural
metaobject. The qualifier parameter must be added:

make(qua: META_NOTION): A is
do

Result?= match.make(qua)
end;

Each metaclass must also provide an implementation for compatible . For nonterminal A, the
metaclass META_Ais given as follows:

34

compatible(other: META_NOTION): BOOLEAN is
do
Result:= other = Current or else
metaobj_al.compatible(other) or else

.rﬁ.etaobj_ak.compatible(other)
end

where Al, ..., Ak are those immediate superclasses of A that are descendants of NAMED

A structural metaclass depends on whether the actual nonterminal class inherits NAMEr SCOPEIf
it inherits neither of them, the make and creation operations are slightly revised. For an example of
the effect of qualification, consider the metaclass for A -> [C]B D:

class META_A
export
repeat META_NOTION
inherit
META_NOTION;
ACCESS_B;
ACCESS_C;
ACCESS_D
feature
make(qua: META_NOTION): A is
do
worklist.remove;
worklist.put(metaobj_d);
worklist.put(metaobj_b);
Result.Create;
if not qua.Void then
if not Result.attach(qua) then
error("Naming error");
Result.Forget
end
end
end;
Create is
local
si: START_ITEM
do
starter_list.Create;
add_starter(metaobj_b,metaobj_c);
end
end

Note that D is not consulted for finding new starters, the qualified B terminates the process as if it
were a keyword. The actual class of A would be as follows:

class A
export
repeat ...
inherit

feature
b_component: B;
d_component: D;
Create is
do
b_component?= worklist.item.make(metaobj_c);
d_component?= worklist.item.make(nil);
end
end --A

Here nil is assumed to denote the null reference (surprisingly, in Eiffel 2.3 there is no such explicit
value, but nil can be realized e.g. as an uninitialized attribute).

35

For a structural descendant class of NAMEDthe metaobject must insert the object into the object base,
and set the value of its creator attribute; this can be done immediately after creating the object.
The value of the key attribute of the named object is assumed to be set previously during the
processing of the named structure.

make(qua: META_NOTION): N is
do

Result.Create;
Result.set_creator(Current);
Result.insert;
if not qua.Void then
if not Result.attach(qua) then
error("Naming error");
Result.Forget
end
end
end;

For a structural descendant class of SCOPE the metaobject must take care of exiting the scope after
processing the scope structure. However, the entering operation cannot be executed by the metaobject
because the operation should be done prior to processing the structure, and the scope object does not
exist before calling the Create operation. Hence this operation must be called as the first statement
in the creation operation of the actual class, where the scope object is available as the current object.

Optimizations

The name analysis technique presented above contains an obvious source of inefficiency: each object
base look-up that originates from a qualified item appearing as a starter symbol is performed at
least twice, once for look-ahead and once for actual parsing. In some cases the object base look-up
may have to be repeated even more than once. For instance, consider the nonterminals A>B | C, B ->
D..,D>E | F, E -> [FIG In the starter list of A, [F]G is first used to distinguish between B and C,
consulting the object base. If B is selected, control is given to the metaobject of D which again consults
the object base. Finally, during the parsing of E, [F]G is eventually analyzed, and the object base is
consulted for the third time. Although this is perhaps not a typical case in practical languages, the
backtracking included in the use of the object base implies a significant potential overhead.

Using the optimization technique discussed in Section 2, the repeating of the object base look-up can
be reduced to one (i.e., successive look-aheads need not re-examine the starter list). The remaining
problem is how to eliminate the reparsing (including the object base look-up) during actual parsing
phase, when this analysis has already been carried out during the look-ahead phase. We can do
this e.g. as follows: each metaobject saves a reference to the actual nonterminal instance it has
created last. Whenever a qualified item is preparsed successfully during look-ahead, the
corresponding metaobject is "passivated" by setting a flag attribute. If a metaobject receives a
request to create an actual nonterminal instance through make in the passive state, it (resets the flag
and) returns the instance created last, without performing any further analysis.

There is also "horizontal" reprocessing involved in the method: if a starter list contains occurrences
of the same starter item but with different qualifiers (say, a variable identifier and a procedure
identifier), the starter item may be processed several times and the same key may be used for
several object base look-ups, depending on the order in which the starter list is processed. Note that
above we discussed how a successful object base look-up need not be repeated, but here the problem is
that even though a perfect match is not found for a qualified item, its syntactic form may
nevertheless be already analyzed, and the corresponding object base element may have been found
(albeit with a wrong qualifier). These are analysis results that should be retained if possible. We
will not discuss the necessary techniques here in more detail.

36

6 Error recovery

Syntactic error recovery has lost some of its significance as a result of development in programming
languages and programming techniques. This is mainly due to the fact that compiled program units
(modules, classes) have become smaller and smaller; typically, a separately compiled unit includes
less than a hundred lines of code. The situation was essentially different, say, fifteen years ago
when programs of tens of thousands of lines were compiled in a single batch: then error recovery was
an absolute necessity for reducing the number of compilation cycles.

Since the nature of the languages implemented through TaLE is not known, we want to include at
least a simple error recovery technique in the produced language processors. The particular problem
in our case is that in our distributed model a) the follower symbols are not explicitly known, and b)
the complete set of terminal symbols is not explicitly known. Since this information is used by the
traditional methods, we have to either collect this information dynamically or use some non-
traditional method. In contrast to the original plan [JKP91], we have decided to take the latter
approach: collecting the necessary information at run-time seems to be overly complicated and time-
consuming, with respect to the significance of error recovery.

We aim at a simple, heuristic technique that works reasonably well in the majority of practical
cases. The basic principle is that after an error the processing continues from the next major syntactic
unit that is probably not affected by the error.

We make the assumption that major syntactic units are elements of lists. This is rather obvious; in
fact it is very difficult to define a sensible language without using the list structure. In most
languages programs consist of lists of major structures. Since the elements of lists are syntactically
independent, a promising strategy is to discard the current (erroneous) list element, and skip the
input until the beginning of the next element in the current list structure (or until the end of the list,
if there is no next element). If the list element is sizable, some later errors may remain undetected,
but this can anyway happen in all methods.

The remaining problem is how to find the next element in the list. Since our analyzer has no
knowledge of the complete set of terminal symbols, it is difficult to skip the input in a controlled
way to find a particular starter symbol: there will probably be many symbols in between that are
completely unknown even to the metaobjects in the worklist. For instance, if a list element starts
with an identifier, the analyzer can easily confuse it with a keyword of an unknown structure.
However, a suitable landmark is provided by the separator structure: usually it consists of a single,
unique special symbol (like a semicolon) that is easy to recognize in the input. Even if the separator
structure allows several keywords (e.g. a set structure), the recognition is relatively safe. Only if
the separator structure can begin with an identifier, or there is no separator structure at all, the
finding of the next list element becomes problematic. Rather than trying to develop sophisticated
techniques handling these cases as well, we use a keyword separator as a basis of the method, and
apologize for less brilliant recovery in some (hopefully rare) cases.

Since error recovery is associated with lists in our method, most of the required activities will be on
the responsibility of the metaobject for an iteration. We revise class META_ITERATIONas follows:

class META_ITERATION[T->NOTION]

feature
-- iterated structure:
body_meta: META_NOTION;
-- separator structure:
sep_meta: META_NOTION;

make: ITERATION[T] is

local
elem: T;
sep: NOTION;

failure: BOOLEAN;
wl_mark: INTEGER,;
do

37

if not finish then
if not failure then
worklist.remove;
wl_mark:= worklist. mark;
Result.Create;
end;
if look_ahead then
from
worklist.put(body_meta);
elem?=body_meta.make;
Result.add_left(elem);
until not sep_meta.look_ahead
loop
worklist.put(sep_meta);
sep:= sep_meta.make;
worklist.put(body_meta);
elem?=body_meta.make;
Result.add_left(elem);
end
elsif not eps then
raise("Syntax_error")
end
end
rescue
if is_programmer_exception("Syntax error") then
failure:= true;
finish:= scan.skip(sep_meta);
worklist.resume(wl_mark);
retry
end
end;

end -- META_ITERATION

Here we used two additional operations of the work list: we assume that the cursor position of the
current "top" element is returned by mark, and that resume restores the top cursor position given as
parameter (thereby removing elements "above" the given point). The new skip function of the
scanner moves the input pointer forward until the look-ahead operation of the separator metaobject
returns true, or until a follower of the list structure (given by the worklist) is encountered in the
input. In the former case skip returns false and moves the input pointer over the separator symbol,
in the latter case the next input item will be the follower symbol and true is returned. If neither a
separator nor a follower symbol is found, skip will read the input until the end of file, raise another
exception ("Input error”), and return true.

7 Concluding remarks

A basic motivation of this research has been to study the applicability of object-oriented techniques
in language implementation: although there are many object-oriented language implementation
systems, the models for implementation expressed at the level of a general OO programming
language are less known. Since such models can be used both in hand-written and automated
language implementation, they are perhaps even more significant than individual language
implementation systems.

Our work demonstrates that object-oriented techniques are well suited to language implementation.
In particular, the following advantages of using OO techniques could be observed:

1) OO techniques make it possible to distribute the knowledge of the source language in
independent classes representing the natural units of the language. In this way a
language implementation can be developed incrementally, which is a clear advantage
both in hand-written and automated implementation.

38

2) OO techniques allow a simple, unified model of language processing. This is due to the
fact that all entities are treated basically in the same way as objects. The model is
intuitively clear because it is structured according to the high-level concepts of the source
language rather than according to certain implementation-oriented concerns like
scanning, parsing, semantic analysis etc.

3) A nonterminal can have a natural run-time representation, namely a metaobject. In this
way a nonterminal, with all its capabilities and information, can be freely manipulated
as data, stored in various data structures, and activated to provide services like look-
ahead or analysis. The same metaobject can thus serve many purposes.

4) We have made extensive use of the concept of a once function in Eiffel. This feature has
turned out to be surprisingly useful for expressing lazy parser construction and other
activities that must be postponed until really needed.

5) Dynamic binding makes it possible to specialize operations associated with nonterminals
in a very flexible way, without sacrificing the unified, general model. The basic model is
essentially centered around two operations, one for look-ahead and one for analysis, and
the basic model is highly insensitive to the way these operations are implemented for
individual nonterminals. This property was particularly useful for obtaining restricted
backtracking which was essential for a general technique for integrating name analysis
and parsing.

6) The internal (object) representation of the source program is directly implied by the
nonterminal classes, and is a natural by-product of analysis. This representation is more
abstract than a conventional parse tree because the chain productions originating from
syntatic alternation are eliminated. The objects in the internal representation are
hierarchically classified, and they can be naturally associated with various operations
to perform semantic processing (like interpretation or translation).

An obvious topic for future research is the optimization of the techniques presented here. In
particular, the metaobject-directed parsing method contains many sources of inefficiency in its basic
form. Since the use of an object-oriented language in itself implies certain run-time over-head, it is
difficult to estimate how near to the conventional efficiency we can get. Nevertheless, it seems that
inefficiency will remain to be the main (albeit in many cases not very serious) drawback of using an
object-oriented model in language implementation. Current work concentrates on experiments for
measuring the time consumption of the proposed language analysis techniques, and for developing
various optimizations of the basic method.

Acknowledgements

This work is supported by the Academy of Finland through grant 1061120.

References

[AIR92] Alpert S.R., Rosson M.B.: ParCE: An Object-Oriented Approach to Context-Free Parsing.
Comput. Syst. Sci. Eng. 7, 2 (April 1992), 136-144.

[CNS87] Christ-Neumann M.-L., Schmidt H.-W.: ASDL - An Object-Oriented Specification
Language for Syntax-Directed Environments. In: Proc. of ESEC '87, LNCS 289, Springer-
Verlag 1987, 71-79.

[Fer89] Ferber J.: Computational Reflection in Class based Object-Oriented Languages. In: Proc.
of OOPSLA ‘89, Sigplan Notices 24,10 (Oct. 1989), 317-326.

[Gra92] Graver J.O.: The Evolution of an Object-Oriented Compiler Framework. Software
Practice & Experience 22, 7 (July 1992), 519-535.

[Gro90] Grosch J.: Object-Oriented Attribute Grammars. In: Proc. 5th International Symposium
on Computer and Information Sciences (ISCIS V), A.E. Harmanci, E. Gelenbe (eds.),
Cappadocia, Nevsehir, Turkey, 1990, 807-816.

[Gyis8]

[Hed92]

[HKRS9]

[Hor90]
[JaK93]

[JKP91]

[Kos90]

[Kos91]

[KoV92a]

[Kov92b]

[Mag90]

[Mey88]

39

Gyimoéthy T., Horvath T., Kocsis F., Toczki J.: Incremental Algorithms in PROF-LP. In:
Proc. of Workshop on Compiler-Compilers, Lecture Notes in Computer Science 371,
Springer-Verlag 1989, 93-102.

Hedin G.: Incremental Semantic Analysis. Ph. D. thesis, Department of Computer
Science, Lund University, March 1992.

Heering J., Klint P., Rekers J.G.: Incremental Generation of Parsers. In: Proc. of ACM
Sigplan '89 Conference on Programming Language Design and Implementation, Portland,
Oregon, 1989. ACM Sigplan Notices 24,7 (1989), 179-191.

Horspool R.N.: Incremental Generation of LR Parsers. Journal of Computer Languages,
15, 4 (1990), 205-223.

Jarnvall E., Koskimies K.: Object-Oriented Language Engineering: The TaLE Approach.
Unpublished manuscript, 1993.

Jarnvall E,. Koskimies K., Paakki J.: The Design of Tampere Language Editor (TaLE).
Report A-1991-10, Department of Computer Science, University of Tampere, Finland,
1991.

Koskimies K.: Lazy Recursive Descent Parsing for Modular Language Implementation.
Software Practice & Experience 20,8 (August 1990), 749-772.

Koskimies K.: Object-Orientation in Attribute Grammars. In: Proc. of SAGA Summer
School on Attribute Grammars and their Applications, June 1991. Lecture Notes in
Computer Science 545, Springer-Verlag, 1991, 297-329.

Koskimies K., Vihavainen].: The Problem of Unexpected Subclasses. Journal of Object-
Oriented Programming, October 1992, 25-31.

Koskimies K., Vihavainen J.: Incremental Parser Comnstruction with Metaobjects.
Report A-1992-5, Department of Computer Science, University of Tampere, November
1992,

Magnusson B., Bengtsson M., Dahlin L.-O., Fries G., Gustavsson A., Hedin G., Minér S.,
Oscarsson D., Taube M.: An Overview of the Mjolner/Orm Environment: Incremental
Language and Software Development. Report LU-CS-TR:90:57, Department of Computer
Science, Lund University, 1990. Also in Proc. of TOOLS '90, Paris 1990.

Meyer B.: Object-Oriented Software Construction. Prentice-Hall 1988.

