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Abstract 

Automatic synthesis of software architecture has already been shown to be feasible 
with genetic algorithms. A natural problem is to augment – if not replace – genetic 
algorithms with some other search methods in the process of searching good archi-
tectures. The present paper studies the possibilities of using simulated annealing for 
synthesizing software architecture. We start from functional requirements which 
form a null architecture and consider three quality attributes, modifiability, efficiency 
and complexity. Synthesis is performed by adding design patterns and architecture 
styles; the end result being a software architecture which corresponds to the quality 
attributes. It is concluded that simulated annealing as such does not produce good ar-
chitectures, but it is useful for speeding up the evolution process by quickly fine-
tuning a base solution achieved with a genetic algorithm. 

 
Keywords: search-based software engineering, simulated annealing, software design 
 
1. Introduction 
 
The ultimate goal of software engineering is to be able to automatically produce software sys-
tems based on their requirements. For the time being, we pass the synthesis of executable pro-
grams, and concentrate on the automated derivation of architectural designs of software systems. 
This is possible because architectural design largely means the application of known standard 
solutions in a combination that optimizes the quality properties (like modifiability and effi-
ciency) of the software system. These standard solutions are well documented as architectural 
styles [33] and design patterns [10].  
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Genetic algorithms (GAs) [20] are shown to be a feasible method for producing software ar-
chitectures from functional requirements [25, 26, 27, 30]. However, experiments with asexual 
reproduction [28] would suggest that the crossover operator which an essential part of GAs 
might not be critical for producing good architectures, which would support the idea of using a 
simpler search method. It is then natural to ask if other search methods are capable of producing 
equally good architectures alone or in co-operation with genetic algorithms. The purpose of the 
present paper is to study the possibilities of simulated annealing in the process of searching good 
architectures when functional requirements are given. 

Contrary to GAs, simulated annealing (SA) is a local search method which intensively uses 
the concept of neighborhood, i.e., the set of possible solutions that are near to the current solu-
tion. The neighborhood is defined via transformations that change an element of the search space 
(here, software architecture) to another. In our application the transformations mean implement-
ing a design pattern or an architectural style. 

While GA is already shown to produce reasonable software architectures, it is of great interest 
to study whether SA is capable to do the same, as it explores the search space in a completely 
different way than GA. An affirmative answer would, of course, give us a new competitive prac-
tical method for producing software architectures. But at the same time, it would be a further 
confirmation for the thesis, that software engineering in general – and especially software archi-
tecture design – is fundamentally a combinatorial search problem. 

As with our GA approach, we begin with the functional requirements of a given system. 
These contain the operations defining the functional entities in the system, the relationships be-
tween them, and a null architecture, giving a rough structure for the system. The actual architec-
ture is achieved by the SA algorithm, which gradually transforms the system by adding (and re-
moving) design patterns and applying architecture styles. The resulting architecture is evaluated 
from three (contradicting) viewpoints: modifiability, efficiency and complexity. The result is 
given as a UML class diagram, which depicts the produced architecture for the given system, 
and contains all the patterns and other design choices made by the algorithm. 

This paper proceeds as follows. In Section 2 we sketch current research in the field of search 
algorithms in software design that is relevant for the present paper. In Section 3 we cover the ba-
sics of implementing a SA algorithm. In Section 4 we introduce our method by defining the input 
for the SA algorithm, the transformations and the evaluation function. In Section 5 we present 
the results from our experiments, as we examine different parameters for the SA and combining 
SA with our GA implementation. In Section 6 we discuss the findings and in Section 7 we give a 
conclusion of our results. 

 
2. Related Work 
 
Search-based software engineering (SBSE) considers software related topics as combinatorial 
search problems. Traditionally, testing has been the clearly most studied area inside SBSE [12]. 
Other well studied areas include software clustering and refactoring [9, 12, 24]. Using meta-
heuristic algorithms in the area of software design, and in particular at software architecture de-
sign, is quite a novel idea. Only a few studies have been published where the algorithm actually 
attempts to design something new, rather than re-designing an existing software system. Howev-
er, approaches dealing with higher level structural units, such as patterns, have recently gained 
more interest. We will briefly discuss the studies with closest relation to our approach.  



 

Amoui et al. [2] use the GA approach to improve the reusability of software by applying ar-
chitecture design patterns to a UML model. The authors’ goal is to find the best sequence of 
transformations, i.e., pattern implementations. Used patterns come from the collection presented 
by Gamma et al. [10]. From the software design perspective, the transformed designs of the best 
chromosomes are evolved so that abstract packages become more abstract and concrete packages 
in turn become more concrete. This approach only uses one quality factor (reusability), and also 
a more refined starting point than what is used in our approach. 

Bowman et al. [7] study the use of a multi-objective genetic algorithm (MOGA) in solving the 
class responsibility assignment problem. The objective is to optimize the class structure of a sys-
tem through the placement of methods and attributes within given constraints. So far they do not 
demonstrate assigning methods and attributes “from scratch” (based on, e.g., use cases), but try 
to find out whether the presented MOGA can fix the structure if it has been modified.  

Simons and Parmee [34, 35] take use cases as the starting point for system specification. Data 
is assigned to attributes and actions to methods, and a set of uses is defined between the two sets. 
The notion of a class is used to group methods and attributes. Each class must contain at least 
one attribute and at least one method. Design solutions are encoded directly into an object-
oriented programming language.  

Räihä et al. [25] have taken the design of software architecture a step further than Simons and 
Parmee [34, 35] by starting the design from a responsibility dependency graph. The dependency 
graph can also be achieved from use cases, but the architecture is developed further than the 
class distribution of actions and data. A GA is used for the automation of design. In this solution, 
each responsibility is represented by a supergene and a chromosome is a collection of super-
genes. The supergene contains information regarding the responsibility, such as dependencies of 
other responsibilities, and evaluated parameters such as execution time and variability. Muta-
tions are implemented as adding or removing an architectural design pattern [10] or an interface 
or splitting or joining class(es).  Implemented design patterns are Façade and Strategy, as well as 
the message dispatcher architecture style [33]. 

Räihä et al. [30] have also applied GAs in model transformations that can be understood as 
pattern-based refinements. In MDA (Model Driven Architecture), such transformations can be 
exploited for deriving a Platform Independent Model from a Computationally Independent Mod-
el. The approach uses design patterns as the basis of mutations and exploits various quality me-
trics for deriving a fitness function. They give a genetic representation of models and propose 
transformations for them. The results suggest that GAs provide a feasible vehicle for model 
transformations, leading to convergent and reasonably fast transformation process. In their recent 
studies, Räihä et al. [26] have added scenarios, which are common in real world architecture 
evaluations, to evaluate the fitness of their synthesized architectures. 

Jensen and Cheng [14] present an approach based on genetic programming for generating re-
factoring strategies that introduce design patterns. The authors have implemented a tool, RE-
MODEL, which takes as input a UML class diagram representing the system under design. The 
system is refactored by applying “mini-transformations”. The encoding is made in tree form 
(suitable for GP), where each node is a transformation. A sequence of mini-transformations can 
produce a design pattern; a subset of the patterns specified by Gamma et al. [10] is used to iden-
tify desirable mini-transformation sequences. Mutations are applied by simply changing one 
node (transformation), and crossover is applied as exchanging sub-trees. The QMOOD [4] me-
trics suite is used for fitness calculations. In addition to the QMOOD metrics, the authors also 



 

give a penalty based on the number of used mini-transformations and reward the existence of 
(any) design patterns. The output consists of a refactored software design as well as the set of 
steps to transform the original design into the refactored design. This way the refactoring can be 
done either automatically or manually; this decision is left for the software engineer. This ap-
proach is very close to those of Räihä et al. and the approach used here, the difference being that 
Jensen and Cheng have clearly a refactoring point of view, while we attempt upstream synthesis. 

A higher level approach is studied by Aleti et al. [1], who use AADL models as a basis, and at-
tempt to optimize the architecture with respect to Data Transfer Reliability and Communication 
Overhead. They use a GA and a Pareto optimal fitness function in their ArcheOptrix tool, but they 
concentrate on the optimal deployment of software components to a given hardware platform ra-
ther than how the components are actually constructed and how they communicate with one 
another.  

Research has also been made on identifying concept boundaries and thus automating software 
comprehension [11] and re-packaging software [5], which can be seen as finding working sub-
sets of an existing architecture. These approaches are, however, already pushing the boundaries 
of the concept “software architecture design”. As for different aspects on GAs, the role of cros-
sover operations in genetic synthesis of software architectures is studied by Räihä et al. [27, 28].  

SA has been used in the field of search-based software engineering for software refactoring 
[21, 22, 23] and quality prediction [6]. O’Keeffe and Ó Cinnéide [21, 22, 23] work on the class 
level and use SA to refactor the class hierarchy and move methods in order to increase the quali-
ty of software. Their goal is to minimize unused, duplicated and rejected methods and unused 
classes, and to maximize abstract classes. The algorithm operates with pure source code, and the 
outcome is given as refactored code as well as a design improvement report. This approach is the 
closest to the one presented here, but it operates on a lower level and backwards (re-
engineering), while our approach operates on a higher level architecture and goes forwards in the 
design process. Similar studies (class level refactoring) have also been made by Seng et al. [31, 
32], who use GA as their search algorithm and Harman and Tratt [13], who use hill climbing.  

In the area of quality prediction, Bouktif et al. [6] attempt to reuse and adapt quality predic-
tive models, each of which is viewed as a set of expertise parts. The search then aims to find the 
best subset of expertise parts, which forms a model with an optimal predictive accuracy. The 
studies using SA are few, and none use this algorithm for such a high-level design problem as 
designing software architecture from requirements.   

 
3. Simulated Annealing 
 
Simulated annealing is a widely used optimization method for hard combinatorial problems. 
Principles behind the method were originally proposed by Metropolis et al. [18] and later Kirk-
patrick et al. [16] generalized the idea for combinatorial optimization.   

The SA algorithm starts from an initial solution which is enhanced during the annealing 
process by searching and selecting other solutions from the neighborhood of the current solution. 
There are several parameters that guide the annealing. The search begins with initial temperature 
t0 and ends when the temperature t is decreased to the frozen temperature tf, where 0 ≤ tf ≤ t0. The 
temperature gives the probability of choosing solutions that are worse than the current solution. 
The result of a transformation that worsens the current solution by δ, is accepted to be the new 
current solution if a randomly generated real i is less than or equal to a limit which depends on 



 

the current temperature t. If a transformation improves the current solution, it is accepted directly 
without a test.  

 
Algorithm 1 simulatedAnnealing 

Input:   
Responsibility dependency graph G, null architecture M, initial temperature t0,  
frozen temperature tf, cooling ratio α , and temperature constant r  
Output: UML class diagram D; 
 initialSolution ← encode(G ,M)  
initialQuality ← evaluate(initialSolution)  
 S1 ← initialSolution 
 Q1 ← initialQuality 
 t ← t0 

while t > tf do 
 ri ← 0 
 while ri < r  do 
  Si ← transform(S1) 
  Qi ← evaluate(Si) 
  if Qi > Q1 

   S1 ← Si 

   Q1 ← Qi 

  else 
   δ ← Q1- Qi 

   p ← UnifomProbability 

   if p < e-δ /t  
    S1 ← Si 

    Q1 ← Qi 

   end if 
  end if 
  ri ← ri + 1 
 end while 
 t ← α *t 
end while 
D ← generateUML(S1) 
return D 

 



 

An important parameter of SA is the cooling schedule, i.e., how the temperature is decreased. 
We use the geometric cooling schedule, in which a constant  r is used to determine when the 
temperature is decreased, and the next temperature is obtained simply by multiplying the current 
temperature by cooling ratio α (0 < α < 1). This is the most frequently used schedule [36]. It was 
chosen because of its simplicity, and because of the fact that all the classical cooling schedules 
can be tuned so that they give the same practical temperatures [36]. 

The SA has been successfully applied for numerous combinatorial optimization problems, for 
an instructive introduction to the use of SA as a tool for experimental algorithmics, see [3, 15]. 
In order to determine good parameters for a problem, experimental analysis is often needed. 
There are also adaptive techniques for detecting the parameters [17]. 

The SA implementation used in our tests is shown in Algorithm 1. In Section 5 we compare 
the present SA and our previous GA implementation [25]. In order to be able to fairly compare 
the implementations, the solutions produced by the two methods should be evaluated by the 
same quality functions and the initial solutions should be of the same quality. Hence, we use the 
same method for producing the initial solutions for SA as we have done with GA in [25, 26, 30]. 
The initial solution is achieved by encoding functional requirements and thus building a base ar-
chitecture. The base class structure is derived from the null architecture, and the base architec-
ture is achieved by randomly applying a transformation. The same approach for creating several 
solutions for an initial population is used in our GA implementation [25, 26, 30], and thus the 
initial quality is the same for both SA and GA, as they both use the same evaluation function. 

 

4. Method 
 
We begin by creating use cases to define the basic functional requirements. The use cases can be 
refined into sequence diagrams, where in turn operations and classes can be elicited. This results 
in a null architecture, giving a structural view of the functional requirements of the system at 
hand but not dealing with the quality requirements.  The null architecture is encoded to a form 
that can be processed by the search algorithm in question. The algorithm produces software ar-
chitecture for the given quality requirements by implementing selected architecture styles and 
design patterns, and produces a UML class diagram as the result. 

 
4.1. Requirements 
 
We will use two example systems: the control system for a computerized home, called hereafter 
ehome, and a robot war game simulator, called robo. We will demonstrate building input for the 
search algorithm in the case of ehome; building input is similar in the case of robo.  

Use cases for the ehome system are assumed to consist of, e.g., logging in, changing the room 
temperature, changing the unit of temperature, making coffee, moving drapes, and playing mu-
sic. In Figure 1, the coffee making use case has been refined into a sequence diagram.  

 



 

 
Fig. 1 Make coffee  use case refined 

The use case begins with a message from the user to begin the process of making coffee. We 
will not consider the technical details of the user interface component here, but simply assume 
that it receives a command  which may be composed of a series of subcommands (such as here, 
making coffee requires the user to define a series of properties regarding the amount and quality 
of coffee). As all functionalities related to the process of making coffee cannot be included in the 
user interface component, we realize that a CoffeeMachine object (component) is needed. The 
UI thus relays a message to the CoffeeMachine that the coffee machine should be turned on, and 
then goes on to giving other relevant information. After all data is gathered, we notice that the 
coffee machine is not capable of producing coffee on its own: it needs to be connected to a water 
source. Thus, the WaterManager component is created, and the CoffeeMachine sends it a mes-
sage to add water. Other use cases can be refined in a similar fashion. 

The null architecture in Figure 2 for the ehome system can be mechanically derived from the 
sequence diagrams. The messages in the sequence diagram now become the operations and the 
objects/components become the classes. Also, if the need for a data source is detected, such as in 
this case the WaterState and CoffeeState, they will become attributes in the classes. The null ar-
chitecture only contains use relationships, as no more detail is given for the algorithm at this 
point. The null architecture represents the basic functional decomposition of the system. A null 
architecture for robo (which can be achieved by performing the same steps as did with ehome) is 
given in Figure 3.  

After the operations are derived from the use cases, some properties of the operations can be 
estimated to support the genetic synthesis, regarding the amount of data an operation needs, fre-
quency of calls, and sensitiveness for variation. For example, it is likely that the coffee machine 
status can be shown in several different ways, and thus it is more sensitive to variation than ring-
ing the buzzer when the coffee is done. Measuring the position of drapes requires more informa-
tion than running the drape motor, and playing music quite likely has a higher frequency than 
changing the password for the system. Relative values for the chosen properties can similarly be 
estimated for all operations. This optional information, together with operation call dependen-
cies, is included in the information subjected to encoding. 



 

 

 

Fig. 2 Null architecture for ehome 

 



 

 

Fig. 3 Null architecture for robo 

4.2. Encoding 
 
Ultimately, there are two kinds of data regarding each operation oi. Firstly, there is the basic in-
formation given as input. This contains the operations Oi = {oi1, oi2, …, oik}  depending on oi, its 
name ni, type di, frequency fi, parameter size pi and variability vi. Secondly, there is the informa-
tion regarding the operation oi’s place in the architecture: the class(es) Ci ={Ci1, Ci2, …, Civ} it 
belongs to, the interface Ii it implements, the dispatcher Di it uses, the operations ODi⊂  Oi that 
call it through the dispatcher, the design patterns Pi ={Pi1, Pi2, …, Pim} it is a part of, and the pre-
determined null architecture class MCi. The dispatcher is given a separate field as opposed to 
other patterns for efficiency reasons. 

The null architecture is encoded for the algorithm as a vector V <ov1, ov2, …, ovn> of vectors 
ov1, ov2, …, ovn. Each vector ovk, in turn, contains all data for a single operation. Thus, n is the 



 

number of operations of a system, and the collection of these operation defining vectors depicts 
the entire system when collected into one vector V.  Figure 4 depicts an operation vector ovk. 
 

 

Fig. 4. Operation vector ovk 

4.3. Transformations 
 
An architecture is transformed (i.e., one of its neighbors is found) by implementing architecture 
styles and design patterns to a given solution. The patterns we have chosen include very high-
level architectural styles [33] (message dispatcher and client-server), medium-level design pat-
terns [10] (Façade and Mediator), and low-level design patterns [10] (Strategy, Adapter and 
Template Method). The transformations are implemented in pairs of introducing a pattern or re-
moving a pattern. This ensures a wider traverse through the search space, as while implementing 
a pattern might improve the quality of architecture at one point, it might become redundant over 
the course of development. The dispatcher architecture style makes a small exception to this 
rule: the actual dispatcher must first be introduced to the system, after which the responsibilities 
can communicate through it.  The transformations are the following, and each of them has a cer-
tain probability with which it is selected: 

• introduce/remove message dispatcher 
• communicate/remove communication through dispatcher 
• introduce/remove server 
• introduce/remove Façade 
• introduce/remove Mediator 
• introduce/remove Strategy 
• introduce/remove Adapter 
• introduce/remove Template Method. 

The legality of applying a pattern is always checked before transformations by giving pre-
conditions. For example, the structure of the Template Method demands that depending opera-
tions are in the same class. In addition, a corrective function is added to check that the solution 
conforms to certain architectural laws, and that no anomalies are brought to the architecture. 
These laws demand uniform calls between two classes (e.g., through an interface or a dispatcher 
but not both), and state some basic rules regarding architectures (e.g., no operation can imple-
ment more than one interface). The corrective function, for example, discards interfaces that are 
not used by any class, and adds dispatcher connections between operations in two classes, if such 
a connection already exists between some operations in those classes. 

For example, if the “add Strategy” transformation is chosen, it is checked that the operation oi 
is called by some other operation in the same class c and that it is not a part of another pattern 
already (pattern field is empty).  Then, a Strategy pattern instance spi is created. It contains in-
formation of the new class(es) sci where the different versions of the operation are placed, and 
the common interface sii they implement. It also contains information of all the classes and oper-
ations that are dependent on oi, and thus use the Strategy interface. Then, the value in the class 
field in the vector ovi (representing oi) would be changed from c to sci, the interface field would 



 

be given value sii and the pattern field the value spi. Adding other patterns is done similarly. Re-
moving a pattern is done in reverse: the operation placed in a “pattern class” would be returned 
to its original null architecture class, and the pattern found in the supergene’s pattern field would 
be deleted, as well as any classes and interfaces related to it. 

 
4.4. Quality Function 
 
In the case of software architecture design, selecting an appropriate evaluation function is partic-
ularly difficult, as there is no clear value to measure in the solutions. In real world, evaluation of 
software architecture is almost always done manually by human designers, and metric calcula-
tions are only used as guidelines. Also, two architects rarely agree on a unique quality for certain 
architecture, as evaluation is bound to be subjective, and different values and backgrounds will 
influence the outcome of any evaluation process. However, for a search algorithm to be able to 
evaluate the architecture, a purely numerical quality value must be calculated.  

In a fully automated approach, no human interception is allowed, and thus the evaluation func-
tion needs to be based on metrics. The selection of metrics may be as arguable as the evaluations 
of two architects on a single software architecture. The rationale behind the selected metrics in 
this approach is that they have been widely used and recognized to accurately measure some 
quality aspects of software architecture. Hence, the metrics are chosen so that they measure qual-
ity aspects that can be seen as “most agreed upon” in the real world, and singular values can be 
seen as accurate as possible. However, the combination of metrics and multiple optimization is 
another problem entirely. For many metrics, it may be arguable what quality attribute they meas-
ure, and may be seen as measurements for several different quality attributes. Many of these 
quality attributes, however, are controversial. A perfect example is the selected quality attribute 
pair: modifiability and efficiency. The problem of multiple optimization is a direct result of the 
contradictive aims of the two quality attributes: when attempting to optimize one, the quality will 
decrease in view of the other. In our GA approach we have implemented Pareto optimality [29] 
to conquer this problem. However, when evaluating the applicability of simulated annealing, we 
found it more practical to use a single weighted fitness. 

The chosen quality function is based on well-known software metrics [8]. These metrics, es-
pecially coupling and cohesion, have been used as a starting point for the quality function, and 
have been further developed and grouped to achieve clear “sub-functions” for modifiability and 
efficiency, both of which are measured with a positive and negative metric. The biggest modifi-
cations to the basic metrics include taking into account the positive effect of interfaces and the 
dispatcher and client-server architecture styles in terms of modifiability, as well as the negative 
effect of the dispatcher and server in terms of efficiency. Choosing and grouping the metrics this 
way makes sure that all architectural decisions are always considered from all viewpoints. Add-
ing a pattern always adds a classes or an interface (or both), and is thus considered by complexi-
ty. As the calls to an operation are also affected, the change is always also considered positive or 
negative by both modifiability and efficiency. 

Dividing the evaluation function into sub-functions also answers the demands of the real 
world. Hardly any architecture can be optimized from all quality viewpoints, but some view-
points are ranked higher than others, depending on the demands regarding the architecture. By 
separating efficiency and modifiability, which are especially difficult to optimize simultaneous-



 

ly, we can assign a bigger weight to the more desired quality aspect. When wi is the weight for 
the respective sub-function sfi, the evaluation function fc(x) for solution x can be expressed as   

fc(x) = w1∗sf1  – w2∗sf2 + w3∗ sf3 – w4∗ sf4– w5∗ sf5. 
Here, sf1 measures positive modifiability, sf2 negative modifiability, sf3 positive efficiency, sf4 
negative efficiency and finally sf5 measures complexity. All the sub-functions are normalized so 
that they have the same range. The sub-functions are defined as follows (|X| denotes the cardinal-
ity of X): 

sf1 = (|calls to interfaces| * ∑ (variabilities of operations called through interface)) + (|calls 
through dispatcher|) ∗ ∑ (variabilities of operations called through dispatcher)) – |unused  
operations in interfaces| ∗ β ,  

sf2 = |calls between operations in different classes, that do not happen through a pattern|*  
∑ (variabilities of called operations) + |calls between operations same class|*  
∑ (variabilities of called operations) *2, 

sf3 = ∑ (|operations dependent of each other within same class| ∗ parameterSize) +  
∑ ( |usedOperations in same class| ∗ parameterSize +  
|dependingOperations in same class| ∗ parameterSize),  

sf4 = ∑ ClassInstabilities + (2*|dispatcherCalls| + |serverCalls|)∗ ∑ frequencies +  
|calls between operations in different classes|, 

sf5 = |classes| + |interfaces|. 
The multiplier β (β > 1) in sf1 means that having unused operations in an interface is almost 

like breaking an architecture law, and should be more heavily penalized. It should also be noted, 
that in sf1, most patterns also contain an interface. In sf3, “usedOperations in same class” means 
a set of operations in class C, which are all used by the same operation from class D. Similarly, 
“dependingOperations in same class” mean a set of operations in class K, which all use the same 
operations in class L. 
 
5. Experiments 
 
In this section we present the results from the preliminary experiments done with our approach. 
Tests were made using the ehome and robo example systems (introduced before). Most of the 
parameters used in our tests originate from the previous tests reported in [25, 26, 30], and give 
promising results with the GA approach. The implementation was made with Java 1.5. The tests 
were run on a DELL laptop with 2,95 GB of RAM and 2,26 GHz processor, running with Win-
dows XP. 

All tests were made with the constant r set to 20, and frozen (final) temperature tf set to 1. The 
weights for all sub-functions of the quality evaluation function were set to the same, i.e., all 
weights wi were set to 1. The calculated quality value for each curve is the average value from 
20 test runs.  

The GA used in the combination experiments is based on our previous implementations [25, 
26, 30]. The GA uses the same encoding, transformations (mutations) and quality function as 
defined here for the SA. The crossover operator is a single-point random crossover. Selection is 
made with a rank-based roulette wheel method. As this paper concentrates on simulated anneal-
ing, the particularities of the GA implementation are not discussed further here; details can be 
found in [25, 26, 30] and a general introduction to GAs is given by, e.g., Michalewicz [19]. 



 

 
5.1 Using SA First 
 
The “standard” tests were made with 7500 as starting temperature and 0.05 as cooling ratio. A 
longer annealing was also experimented with by setting the starting temperature to 10 000 (cool-
ing ratio 0.05), and a faster annealing was tested by setting the cooling ratio to 0.15 (starting 
temperature 7500). However, the results were unsatisfactory for both systems, and there were no 
significant differences between the results achieved with different SA parameters. The trend of 
the quality curve for the SA was descending, and the end quality value was worse than the initial 
value. The standard and high temperature tests for both systems took approximately 10 seconds/ 
run and the fast annealing tests less than 5 seconds/ run. We then tried to build a base solution 
with a short and fast annealing (starting temperature 2500 and cooling ratio 0.15), and then con-
tinue the search with a genetic algorithm, which ran for 250 generations and had a population of 
100 (combination SAGA). This approach did not produce much better results: the SA curves 
were quite similar than with longer and slower runs, and while the quality curve for the GA por-
tion did increase for a short while, it began to quickly descend drastically. Again, the end quality 
value was worse than the value for the initial solution. The SAGA test runs took a little less than 
one minute per run for both systems. 

 
5.2 Using a Combination of GA and SA 
 
As using the SA first did not produce good results, we finally tried using GA for creating a good 
base solution (again, with 250 generations and a population of 100), and then applying SA (start-
ing temperature 2500, cooling ratio 0.15) for further tuning the solution (combination GASA). In 
this case, the results were much better. The GA does a good basic work, and the SA is able to 
further improve the solution very quickly.  The runtime for these tests were approximately a bit 
more than one minute per run for ehome, while the runs for robo were slightly faster. 

Figure 5 presents the GA portion and Figure 6 the SA portion of the GASA quality curve for 
ehome. Figures 7 and 8 present the respective curves for robo. Note, that the SA algorithm starts 
where the GA ends: the difference in the GA end value and SA start value is due to the fact that 
quality values are not recorded until one round of transformations has already been completed. 
As can be seen in Figure 5, the GA begins with a short plummet, after which the quality (fitness) 
begins to develop steadily. After about 100 generations the fitness appears to stabilize, i.e., the 
curve is not increasing, and it does not seem likely to further develop. In Figure 6, the SA begins 
to develop the solution from where the GA left off, and the curve develops rapidly until quite 
near the end of the SA process. 

 In Figure 7, depicting the GA portion for the robo system, the GA first plummets similarly as 
in the curve for ehome, but after it starts ascending, the development seems more rapid and 
steady than for the ehome, and it appears as if the quality could still increase after the GA finish-
es. The SA portion of the GASA curve for robo, in Figure 8, seems quite similar to the GA curve 
at first, but looking at the actual quality values reveals that the SA develops much more quickly 
than the GA. In the end it seems that the SA has found some optimum, as the curve has reached a 
plateau. 

 



 

 
Fig. 5. GA portion of GASA quality curve for ehome 

 

 
Fig. 6. SA portion of GASA quality curve for ehome 

 



 

 
Fig. 7. GA portion of GASA quality curve for robo 

 

 
Fig. 8. SA portion of GASA quality curve for robo 

 
6   Discussion 
 
In Section 5 we discussed the quality curves of the experiments made with the SA algorithm. Na-
turally, the actual UML graphs given as output should also be examined to get a wholesome idea 
of whether the results with extreme quality values are actually good. In addition to discussing the 
class diagrams related to the test graphs presented in Section 5 (the GASA tests), we will also 
discuss the UML graphs achieved when SA was used primarily. The example solutions are given 
in a simplified format where the design solutions are emphasized, rather than giving the actual 



 

class diagrams given by the algorithm, as they would be too space-consuming and difficult to 
interpret.  
 
6.1 Proposed Architectures with GASA 
 
Using the GASA approach produced very similar solutions for both ehome and robo systems. 
The solutions were built around the message dispatcher, as nearly all communication between 
classes (in different null architecture classes) was handled through the message dispatcher. The 
dispatcher makes the system highly modifiable, as classes do not need to know any details of 
other classes; they merely send and receive messages through the dispatcher. The architecture is 
also easy to understand quickly, as the message dispatcher creates a logical center for the system 
and separates different model classes. However, the message dispatcher creates huge loss in effi-
ciency, as the increased message traffic greatly affects the performance of a system. Thus, it 
should be used as the primary method for communication or not be used at all, as in the case 
where it is only partially used the cost in efficiency is bigger than the gain in modifiability. 

In addition to the message dispatcher, all solutions achieved with the GASA approach had 
several instances of the Adapter pattern. The Adapter pattern is easy to apply, as it has very loose 
preconditions, but it is more costly in terms of efficiency than other patterns. There were usually 
also several instances of the Template Method pattern, which, in turn, is very low cost in terms 
of both efficiency (it does not increase the number of calls) and complexity (only one class, no 
interface). In some cases, however, the algorithm had preferred the Strategy pattern, and there 
would be many instances of Strategy, while only a few Template Method instances. 
 



 

 
Fig.9. Example architecture for ehome, with GASA algorithm combination 

 
An example solution for ehome achieved with GASA is presented in Figure 9. As can be seen, 

nearly all connections are handled via the message dispatcher, as only calls from the Main com-
ponent to Music System and Coffee Machine, and from Music System to Music Files are han-
dled directly between the components. The example also shows that the Template Method is 
used very much to create low-level modifiability. The ehome is particularly suitable for a mes-
sage dispatcher architecture style, and achieving a high level of message-based communication 
between components is desirable. 

A similar example solution for robo (also achieved with GASA) is presented in Figure 10. As 
can be seen, the message dispatcher is used here even more intensely than in the case of ehome, 
as only connections between CombatEngine and Rules and some connections involving the Si-
mulationObject are not using the message dispatcher, even though the amount of components is 



 

larger than in the case of ehome.  In this example there are also several Adapter, TemplateMe-
thod and Strategy patterns, and the usage of these different patterns is more balanced than in the 
case of ehome, where the Template Method was the dominating pattern. However, while using 
the message dispatcher in these proportions is desirable if it is chosen as the primary architecture 
style, if we consider the type of system the robo is (a framework), in real life a message dis-
patcher would probably not be the best option. All the components are actually tightly linked, 
and the design should concentrate more on extendibility and the actual functionality of the sys-
tem. Also, as robo is a gaming application, using the message dispatcher in this extent would 
probably lead to significant disadvantage in terms of efficiency, which is particularly undesirable 
when the system needs to respond quickly 
 



 

 
 

Fig.10. Example architecture for robo, with GASA algorithm combination 
 

To summarize, using the message dispatcher gives a clear focal point in the solutions, and the 
full potential of the message dispatcher is used. It should also be pointed out that solutions 
achieved after only running the GA (i.e., the seeds for the SA) often had the message dispatcher, 



 

but its usage was mostly quite minimal, as only a couple of components were communicating via 
the dispatcher. Thus, the SA algorithm has a significant influence in achieving a much better 
level of usage in the final solution. In addition, low-level design patterns are used to further fine-
tune the solution at class-level.  
 
6.2 Proposed Architectures Based on SA 
 
As mentioned, we also performed tests with only SA and by combining SA to GA by using the 
SA produced solution as a seed for the GA. The produced solutions were very similar for all cas-
es of the SA (high temperature, standard, and fast annealing) and the SAGA approach. 

In these cases, the message dispatcher architecture style did not appear in any of the solutions 
for either system. As for the patterns, the Adapter pattern was clearly the most popular in all the 
solutions for both systems. For the robo system, there were very few instances of other patterns; 
only a couple of Template Method or Strategy patterns could be found in the solutions. The solu-
tions for robo seemed quite difficult to understand at a glance; the structure depends greatly on 
the null architecture, and as all classes are by default given an interface, the minimum amount of 
classes/interfaces is 44 for the robo system. When the patterns are added (even if only a few) the 
architecture easily becomes quite complex. The solutions for ehome were significantly easier to 
understand, as the amount of classes/interfaces that appear “by default” is roughly half the 
amount of classes for robo system. Curiously enough, there seemed to also be slightly more ap-
pearances of the Strategy and Template Method patterns in the ehome solutions than there were 
for robo, but the ehome solutions still seemed more understandable. 

Thus, it appears that the SA by itself is incapable of introducing solutions that produce de-
layed reward, such as the message dispatcher architecture style. Also, even if the GA is able to 
introduce such solutions after being given the seed from the SA, it will take exceptionally long 
before the reward will overcome the cost, as the SA has already developed the solutions a great 
deal, and the GA may have to reverse the design process (i.e., apply the “remove” transforma-
tions) in order to apply needed changes. The results of merely SA based systems are, thus, unsa-
tisfactory. 
 
7. Conclusions and Future Work 
 
We have presented an approach that uses SA in software architecture synthesis. A null architec-
ture is given as input and architecture styles and design patterns are used as transformations 
when searching for a better solution in the neighborhood. The solution is evaluated with regard 
to modifiability, efficiency and complexity. The experimental results achieved with this ap-
proach show that SA on its own is not able to produce good quality solutions in terms of quality 
values or the resulting UML class diagrams. Attempts of improving the SA based solution with 
GA were also unsuccessful in increasing the quality values.  However, when combining GA and 
SA so that the SA fine-tunes a basic solution achieved with the GA, both the quality values and 
the class diagrams are very good. Moreover, as SA is significantly faster than the GA, the result 
was obtained much quicker than would have been possible by using only GA. Thus, it is con-
cluded that while SA is not sophisticated enough to be able to introduce complex alterations that 
require several transformations and produce delayed reward, it is able to quickly improve solu-
tions where the base for such alteration has already been made.  



 

It should be noted though, that SA seems to act very “single-mindedly”. When SA was used 
on its own, no solutions contained the message dispatcher architecture style. When SA was used 
after the GA, all the solutions used the message dispatcher architecture style very heavily, 
whether it was actually desired or not. Thus, it appears that the mechanism in SA that should 
prevent it from being stuck to a local optimum is not sufficient to divert the search in the case of 
software architecture synthesis. 

In our future work we will concentrate on practical issues, and improve our basic implementa-
tion so that patterns (which are currently hardcoded), could be added at will. This will signifi-
cantly increase the search space, but will also make the need for an algorithm to handle a large 
amount of patterns even greater. Moreover, the larger the system is and the more computation is 
required, the more there will also be need for a way to quicken the evolutionary process.  
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