

Outi Räihä, Kai Koskimies and
Erkki Mäkinen

Genetic Synthesis of
Software Architecture

DEPARTMENT OF COMPUTER SCIENCES
UNIVERSITY OF TAMPERE

D‐2008‐4

TAMPERE 2008

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCES
SERIES OF PUBLICATIONS D – NET PUBLICATIONS
D‐2008‐4, MAY 2008

Outi Räihä, Kai Koskimies and
Erkki Mäkinen

Genetic Synthesis of
Software Architecture

DEPARTMENT OF COMPUTER SCIENCES
FIN‐33014 UNIVERSITY OF TAMPERE

ISBN 978‐951‐44‐7358‐6
ISSN 1795‐4274

Genetic Synthesis of Software Architecture

Outi Räihä*, Kai Koskimies** and Erkki Mäkinen*
*University of Tampere, Finland

**Tampere University of Technology, Finland
outi.raiha@uta.fi

Abstract

Design of software architecture is intellectually one
of the most demanding tasks in software engineering.
This paper proposes an approach to automatically
synthesize software architecture using genetic algo-
rithms. The technique applies architectural patterns
for mutations and quality metrics for evaluating indi-
vidual architectures, producing a proposal for a soft-
ware architecture on the basis of functional require-
ments given as a graph of functional responsibilities.
Two quality attributes are considered, modifiability
and efficiency. The behavior of the genetic synthesis
process is analyzed with respect to quality improve-
ment speed, the effect of population size, the effect of
dynamic mutation, and the effect of quality attribute
prioritization. It is concluded that genetic architecture
synthesis in the proposed form is a converging process
that is able to produce reasonable architectural solu-
tions, although fully satisfactory architectures have not
been synthesized in our tests for an example system.

1. Introduction

A persistent dream of software engineering is to be
able to automatically produce software systems based
on their requirements. While this can be accomplished
in narrow domains, in a general sense it is still out of
reach for the current technology. Fully automated
software synthesis succeeds in narrow domains be-
cause the intellectually difficult parts, the architecture
design and the transformation of functional require-
ments into code, have predetermined domain-specific
solutions.

In this paper we study the problem of automated
synthesis of software architecture in a domain-inde-
pendent manner, given some representation of func-
tional and quality requirements. We anticipate that this
kind of technology can be exploited in various contexts
in software engineering. Obviously, automated archi-
tecture synthesis can be used to produce initial or alter-

native architecture designs in a traditional software
engineering process, to support the architect who is
still responsible for the final result. On the other hand,
if the technology can be made reliable enough, auto-
mated architecture synthesis can be exploited for ex-
ample in MDA (Model-Driven Architecture) ap-
proaches to support the mapping of models from prob-
lem level to solution level, or in self-adaptive systems
[17] to assist in the self-reconfiguration triggered by
changes in the environment.

We argue that automated software architecture syn-
thesis is conceivable because a lot of architectural
knowledge exists in the form of architectural styles,
reference architectures, design patterns, best practices
etc. These recommended general solutions, called here
collectively architectural patterns, typically promote
some quality attributes of the system, and possibly
weaken others. For example, the use of the message
dispatcher architectural style in the communication of
components increases the modifiability of the system,
but weakens its efficiency.

In addition to architectural patterns, there are a
number of rules concerning architecture design that are
assumed to be followed in any architecture because of
the consistency and cleanness of the design. For exam-
ple, if two components communicate through a mes-
sage dispatcher, it does not make sense to allow them
direct communication, because that would invalidate
the idea of using the message dispatcher. Here we call
such rules architectural laws.

For the purposes of this paper, the essence of soft-
ware architecture design is to find a combination of
instances of architectural patterns, without breaking
any architectural laws, in such a way that the func-
tional requirements hold with optimal quality pro-
perties. Here we will focus on two quality attributes,
modifiability and efficiency.

Viewed in this way, software architecture synthesis
can be seen as a combinatorial problem: given a set of
architectural patterns, how to find an optimal configu-
ration of such patterns for a non-trivial system? Typi-
cally, good architects apply their prior experiences

about successful applications of architectural patterns,
and often come up with a reasonable architecture de-
sign after some iterations. However, in automated ar-
chitecture synthesis this kind of intuition is not avail-
able, and an optimal solution must be found mechani-
cally. On the other hand, a mechanical process is also
free of prejudices, being able to generate viable solu-
tions the human architect could never think of.

In this paper we study the application of genetic al-
gorithms [14] to software architecture synthesis. Ge-
netic algorithms are a popular heuristic search method
that has been successfully applied to problems some-
what similar to ours, see Chapter 2. Architectural pat-
terns provide a natural interpretation for mutations: a
mutation can be realized as either the application or
removal of an architectural pattern. Fitness function
(that is, the “goodness” of an individual) can be ex-
pressed in terms of quality metrics, and crossover op-
eration can be realized by merging two architectures
without breaking existing pattern instances. Our focus
is on developing the required techniques for genetic
architecture synthesis, and on the investigation of the
overall behavior of the genetic architecture synthesis
process. We are also interested to analyze individual
architecture proposals produced by the method. The
proposed architecture is produced as a UML class dia-
gram with (possibly stereotyped) classes, interfaces
and their mutual dependencies.

The main contributions of this work are a setup for
genetic pattern-based software architecture synthesis
and experimental analysis of the behavior of the ge-
netic synthesis process. The former includes an ap-
proach to represent functional requirements as a re-
sponsibility graph, techniques for representing archi-
tectural information as genes, for computing quality
based fitness, and for architectural crossover and dy-
namic pattern-based mutation, and a demonstration of
the genetic synthesis using exemplary sets of architec-
tural patterns and laws. The latter includes an analysis
of the quality improvement speed, the effect of popula-
tion size, the effect of dynamic mutations, and the ef-
fect of prioritized quality attributes.

We proceed as follows: In the following chapter we
briefly review genetic algorithms and existing appro-
aches to apply them in problems related to software
architecture problems. In Chapter 3 we present our
approach to realize genetic software architecture syn-
thesis. In Chapter 4 we analyze the results of our ex-
periments. Chapter 5 contains a discussion of the char-
acter of the architectures proposed by genetic synthe-
sis, on the basis of the experiments run on a test case.
Finally, we conclude with some remarks on future
work in Chapter 6.

2. Applications of genetic algorithms in
software structuring

2.1 Genetic algorithms

Genetic algorithms are used to find a “good” solu-
tion from a very large search space. To operate with a
genetic algorithm, one needs an encoding of the solu-
tion, i.e., a representation of the solution in a form that
can be interpreted as a chromosome, an initial popula-
tion, mutation and crossover operators, a fitness func-
tion and a selection operator for choosing the survivors
for the next generation. The actual implementations of
these fundamental structures vary a lot from an appli-
cation to another. However, the key idea maintains the
same: better individuals (solutions) have greater possi-
bilities to reproduce, while worse solutions have
greater possibilities to die and to be replaced by new
individuals. It is believed that this process leads to a
combination of the properties of the better individuals,
which constitutes a good solution to the problem in
question. We assume that the reader is familiar with
the basics of genetic algorithms, as given, e.g., in [14].

2.2 Software clustering and systems integration

The goal of software clustering or module cluster-
ing is to find the best grouping of components to sub-
systems in an existing software system. The problem is
to partition the graph so that the clusters represent
meaningful subsystems.

The genetic algorithm presented by Clarke et al. [6]
for the clustering problem is quite straightforward: the
main challenge is to find a suitable encoding, after
which traditional mutation and crossover operators are
used. Defining these operations is, however, not so
simple. Clarke et al. [6] introduce several cases where
a hill-climbing algorithm has outperformed genetic
algorithms, and the blame is usually placed with the
encoding and crossover used with the genetic algo-
rithm.

Doval et al. [8] have used a genetic algorithm ap-
proach for the optimization of the module clustering
problem.

Harman et al. [11] approach the clustering problem
from a re-engineering point of view: after maintaining
a system its modularization might not be as good as it
was when it was taken to use. Harman et al. define
their problem as searching the space of possible modu-
larizations around the current granularity to see if there
exists a better allocation for the components.

Di Penta et al. [7] introduce the Software Renova-
tion Framework (SRF) that attempts to remove unused

objects and code clones and to refactor existing librar-
ies into smaller, more cohesive clusters. Genetic algo-
rithms have been used especially to help with refactor-
ing.

Seng et al. [19] represent the system as a graph,
where the nodes are either subsystems or classes, and
edges represent containment relations (between sub-
systems or a subsystem and a class) or dependencies
(between classes). In this application each gene repre-
sents a subsystem, and each subsystem is an element of
the power set of classes.

Systems integration is in a way quite similar to
module clustering but with known modules. The prob-
lem is to decide the order in which they are incorpo-
rated to the system. The order of integration of compo-
nents can be presented as a permutation of the set of
components [6]. Le Hanh et al. [13] present a similar
solution to the integration testing problem.

2.3 Systems refactoring

Systems refactoring is a somewhat more delicate
problem than module clustering. When refactoring a
system, there is the risk of changing the behavior of a
system by, e.g., moving methods from a subclass to an
upper class [20]. Hence, the refactoring operations
should always be designed so that no illegal solutions
will be generated or a corrective operation is used to
check that the systems behavior stays the same.

O’Keeffe and Ó Cinneide [16] define the refactor-
ing problem as a combinatorial optimization problem:
how to optimize the weighting of different software
metrics in order to achieve refactorings that truly im-
prove the system’s quality. Seng et al. [20] have a
similar approach as O’Keeffe and Ó Cinneide [15], as
they attempt to improve the class structure of a system
by moving attributes and methods and creating and
collapsing classes.

O’Keeffe and Ó Cinneide [16] have continued their
research with the use of the representation and muta-
tion and crossover operators introduced by Seng et al.
[20]. O’Keeffe and Ó Cinneide [16] also compared the
genetic algorithm to some other search algorithms.

Harman and Tratt [12] introduce a more user-
centered method of applying refactoring. They offer
the user the option to choose from several solutions
produced by the search algorithm, and also point out
that the user should be able to limit the kind of solu-
tions she wants to see.

2.4 Architectural improvement

Architectural transformations apply bigger modifi-
cations to the system than simple refactoring ope-

rations. An example of architectural transformation is
the introduction of design patterns in the architecture.

Amoui et al. [1] have applied genetic algorithms for
finding the optimal sequence of design pattern trans-
formations to increase the reusability of a software
system. Similar studies are also performed by Grunske
[10].

In addition to design-related software engineering
problems, there are several other fields of software
engineering where heuristic search algorithms have
been successfully implemented. However, we do not
survey these topics here.

2.5 Relationships to our work

Our work is similar to [1] in that we use high-level

structural units, patterns, as the basis of mutations in a
genetic process. We have also applied the supergene
idea of [1], to be discussed in Chapter 3, as a starting
point for representing the architecture. However, there
are several differences. First, we consider not only re-
usability (or modifiability) as the quality criteria, but in
principle we are interested in the overall quality of the
architecture. In this paper we focus on two quality at-
tributes, efficiency and modifiability.

Second, we aim at the synthesis of the architecture
starting from requirement-level information, rather
than at improving an existing architecture. Third, we
do not restrict to design patterns, but consider more
generally various kinds of architectural solutions at
different levels.

Our viewpoint is different from that of system clus-
tering and refactoring. System clustering considers
software architecture only from the decomposition
perspective, and software refactoring aims at structural
fine-tuning of software architecture, whereas our ap-
proach strives for automating the entire architecture
design process.

3. Genetic architecture synthesis

3.1 Functional requirements

A major problem in automated software architecture
synthesis is the representation of functional require-
ments. Since the technique should be applicable in any
domain, we cannot make assumptions about the actual
semantics of the functional requirements. Yet, although
software architecture design is usually driven by qua-
lity requirements rather than by functional require-
ments (e.g. [3]), the architecture is senseless without
functionality. We have adopted here an approach
where functional requirements are represented as a

graph of named functional responsibilities. These re-
sponsibilities remain as elements of the architecture,
although they carry no semantics as far as the architec-
ture synthesis is concerned.

Our approach stems from an old idea related to ob-
ject-oriented design, CRC cards [2] (Class-Responsi-
bility-Collaboration) originally proposed by Ward
Cunningham for teaching object-oriented design. A
CRC card contains three parts: the name of a class, the
responsibilities of that class, and the collaborators of
the class supporting the responsibilities. CRC cards
help to find and collect the responsibilities associated
with classes, together with the required collaborators
(other classes). As a result of a design session based on
CRC cards, use cases are refined into a rudimentary
class structure, where classes host informal responsi-
bilities rather than concrete methods.

We adopt the CRC idea of refining use cases (repre-
senting functional requirements) into responsibilities:
the input for architectural synthesis consists of respon-
sibilities. The same responsibilities will appear in the
architecture proposals, assigned to interfaces and
classes. Responsibilities do not necessarily become
actual operations in the detailed design, but we argue
that they express the functional aspect of the system at
an appropriate level for architectural description.

 However, in contrast to CRC design, we assume
that each use case is considered only in terms of the
responsibilities required to fulfill the use case, without
thinking of classes. As in CRC design, we also identify
the dependencies, not between classes but between
responsibilities. That is, if some responsibility needs
another responsibility, the former depends on the latter.
A viable architecture must respect the dependencies in
the sense that a component whose responsibility de-
pends on a responsibility of another component must
be linked to the latter component, and a link can exist
only because of that. In addition, we use a special kind
of responsibility, a data manager responsibility, for a
data entity that is needed in a use case.

To allow the evaluation of the quality (that is, effi-
ciency and modifiability) of the architecture, the re-
sponsibilities can be associated with values characte-
rizing the assumed size of the parameter data needed
by the responsibility, the assumed time consumption of
the responsibility, and the assumed variability factor of
the responsibility (the greater the factor, the more
prone the responsibility is to change). Naturally, in
many cases these are difficult to estimate in the early
phases of the software development process, but for the
sake of successful architecture synthesis, at least the
most obvious and significant responsibility characteris-
tics should be given in order to correctly evaluate the
quality of proposed architectures.

In this work we have used an intelligent home sys-
tem as a case study. Such a system provides an infra-
structure and interfaces for controlling various home
devices, like lights, drapes, and audio. A fragment of
the responsibility graph given as input for the genetic
architecture synthesis of this system is depicted in Fig-
ure 1, where the dependencies between and names of
responsibilities are shown, as well as property values
for variability factor, parameter size and time con-
sumption (in this order). The drapeState responsibility
is a data responsibility, marked with thicker line. In the
middle of the graph is the responsibility CalculateOp-
timalDrape, which has a variability of 3, as the optimal
drape position can be computed differently in different
types of homes. It has a parameter size 6, indicating
that it needs relatively large parameter set. Its call cost
is 90, showing that it is a heavier operation than, e.g.,
RunDrapeMotor with a cost of 60. All property values
are relative rather than absolute. The entire responsibil-
ity set for this system contains 42 functional responsi-
bilities, 10 data responsibilities and 90 dependencies
between them.

Figure 1. Fragment of a responsibility depend-

ency graph

A responsibility graph is assumed to be produced

from requirements by walking through the use cases in
the CRC style, identifying the needed functionalities
and their dependencies. The architecture produced by
the genetic synthesis reflects functional requirements
only to the extent the responsibilities have been identi-
fied. It may be perfectly sensible to produce an archi-
tecture proposal only for a subset of responsibilities
that is expected to be architecturally significant.

3.2 Architectural patterns

In the context of the present paper, an architectural
pattern can be any general structural solution applied at
the architectural level to improve some quality attribute
of the system. Architectural patterns have been sys-
tematically catalogued as architectural styles and de-
sign patterns, but here we regard basic practices like
decomposition and use of interfaces also as architec-
tural patterns. Each architectural pattern gives rise to

UI
2,2,10

StopDrape
Motor
1,1,50

RunDrape
Motor
1,2,60

Calculate
Optimal
Drape
3, 6, 90

drapeState
1,2,10

Measure
Drape

Position
1, 7, 80

ShowDrape
Position
1, 5, 70

two mutation operations: introducing and removing the
pattern.

In our experiments, we have used the following list
of architectural patterns:

• decomposing a component
• using an interface
• Strategy design pattern [9]
• Façade design pattern [9]
• message dispatcher architectural style [21]
• communication through a dispatcher.

This collection of architectural patterns is of course
very small, and intended only for experimentation pur-
poses. We wanted to cover different levels of architec-
tural patterns: basic practices, low-level design patterns
(Strategy), medium-level design patterns (Façade), and
high-level architectural styles (message dispatcher).
The last architectural pattern is introduced for allowing
components to join a message dispatcher introduced
earlier. We expect that a real architecture synthesis tool
would employ hundreds of architectural patterns.

3.3 Architectural laws

The purpose of architectural laws is to prevent vari-
ous kinds of anomalies in the architecture. Mutation
and crossover operations are implemented in such a
way that these laws always hold. In our experiments,
we have used three kinds of laws. Firstly, these laws
ensure uniform calls between two classes: a class can
communicate with another class only in a single man-
ner (e.g. through an interface or through a message
dispatcher). Secondly, the laws state some ground rules
about architecture design, for example, that a responsi-
bility can appear at most once in an interface, and that
unused interfaces and data responsibilities implement-
ing interfaces are not allowed. Thirdly, the laws regu-
late the order of introduction. For instance, a dispatcher
must be introduced to the system before responsibili-
ties can use it for communication.

3.4 Initial population

An initial population is first produced, where only
basic structures, such as class division and interfaces
for the responsibilities are randomly chosen. To ensure
as wide a traverse through the search space as possible,
four special cases are inserted: all responsibilities being
in the same class, all responsibilities being in different
classes, all responsibilities having their own interface,
and all responsibilities being as much grouped to same
interfaces as the class division allows.

3.5 Genetic encoding of architecture

In order for the genetic algorithm to operate on
software architecture, the architecture needs to be rep-
resented as a chromosome consisting of genes. For
efficiency, in this experiment the architecture encoding
is designed to suit the chosen set of architectural pat-
terns. We have followed the supergene idea, introduced
by Amoui et al. [1]. In traditional chromosome repre-
sentation, each chromosome consists of several genes,
each of which has one field. A supergene, however,
has several fields to store data in. Taking this idea as a
starting point, it is quite straightforward to place all
information regarding one responsibility into one su-
pergene. This also makes it easier to keep the architec-
ture consistent, as no responsibility can be left out of
the architecture at any point, and there is no risk of
breaking the dependencies between responsibilities.

There are two kinds of data regarding each respon-
sibility ri. Firstly, there is the basic information given
as input. This contains the responsibilities Ri = {rk, rk+1,
…, rm} depending on ri, its name ni, type di, frequency
fi, parameter size pi, execution time ti, call cost ci and
variability vi. Secondly, there is the information re-
garding the responsibility ri’s place in the architecture:
the class(es) Ci ={Ci1, Ci2, …, Civ} it belongs to, the in-
terface Ii it implements, the dispatcher Di it uses, the
responsibilities RDi ⊂ Ri that call it through the dis-
patcher, and the design pattern Pi it is a part of. The
dispatcher is given a separate field as opposed to other
patterns for efficiency reasons. Figure 2 depicts the
structure of a supergene.

Ri ni di fi pi ti ci vi Ci Ii Di RDi Pi

Figure 2. Supergene SGi for responsibility ri

The actual chromosome is formed by simply col-

lecting all supergenes. Figure 3 illustrates a chromo-
some with m responsibilities.

SG1 SG2 …. SGm-1 SGm
Figure 3. Chromosome

Although basic operations in the architecture are

relatively safe with this representation method (i.e., the
responsibilities and their dependencies stay intact in
the architecture), the design patterns produce chal-
lenges at the chromosome level, as careless operations
can easily break patterns and make the architecture
incoherent. Thus, in order to quickly check the legality
of an operation with regard to patterns, a Pattern field
is located in every supergene. The Pattern field has as
attributes the classes and responsibilities “using” the

pattern, the classes and responsibilities “used by” the
pattern, as well as the interfaces involved.

3.6 Mutation and crossover operations

All mutations are implemented as either introducing
or removing an architectural pattern. This ensures a
free traversal through the search space, as moves that
may have seemed good at one time can be cancelled
later on.

All mutations except for introducing a message dis-
patcher or a design pattern operate purely at supergene
level by changing the value of one field. Introducing a
new dispatcher to the system, however, affects the en-
tire chromosome, and cannot be achieved by altering
the data for a specific responsibility. Thus, the incorpo-
ration of a dispatcher is achieved by adding a
“dummy” gene with only the dispatcher field contain-
ing data. Introducing patterns, on the other hand, oper-
ate at supergene level, but affect more than one gene.
As mentioned in Section 3.5, it is a challenge to keep
complex patterns intact through changes that should
not affect patterns, e.g., merging classes. Because of
this, the legality of a mutation is always checked be-
fore it is administered to the selected gene.

Mutations are given a certain probability with
which they are applied. The roulette wheel method,
where each mutation is given a “slice” in proportion to
its probability, is used for selecting a mutation. A
“null” mutation is also possible, giving a chromosome
the chance to stay intact into the next generation. In
addition, to study the effect of favoring more funda-
mental solutions in early stages, dynamic mutation
probabilities have been defined for chosen patterns
(dispatcher, Façade and Strategy). After 1/3 of the gen-
erations have been through, the probability of introduc-
ing a dispatcher to a system is decreased, and the prob-
ability of introducing a Façade pattern is increased
respectively. After another 1/3 of generations have
passed, the probability of the Façade mutation is de-
creased, and the probability for implementing a Strat-
egy pattern is increased respectively. The hypothesis is
that favoring fundamental solutions (like architectural
styles) in the earlier stages of evolution leads to a
stronger core architecture that can be more easily re-
fined at later stages by lower-level solutions.

In our approach, the crossover operation is also seen
as a type of mutation, and thus, it is also included in
the “roulette wheel”. The crossover is implemented as
a traditional one-point crossover with corrective func-
tions regarding design patterns. To properly correct the
crossover result, an order of importance must be decid-
ed to deal with overlapping patterns from the two par-
ent chromosomes. Following the idea by Burgess [4], it

is decided that the left side of the offspring is always
the valid one, and the right side of the crossover point
is corrected so that the whole architecture is valid.

 The crossover probability increases linearly in re-
gard to how high the fitness of an individual is in the
population. This increases the chances that the in-
dividual will stay intact after the mutation, as in order
to fit the larger crossover “slice” to the “wheel”, the
probabilities of other mutations are decreased. Also,
after crossover, the parents have a chance to be se-
lected to the next population as such. This favors
strong individuals to be kept intact through gene-
rations.

The actual mutation and crossover points (genes to
be mutated) are selected randomly. However, we have
taken advantage of the variability property of responsi-
bilities with the strategy and dispatcher communication
mutations. This should favor highly variable responsi-
bilities. The chances of a gene being subjected to these
mutations increase linearly according to the variability
value of the corresponding responsibility.

3.7 Fitness function

The fitness function is based on widely used soft-
ware metrics [18], most of which are from the metrics
suite introduced by Chidamber and Kemerer [5]. These
metrics have been used as a starting point for the fit-
ness function, and have been further developed and
grouped to achieve clear “sub-fitnesses” for modifi-
ability and efficiency, both of which are measured with
a positive and negative metric. The biggest modifica-
tions to the basic metrics include taking into account
the positive effect of interfaces and the dispatcher ar-
chitecture style in terms of modifiability, as well as the
negative effect of the dispatcher in terms of efficiency.
A complexity metric is added to penalize having many
classes and interfaces as well as extremely large
classes.

Dividing the fitness function into sub-functions an-
swers the demands of the real world. Hardly any archi-
tecture can be optimized from all quality viewpoints,
but some viewpoints are ranked higher than others,
depending on the demands regarding the architecture.
By separating efficiency and modifiability, which are
especially difficult to optimize simultaneously, we can
assign a bigger weight to the more desired quality as-
pect. When wi is the weight for the respective sub-
fitness sfi, the fitness function f(x) for chromosome x
can be expressed as

f(x) = w1∗sf1 – w2∗sf2 + w3∗ sf3 – w4∗ sf4 – w5∗ sf5.
Here, sf1 measures positive modifiability, sf2 negative
modifiability, sf3 positive efficiency, sf4 negative effi-
ciency and sf5 complexity. The multiplier 10 in sf1

notes that having unused responsibilities in an interface
is almost an architecture law, and should be more
heavily penalized. The sub-fitness functions are de-
fined as follows (|X| denotes the cardinality of X):
sf1 = |interface implementors| + |calls to interfaces| +
(|calls through dispatcher| ∗ ∑ (variabilities of respon-
sibilities called through dispatcher)) – |unused respon-
sibilities in interfaces| ∗ 10,
sf2 = |calls between responsibilities in different classes|,
sf3 = ∑ (|dependingResponsibilities within same class|
∗ parameterSize + ∑ |usedResponsibilities in same
class| ∗ parameterSize + |dependingResponsibilities in
same class| ∗ parameterSize)),
sf4 = ∑ ClassInstabilities + |dispatcherCalls| ∗
∑ callCosts, and
sf5 = |classes| + |interfaces| + BigClassPenalty.

Selection of individuals for the next population is
made with a roulette wheel selection, where the size of
each “slice” is linearly in proportion to how high the
corresponding individual’s fitness is in the population.
No individual can be selected more than once. Thus,
the “slices” are adjusted after each selection to repre-
sent the differences between fitnesses of the remaining
individuals.

4. Experiments

In this chapter we present the results from the pre-
liminary experiments done with our approach, using
the example system introduced in Section 3.1. All test
runs were conducted with a fixed set of mutation prob-
abilities, found after extensive testing. The calculated
fitness value is the average of 10 best fitnesses in each
generation. In all test runs apart from the first one
(shown in Figure 4), the actual y-value for the curve is
achieved as the average value from five test runs.

First, we tested that the development of fitness val-
ues was similar with each run of the algorithm. As can
be seen in Figure 4, the fitness value curves are very
similar in each of the five test runs, made with the
same weights to all sub-fitnesses and having a popula-
tion size of 100 and 250 generations.

After assuring that the populations did indeed de-
velop similarly, the effect of the population size and
amount of generations could be tested. Figure 5 shows
the fitness curves achieved with the same weight for all
sub-fitnesses and 250 generations with population size
p. As can be seen, the curve achieves higher values
when the size of the population grows. This is ex-
pected, as in bigger populations there are better possi-
bilities to have more exceptionally good individuals
when more options can be considered simultaneously.

In addition to the population size, the amount of
generations is another basic parameter to be adjusted to
all genetic algorithms. Different generation numbers
were tested to see for how long the fitness values con-
tinued to increase. These tests were made with a popu-
lation size of 100 and generation numbers of 250, 500
and 1000. As can be seen in Figure 6, depicting the
evolvement of fitness values over 1000 generations,
the fitness values achieve their highpoint after around
750 generations, and achieve quite high values already
after 500 generations. The development with smaller
generations was quite similar to the values that are
achieved in this curve until 250 and 500 generations.
However, the curves with smaller generations were
slightly higher than here, as the dynamic mutation
probabilities, discussed in Section 3.6, had a chance to
enhance the development earlier in relation to 1000
generations.

-10000

-8000

-6000

-4000

-2000

0

2000

1 21 41 61 81 101 121 141 161 181 201 221 241

Generation

Fi
tn

es
s

T1
T2
T3
T4
T5

Figure 4. Fitness value development

-10000

-8000

-6000

-4000

-2000

0

2000

4000

1 22 43 64 85 106 127 148 169 190 211 232

Generation

Fi
tn

es
s p=50

p=100
p=150

Figure 5. Different population sizes

To analyze the effect of weighing one quality

evaluator over another, we have extracted the separate
sub-fitness curves for modifiability and efficiency in
cases where they were heavily weighted. In the first
test, depicted in Figure 7 and made with a population
size 100 and 250 generations, the modifiability func-
tions were weighted 10 times higher than the efficiency
functions. This results in the “normal” development of
the modifiability curve, while the efficiency curve

plummets quite rapidly, and continues to worsen
throughout the generations.

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

1 107 213 319 425 531 637 743 849 955

Generation

Fi
tn

es
s

g=1000

Figure 6. 1000 generations

-7000
-6000
-5000
-4000
-3000
-2000
-1000

0
1000
2000
3000

1 24 47 70 93 116 139 162 185 208 231

Generation

Fi
tn

es
s

Modifiability
Efficiency

Figure 7. Heavily weighted modifiability

In the second test, also made with a population size

of 100 and 250 generations, the efficiency fitnesses
were correspondingly weighted 10 times higher than
the modifiability functions. Figure 8 shows the respec-
tive efficiency and modifiability fitness curves. In this
case, the efficiency curve achieves very high values
from the very beginning and does not develop as no-
ticeably as the modifiability fitness in the previous
case. The modifiability fitness does not, however,
reach high values or develop, as it stays close to its
initial value around -500. The explanation for the poor
development of the efficiency curve lies within the
special cases inserted in the initial population. As the
efficiency fitness values big classes, it would assign a
high fitness value for the case where all responsibilities
are in the same class. From this initial case, it is fairly
easy to achieve individuals with very few classes, thus
achieving high efficiency fitness values, which are
hard to top, from the very beginning.

Finally, to analyze the effect of dynamic mutation
probabilities for the different design patterns, it was
tested whether there actually is a difference in the fit-
ness curve if the mutation probabilities remained the
same throughout the generations. In Figure 9, the
curves for tests with dynamic and static pattern muta-

tion probabilities are shown. As can be seen, with 250
generations and a population of 100, the fitness curve
achieves its high point quite early when the mutations
are static, but with the dynamic mutation probabilities,
the fitness value continues to develop. At the middle
part of the curves, tests with dynamic probabilities
achieve lower values than tests with static probabili-
ties. This may result from the population “suffering”
from the design decisions that were made “too early”,
e.g., Strategy patterns, and it takes a while to achieve a
level where the more refined design choices can be
made so that they actually improve the system. Thus, it
appears that dynamic mutation makes the basic struc-
ture of the architecture more amenable to fine-tuning in
the later phases.

-1000

-500

0

500

1000

1500

2000

2500

3000

1 24 47 70 93 116 139 162 185 208 231

Generation

Fi
tn

es
s

Modifiability
Efficiency

Figure 8. Heavily weighted efficiency

-10000

-8000

-6000

-4000

-2000

0

2000

4000

1 30 59 88 117 146 175 204 233

Generation

Fi
tn

es
s

Dynamic probabilities
Static probabilities

Figure 9. Pattern probability variation

In this chapter we have shown that the quality of an

architecture increases quite steadily with the selected
evaluators related to modifiability, efficiency and com-
plexity. If some quality attribute is heavily weighted in
the process, it may have significant negative effect on
another. Using dynamic mutation probabilities seems
to offer clear advantages in longer generation se-
quences.

5. Discussion

The best architecture of the last generation of each

run is considered as the result of the architecture syn-
thesis. This choice is somewhat arbitrary, since (i) a
better architecture might very well have appeared in
previous generations, and (ii) small differences in the
fitness values are not significant. However, the “best of
the breed” is an appropriate candidate for analyzing the
result of the process in general.

Typically, the results contain 50-60 classes (or
components) and interfaces. Recall that with 42 func-
tional responsibilities, the theoretical maximum for
classes and interfaces would be 84, since each respon-
sibility can be both in a class and in an interface. This
implies that the classes and interfaces are fairly small
in the average.

In our experiments, none of the results would have
been considered fully satisfactory as such by an exper-
ienced architect. The reason is that although many of
the results contained quite sensible solutions, there
were always also some solutions that no human archi-
tect would have done. The most common “unwanted”
features were small classes (with only one responsibil-
ity) and classes with unrelated responsibilities. Obvi-
ously, the “right” application of the decomposi-
tion/composition pattern is difficult for the genetic
process. This is not surprising, given that there is no
direct reward for having logically related responsibili-

ties in the same class. In contrast, design patterns and
architectural styles (message dispatcher) usually appear
in a sensible form.

As an example of the flavor of the results, Figure 10
depicts a part of the result of one run (made with 250
generations, lasting for 120 s), taken directly from the
output of our experimental tool (made with Java). The
example shows how the resulting architecture suggests
using a message dispatcher (in the middle) between the
user interface (introduced in Figure 1, present in the
topmost class), user management, and the device han-
dlers (below, e.g., Class87 contains drape control re-
sponsibilities introduced in Figure 1), with appropriate
interfaces (each arrow represents a “call” of a certain
responsibility). While this is a perfectly sensible solu-
tion, the architecture has in many cases separated logi-
cally related functionalities into one-responsibility
classes or interfaces.

6. Concluding remarks

We have shown that regularly behaving software

architecture synthesis is possible using genetic algo-
rithms, with a reasonable number of generations. Espe-
cially the use of higher level structuring patterns, like
architectural styles and design patterns, seems to fit the
genetic process quite well.

Figure 10. A part of an architecture proposed by genetic synthesis

Dynamic mutation probabilities of such patterns
lead to improved development of the quality. Yet, fully
satisfactory individual architecture proposals could not
be produced.

We see this work as a first step on a fairly long
road. We are still far from a situation where the result
produced by genetic architecture synthesis could be
adopted as such for a system, without human interven-
tion. However, we feel strongly that reasonably high-
quality architectures can be produced by genetic syn-
thesis. This requires improved techniques for specify-
ing and evaluating quality requirements, more compre-
hensive formulation of the architectural laws and pat-
terns, and more fine-tuning of the genetic parameters,
especially the fitness function. An attractive approach
would be “guided” evolution, where the genetic proc-
ess would be combined with deterministic design deci-
sions in specific situations where a certain solution is
known to work well. A dynamically changing fitness
function to more correctly evaluate architectures at
different stages of evolution is also a tempting direc-
tion to continue to. These topics are studied in our fu-
ture work.

References

[1] M. Amoui, S. Mirarab, S. Ansari and C. Lucas, A genetic
algorithm approach to design evolution using design pattern
transformation, International Journal of Information Tech-
nology and Intelligent Computing 1 (2006), 235-245.

[2] K. Beck and W. Cunningham, A laboratory for teaching
object-oriented thinking. In: Proc. OOPSLA ’89, Sigplan
Notices 24 (1989), 1-6.

[3] H. de Bruin and H. van Vliet, Quality-driven software
architecture composition. Journal of Systems and Software
66, 3 (June 2003), 269-284.

[4] C.J. Burgess, A genetic algorithm for the optimisation of
a multiprocessor computer architecture, In: Proc. GALE-
SIA'9, IEE Conference Publication 414, 1995, 39-44.

 [5] S.R. Chidamber and C.F. Kemerer, A metrics suite for
object oriented design. IEEE Transactions on Software Engi-
neering 20, 6 (1994), 476-492.

[6] J. Clarke, J.J. Dolado, M. Harman, R. M. Hierons, B.
Jones, M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M.
Roper and M. Shepperd, Reformulating software engineering
as a search problem, IEE Proceedings - Software 150, 3
(2003), 161-175.

[7] M. Di Penta, M. Neteler, G. Antoniol and E. Merlo, A
language-independent software renovation framework, The
Journal of Systems and Software 77 (2005), 225-240.

[8] D. Doval, S. Mancoridis and B.S. Mitchell, Automatic
clustering of software systems using a genetic algorithm, In:
Proc. of the Software Technology and Engineering Practice,
1999, 73-82.

[9] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[10] L. Grunske, Identifying "good" architectural design
alternatives with multi-objective optimization strategies. In:
Proc. of the 28th International Conference on Software En-
gineering, Shanghai, China, 2006, 849 - 852.

[11] M. Harman, R. Hierons and M. Proctor, A new repre-
sentation and crossover operator for search-based optimiza-
tion of software modularization. In: Proc. GECCO 2000,
1351–1358.

[12] M. Harman and L. Tratt, Pareto optimal search based
refactoring at the design level, In: Proc. GECCO 2007,1106-
1113.

[13] V. Le Hanh, K. Akif, Y. Le Traon and J-M. Jézéquel,
Selecting an efficient OO integration testing strategy: an
experimental comparison of actual strategies. In: Proc.
ECOOP 2001, LNCS 2072, 2001, 381-401.

[14] Z. Michalewicz, Genetic Algorithms + Data Structures
= Evolutionary Programs. Springer-Verlag, 1992.

[15] M. O’Keeffe and M. Ó Cinnéide, Towards automated
design improvements through combinatorial optimization, In:
Workshop on Directions in Software Engineering Environ-
ments - 26th International Conference on Software Engi-
neeering, 2004, 75-82.

[16] M. O’Keeffe and M. Ó Cinnéide, Getting the most from
search-based refactoring In: Proc. GECCO 2007, 1114-1120.

[17] P. Robertson, H. Shrobe and R. Laddaga (eds.), Self-
Adaptive Software. Springer, 2000.

[18] H.A. Sahraoui, R. Godin and T. Miceli, Can metrics
help bridging the gap between the improvement of OO de-
sign quality and its automation? In: Proc. ICSM ’00, 2000,
154-162.

[19] O. Seng, M. Bauyer, M. Biehl and G. Pache, Search-
based improvement of subsystem decomposition, In: Proc.
GECCO 2005, 1045-1051.

[20] O. Seng, J. Stammel and D. Burkhart, Search-based
determination of refactorings for improving the class struc-
ture of object-oriented systems, In: Proc. GECCO 2006,
1909-1916.

[21] M. Shaw and D. Garlan, Software Architecture - Per-
spectives on an Emerging Discipline. Prentice-Hall, 1996.

