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Abstract 
 

Design of software architecture is intellectually one 
of the most demanding tasks in software engineering. 
This paper proposes an approach to automatically 
synthesize software architecture using genetic algo-
rithms. The technique applies architectural patterns 
for mutations and quality metrics for evaluating indi-
vidual architectures, producing a proposal for a soft-
ware architecture on the basis of functional require-
ments given as a graph of functional responsibilities. 
Two quality attributes are considered, modifiability 
and efficiency. The behavior of the genetic synthesis 
process is analyzed with respect to quality improve-
ment speed, the effect of population size, the effect of 
dynamic mutation, and the effect of quality attribute 
prioritization. It is concluded that genetic architecture 
synthesis in the proposed form is a converging process 
that is able to produce reasonable architectural solu-
tions, although fully satisfactory architectures have not 
been synthesized in our tests for an example system. 

 

1. Introduction 
 

A persistent dream of software engineering is to be 
able to automatically produce software systems based 
on their requirements. While this can be accomplished 
in narrow domains, in a general sense it is still out of 
reach for the current technology. Fully automated 
software synthesis succeeds in narrow domains be-
cause the intellectually difficult parts, the architecture 
design and the transformation of functional require-
ments into code, have predetermined domain-specific 
solutions. 

In this paper we study the problem of automated 
synthesis of software architecture in a domain-inde-
pendent manner, given some representation of func-
tional and quality requirements. We anticipate that this 
kind of technology can be exploited in various contexts 
in software engineering. Obviously, automated archi-
tecture synthesis can be used to produce initial or alter-

native architecture designs in a traditional software 
engineering process, to support the architect who is 
still responsible for the final result. On the other hand, 
if the technology can be made reliable enough, auto-
mated architecture synthesis can be exploited for ex-
ample in MDA (Model-Driven Architecture) ap-
proaches to support the mapping of models from prob-
lem level to solution level, or in self-adaptive systems 
[17] to assist in the self-reconfiguration triggered by 
changes in the environment. 

We argue that automated software architecture syn-
thesis is conceivable because a lot of architectural 
knowledge exists in the form of architectural styles, 
reference architectures, design patterns, best practices 
etc. These recommended general solutions, called here 
collectively architectural patterns, typically promote 
some quality attributes of the system, and possibly 
weaken others. For example, the use of the message 
dispatcher architectural style in the communication of 
components increases the modifiability of the system, 
but weakens its efficiency. 

In addition to architectural patterns, there are a 
number of rules concerning architecture design that are 
assumed to be followed in any architecture because of 
the consistency and cleanness of the design. For exam-
ple, if two components communicate through a mes-
sage dispatcher, it does not make sense to allow them 
direct communication, because that would invalidate 
the idea of using the message dispatcher. Here we call 
such rules architectural laws. 

For the purposes of this paper, the essence of soft-
ware architecture design is to find a combination of 
instances of architectural patterns, without breaking 
any architectural laws, in such a way that the func-
tional requirements hold with optimal quality pro-
perties. Here we will focus on two quality attributes, 
modifiability and efficiency. 

Viewed in this way, software architecture synthesis 
can be seen as a combinatorial problem: given a set of 
architectural patterns, how to find an optimal configu-
ration of such patterns for a non-trivial system? Typi-
cally, good architects apply their prior experiences 



 

about successful applications of architectural patterns, 
and often come up with a reasonable architecture de-
sign after some iterations. However, in automated ar-
chitecture synthesis this kind of intuition is not avail-
able, and an optimal solution must be found mechani-
cally. On the other hand, a mechanical process is also 
free of prejudices, being able to generate viable solu-
tions the human architect could never think of. 

In this paper we study the application of genetic al-
gorithms [14] to software architecture synthesis. Ge-
netic algorithms are a popular heuristic search method 
that has been successfully applied to problems some-
what similar to ours, see Chapter 2. Architectural pat-
terns provide a natural interpretation for mutations: a 
mutation can be realized as either the application or 
removal of an architectural pattern. Fitness function 
(that is, the “goodness” of an individual) can be ex-
pressed in terms of quality metrics, and crossover op-
eration can be realized by merging two architectures 
without breaking existing pattern instances. Our focus 
is on developing the required techniques for genetic 
architecture synthesis, and on the investigation of the 
overall behavior of the genetic architecture synthesis 
process. We are also interested to analyze individual 
architecture proposals produced by the method. The 
proposed architecture is produced as a UML class dia-
gram with (possibly stereotyped) classes, interfaces 
and their mutual dependencies.  

The main contributions of this work are a setup for 
genetic pattern-based software architecture synthesis 
and experimental analysis of the behavior of the ge-
netic synthesis process. The former includes an ap-
proach to represent functional requirements as a re-
sponsibility graph, techniques for representing archi-
tectural information as genes, for computing quality 
based fitness, and for architectural crossover and dy-
namic pattern-based mutation, and a demonstration of 
the genetic synthesis using exemplary sets of architec-
tural patterns and laws. The latter includes an analysis 
of the quality improvement speed, the effect of popula-
tion size, the effect of dynamic mutations, and the ef-
fect of prioritized quality attributes.  

We proceed as follows: In the following chapter we 
briefly review genetic algorithms and existing appro-
aches to apply them in problems related to software 
architecture problems. In Chapter 3 we present our 
approach to realize genetic software architecture syn-
thesis. In Chapter 4 we analyze the results of our ex-
periments. Chapter 5 contains a discussion of the char-
acter of the architectures proposed by genetic synthe-
sis, on the basis of the experiments run on a test case. 
Finally, we conclude with some remarks on future 
work in Chapter 6.   

2. Applications of genetic algorithms in 
software structuring  

2.1 Genetic algorithms 
 

Genetic algorithms are used to find a “good” solu-
tion from a very large search space.  To operate with a 
genetic algorithm, one needs an encoding of the solu-
tion, i.e., a representation of the solution in a form that 
can be interpreted as a chromosome, an initial popula-
tion, mutation and crossover operators, a fitness func-
tion and a selection operator for choosing the survivors 
for the next generation. The actual implementations of 
these fundamental structures vary a lot from an appli-
cation to another. However, the key idea maintains the 
same: better individuals (solutions) have greater possi-
bilities to reproduce, while worse solutions have 
greater possibilities to die and to be replaced by new 
individuals.  It is believed that this process leads to a 
combination of the properties of the better individuals, 
which constitutes a good solution to the problem in 
question. We assume that the reader is familiar with 
the basics of genetic algorithms, as given, e.g., in [14]. 

2.2 Software clustering and systems integration 
 

The goal of software clustering or module cluster-
ing is to find the best grouping of components to sub-
systems in an existing software system. The problem is 
to partition the graph so that the clusters represent 
meaningful subsystems.  

The genetic algorithm presented by Clarke et al. [6] 
for the clustering problem is quite straightforward: the 
main challenge is to find a suitable encoding, after 
which traditional mutation and crossover operators are 
used. Defining these operations is, however, not so 
simple. Clarke et al. [6] introduce several cases where 
a hill-climbing algorithm has outperformed genetic 
algorithms, and the blame is usually placed with the 
encoding and crossover used with the genetic algo-
rithm.  

Doval et al. [8] have used a genetic algorithm ap-
proach for the optimization of the module clustering 
problem.  

Harman et al. [11] approach the clustering problem 
from a re-engineering point of view: after maintaining 
a system its modularization might not be as good as it 
was when it was taken to use. Harman et al. define 
their problem as searching the space of possible modu-
larizations around the current granularity to see if there 
exists a better allocation for the components.  

Di Penta et al. [7] introduce the Software Renova-
tion Framework (SRF) that attempts to remove unused 



 

objects and code clones and to refactor existing librar-
ies into smaller, more cohesive clusters. Genetic algo-
rithms have been used especially to help with refactor-
ing.  

Seng et al. [19] represent the system as a graph, 
where the nodes are either subsystems or classes, and 
edges represent containment relations (between sub-
systems or a subsystem and a class) or dependencies 
(between classes).  In this application each gene repre-
sents a subsystem, and each subsystem is an element of 
the power set of classes.  

Systems integration is in a way quite similar to 
module clustering but with known modules. The prob-
lem is to decide the order in which they are incorpo-
rated to the system. The order of integration of compo-
nents can be presented as a permutation of the set of 
components [6]. Le Hanh et al. [13] present a similar 
solution to the integration testing problem.  

2.3 Systems refactoring 
 

Systems refactoring is a somewhat more delicate 
problem than module clustering. When refactoring a 
system, there is the risk of changing the behavior of a 
system by, e.g., moving methods from a subclass to an 
upper class [20]. Hence, the refactoring operations 
should always be designed so that no illegal solutions 
will be generated or a corrective operation is used to 
check that the systems behavior stays the same.  

O’Keeffe and Ó Cinneide [16] define the refactor-
ing problem as a combinatorial optimization problem: 
how to optimize the weighting of different software 
metrics in order to achieve refactorings that truly im-
prove the system’s quality.  Seng et al. [20] have a 
similar approach as O’Keeffe and Ó Cinneide [15], as 
they attempt to improve the class structure of a system 
by moving attributes and methods and creating and 
collapsing classes.  

O’Keeffe and Ó Cinneide [16] have continued their 
research with the use of the representation and muta-
tion and crossover operators introduced by Seng et al. 
[20]. O’Keeffe and Ó Cinneide [16] also compared the 
genetic algorithm to some other search algorithms. 

Harman and Tratt [12] introduce a more user-
centered method of applying refactoring. They offer 
the user the option to choose from several solutions 
produced by the search algorithm, and also point out 
that the user should be able to limit the kind of solu-
tions she wants to see.  

2.4 Architectural improvement 
 

Architectural transformations apply bigger modifi-
cations to the system than simple refactoring ope-

rations. An example of architectural transformation is 
the introduction of design patterns in the architecture. 

Amoui et al. [1] have applied genetic algorithms for 
finding the optimal sequence of design pattern trans-
formations to increase the reusability of a software 
system. Similar studies are also performed by Grunske 
[10].  

In addition to design-related software engineering 
problems, there are several other fields of software 
engineering where heuristic search algorithms have 
been successfully implemented.  However, we do not 
survey these topics here. 

2.5 Relationships to our work 
 
Our work is similar to [1] in that we use high-level 

structural units, patterns, as the basis of mutations in a 
genetic process. We have also applied the supergene 
idea of [1], to be discussed in Chapter 3, as a starting 
point for representing the architecture. However, there 
are several differences. First, we consider not only re-
usability (or modifiability) as the quality criteria, but in 
principle we are interested in the overall quality of the 
architecture. In this paper we focus on two quality at-
tributes, efficiency and modifiability.  

Second, we aim at the synthesis of the architecture 
starting from requirement-level information, rather 
than at improving an existing architecture. Third, we 
do not restrict to design patterns, but consider more 
generally various kinds of architectural solutions at 
different levels. 

Our viewpoint is different from that of system clus-
tering and refactoring. System clustering considers 
software architecture only from the decomposition 
perspective, and software refactoring aims at structural 
fine-tuning of software architecture, whereas our ap-
proach strives for automating the entire architecture 
design process.  

3. Genetic architecture synthesis 

3.1 Functional requirements 
 

A major problem in automated software architecture 
synthesis is the representation of functional require-
ments. Since the technique should be applicable in any 
domain, we cannot make assumptions about the actual 
semantics of the functional requirements. Yet, although 
software architecture design is usually driven by qua-
lity requirements rather than by functional require-
ments (e.g. [3]), the architecture is senseless without 
functionality. We have adopted here an approach 
where functional requirements are represented as a 



 

graph of named functional responsibilities. These re-
sponsibilities remain as elements of the architecture, 
although they carry no semantics as far as the architec-
ture synthesis is concerned.  

Our approach stems from an old idea related to ob-
ject-oriented design, CRC cards [2] (Class-Responsi-
bility-Collaboration) originally proposed by Ward 
Cunningham for teaching object-oriented design. A 
CRC card contains three parts: the name of a class, the 
responsibilities of that class, and the collaborators of 
the class supporting the responsibilities. CRC cards 
help to find and collect the responsibilities associated 
with classes, together with the required collaborators 
(other classes). As a result of a design session based on 
CRC cards, use cases are refined into a rudimentary 
class structure, where classes host informal responsi-
bilities rather than concrete methods. 

We adopt the CRC idea of refining use cases (repre-
senting functional requirements) into responsibilities: 
the input for architectural synthesis consists of respon-
sibilities. The same responsibilities will appear in the 
architecture proposals, assigned to interfaces and 
classes. Responsibilities do not necessarily become 
actual operations in the detailed design, but we argue 
that they express the functional aspect of the system at 
an appropriate level for architectural description. 

  However, in contrast to CRC design, we assume 
that each use case is considered only in terms of the 
responsibilities required to fulfill the use case, without 
thinking of classes. As in CRC design, we also identify 
the dependencies, not between classes but between 
responsibilities. That is, if some responsibility needs 
another responsibility, the former depends on the latter. 
A viable architecture must respect the dependencies in 
the sense that a component whose responsibility de-
pends on a responsibility of another component must 
be linked to the latter component, and a link can exist 
only because of that. In addition, we use a special kind 
of responsibility, a data manager responsibility, for a 
data entity that is needed in a use case. 

To allow the evaluation of the quality (that is, effi-
ciency and modifiability) of the architecture, the re-
sponsibilities can be associated with values characte-
rizing the assumed size of the parameter data needed 
by the responsibility, the assumed time consumption of 
the responsibility, and the assumed variability factor of 
the responsibility (the greater the factor, the more 
prone the responsibility is to change). Naturally, in 
many cases these are difficult to estimate in the early 
phases of the software development process, but for the 
sake of successful architecture synthesis, at least the 
most obvious and significant responsibility characteris-
tics should be given in order to correctly evaluate the 
quality of proposed architectures. 

In this work we have used an intelligent home sys-
tem as a case study. Such a system provides an infra-
structure and interfaces for controlling various home 
devices, like lights, drapes, and audio. A fragment of 
the responsibility graph given as input for the genetic 
architecture synthesis of this system is depicted in Fig-
ure 1, where the dependencies between and names of 
responsibilities are shown, as well as property values 
for variability factor, parameter size and time con-
sumption (in this order). The drapeState responsibility 
is a data responsibility, marked with thicker line. In the 
middle of the graph is the responsibility CalculateOp-
timalDrape, which has a variability of 3, as the optimal 
drape position can be computed differently in different 
types of homes. It has a parameter size 6, indicating 
that it needs relatively large parameter set. Its call cost 
is 90, showing that it is a heavier operation than, e.g., 
RunDrapeMotor with a cost of 60. All property values 
are relative rather than absolute. The entire responsibil-
ity set for this system contains 42 functional responsi-
bilities, 10 data responsibilities and 90 dependencies 
between them.  

 

 
Figure 1. Fragment of a responsibility depend-

ency graph 
 
A responsibility graph is assumed to be produced 

from requirements by walking through the use cases in 
the CRC style, identifying the needed functionalities 
and their dependencies. The architecture produced by 
the genetic synthesis reflects functional requirements 
only to the extent the responsibilities have been identi-
fied. It may be perfectly sensible to produce an archi-
tecture proposal only for a subset of responsibilities 
that is expected to be architecturally significant. 

3.2 Architectural patterns 
 

In the context of the present paper, an architectural 
pattern can be any general structural solution applied at 
the architectural level to improve some quality attribute 
of the system. Architectural patterns have been sys-
tematically catalogued as architectural styles and de-
sign patterns, but here we regard basic practices like 
decomposition and use of interfaces also as architec-
tural patterns. Each architectural pattern gives rise to 
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two mutation operations: introducing and removing the 
pattern. 

In our experiments, we have used the following list 
of architectural patterns: 

 
• decomposing a component 
• using an interface 
• Strategy design pattern [9] 
• Façade design pattern [9] 
• message dispatcher architectural style [21] 
• communication through a dispatcher. 
 
This collection of architectural patterns is of course 
very small, and intended only for experimentation pur-
poses. We wanted to cover different levels of architec-
tural patterns: basic practices, low-level design patterns 
(Strategy), medium-level design patterns (Façade), and 
high-level architectural styles (message dispatcher). 
The last architectural pattern is introduced for allowing 
components to join a message dispatcher introduced 
earlier. We expect that a real architecture synthesis tool 
would employ hundreds of architectural patterns.    

3.3 Architectural laws 
 

The purpose of architectural laws is to prevent vari-
ous kinds of anomalies in the architecture. Mutation 
and crossover operations are implemented in such a 
way that these laws always hold. In our experiments, 
we have used three kinds of laws. Firstly, these laws 
ensure uniform calls between two classes: a class can 
communicate with another class only in a single man-
ner (e.g. through an interface or through a message 
dispatcher). Secondly, the laws state some ground rules 
about architecture design, for example, that a responsi-
bility can appear at most once in an interface, and that 
unused interfaces and data responsibilities implement-
ing interfaces are not allowed. Thirdly, the laws regu-
late the order of introduction. For instance, a dispatcher 
must be introduced to the system before responsibili-
ties can use it for communication. 

3.4 Initial population 
 

An initial population is first produced, where only 
basic structures, such as class division and interfaces 
for the responsibilities are randomly chosen. To ensure 
as wide a traverse through the search space as possible, 
four special cases are inserted: all responsibilities being 
in the same class, all responsibilities being in different 
classes, all responsibilities having their own interface, 
and all responsibilities being as much grouped to same 
interfaces as the class division allows. 

3.5 Genetic encoding of architecture  
 

In order for the genetic algorithm to operate on 
software architecture, the architecture needs to be rep-
resented as a chromosome consisting of genes. For 
efficiency, in this experiment the architecture encoding 
is designed to suit the chosen set of architectural pat-
terns. We have followed the supergene idea, introduced 
by Amoui et al. [1]. In traditional chromosome repre-
sentation, each chromosome consists of several genes, 
each of which has one field. A supergene, however, 
has several fields to store data in. Taking this idea as a 
starting point, it is quite straightforward to place all 
information regarding one responsibility into one su-
pergene. This also makes it easier to keep the architec-
ture consistent, as no responsibility can be left out of 
the architecture at any point, and there is no risk of 
breaking the dependencies between responsibilities. 

There are two kinds of data regarding each respon-
sibility ri. Firstly, there is the basic information given 
as input. This contains the responsibilities Ri = {rk, rk+1, 
…, rm}  depending on ri, its name ni, type di, frequency 
fi, parameter size pi, execution time ti, call cost ci and 
variability vi. Secondly, there is the information re-
garding the responsibility ri’s place in the architecture: 
the class(es) Ci ={Ci1, Ci2, …, Civ} it belongs to, the in-
terface Ii it implements, the dispatcher Di it uses, the 
responsibilities RDi ⊂  Ri that call it through the dis-
patcher, and the design pattern Pi it is a part of. The 
dispatcher is given a separate field as opposed to other 
patterns for efficiency reasons. Figure 2 depicts the 
structure of a supergene.  

 
Ri ni di fi pi ti ci vi Ci Ii Di RDi Pi 

Figure 2. Supergene SGi for responsibility ri 

 
The actual chromosome is formed by simply col-

lecting all supergenes. Figure 3 illustrates a chromo-
some with m responsibilities.  
 

SG1 SG2 …. SGm-1 SGm 
Figure 3. Chromosome 

 
Although basic operations in the architecture are 

relatively safe with this representation method (i.e., the 
responsibilities and their dependencies stay intact in 
the architecture), the design patterns produce chal-
lenges at the chromosome level, as careless operations 
can easily break patterns and make the architecture 
incoherent. Thus, in order to quickly check the legality 
of an operation with regard to patterns, a Pattern field 
is located in every supergene. The Pattern field has as 
attributes the classes and responsibilities “using” the 



 

pattern, the classes and responsibilities “used by” the 
pattern, as well as the interfaces involved. 

3.6 Mutation and crossover operations 
 

All mutations are implemented as either introducing 
or removing an architectural pattern. This ensures a 
free traversal through the search space, as moves that 
may have seemed good at one time can be cancelled 
later on. 

All mutations except for introducing a message dis-
patcher or a design pattern operate purely at supergene 
level by changing the value of one field. Introducing a 
new dispatcher to the system, however, affects the en-
tire chromosome, and cannot be achieved by altering 
the data for a specific responsibility. Thus, the incorpo-
ration of a dispatcher is achieved by adding a 
“dummy” gene with only the dispatcher field contain-
ing data. Introducing patterns, on the other hand, oper-
ate at supergene level, but affect more than one gene. 
As mentioned in Section 3.5, it is a challenge to keep 
complex patterns intact through changes that should 
not affect patterns, e.g., merging classes. Because of 
this, the legality of a mutation is always checked be-
fore it is administered to the selected gene. 

Mutations are given a certain probability with 
which they are applied. The roulette wheel method, 
where each mutation is given a “slice” in proportion to 
its probability, is used for selecting a mutation. A 
“null” mutation is also possible, giving a chromosome 
the chance to stay intact into the next generation. In 
addition, to study the effect of favoring more funda-
mental solutions in early stages, dynamic mutation 
probabilities have been defined for chosen patterns 
(dispatcher, Façade and Strategy). After 1/3 of the gen-
erations have been through, the probability of introduc-
ing a dispatcher to a system is decreased, and the prob-
ability of introducing a Façade pattern is increased 
respectively. After another 1/3 of generations have 
passed, the probability of the Façade mutation is de-
creased, and the probability for implementing a Strat-
egy pattern is increased respectively. The hypothesis is 
that favoring fundamental solutions (like architectural 
styles) in the earlier stages of evolution leads to a 
stronger core architecture that can be more easily re-
fined at later stages by lower-level solutions. 

In our approach, the crossover operation is also seen 
as a type of mutation, and thus, it is also included in 
the “roulette wheel”. The crossover is implemented as 
a traditional one-point crossover with corrective func-
tions regarding design patterns. To properly correct the 
crossover result, an order of importance must be decid-
ed to deal with overlapping patterns from the two par-
ent chromosomes. Following the idea by Burgess [4], it 

is decided that the left side of the offspring is always 
the valid one, and the right side of the crossover point 
is corrected so that the whole architecture is valid. 

 The crossover probability increases linearly in re-
gard to how high the fitness of an individual is in the 
population. This increases the chances that the in-
dividual will stay intact after the mutation, as in order 
to fit the larger crossover “slice” to the “wheel”, the 
probabilities of other mutations are decreased. Also, 
after crossover, the parents have a chance to be se-
lected to the next population as such. This favors 
strong individuals to be kept intact through gene-
rations. 

The actual mutation and crossover points (genes to 
be mutated) are selected randomly. However, we have 
taken advantage of the variability property of responsi-
bilities with the strategy and dispatcher communication 
mutations. This should favor highly variable responsi-
bilities. The chances of a gene being subjected to these 
mutations increase linearly according to the variability 
value of the corresponding responsibility. 

3.7 Fitness function 
 

The fitness function is based on widely used soft-
ware metrics [18], most of which are from the metrics 
suite introduced by Chidamber and Kemerer [5]. These 
metrics have been used as a starting point for the fit-
ness function, and have been further developed and 
grouped to achieve clear “sub-fitnesses” for modifi-
ability and efficiency, both of which are measured with 
a positive and negative metric. The biggest modifica-
tions to the basic metrics include taking into account 
the positive effect of interfaces and the dispatcher ar-
chitecture style in terms of modifiability, as well as the 
negative effect of the dispatcher in terms of efficiency. 
A complexity metric is added to penalize having many 
classes and interfaces as well as extremely large 
classes. 

Dividing the fitness function into sub-functions an-
swers the demands of the real world. Hardly any archi-
tecture can be optimized from all quality viewpoints, 
but some viewpoints are ranked higher than others, 
depending on the demands regarding the architecture. 
By separating efficiency and modifiability, which are 
especially difficult to optimize simultaneously, we can 
assign a bigger weight to the more desired quality as-
pect. When wi is the weight for the respective sub-
fitness sfi, the fitness function f(x) for chromosome x 
can be expressed as  

f(x) = w1∗sf1  – w2∗sf2 + w3∗ sf3 – w4∗ sf4 – w5∗ sf5.   
Here, sf1 measures positive modifiability, sf2 negative 
modifiability, sf3 positive efficiency, sf4 negative effi-
ciency and sf5 complexity. The multiplier 10 in sf1 



 

notes that having unused responsibilities in an interface 
is almost an architecture law, and should be more 
heavily penalized. The sub-fitness functions are de-
fined as follows (|X| denotes the cardinality of X): 
sf1 = |interface implementors| + |calls to interfaces| + 
(|calls through dispatcher| ∗ ∑ (variabilities of respon-
sibilities called through dispatcher)) – |unused respon-
sibilities in interfaces| ∗ 10,  
sf2 = |calls between responsibilities in different classes|, 
sf3 = ∑ (|dependingResponsibilities within same class| 
∗ parameterSize + ∑ |usedResponsibilities in same 
class| ∗ parameterSize + |dependingResponsibilities in 
same class| ∗ parameterSize)),  
sf4 = ∑ ClassInstabilities + |dispatcherCalls| ∗  
∑ callCosts, and 
sf5 = |classes| + |interfaces| + BigClassPenalty. 

Selection of individuals for the next population is 
made with a roulette wheel selection, where the size of 
each “slice” is linearly in proportion to how high the 
corresponding individual’s fitness is in the population. 
No individual can be selected more than once. Thus, 
the “slices” are adjusted after each selection to repre-
sent the differences between fitnesses of the remaining 
individuals. 

4. Experiments 
 

In this chapter we present the results from the pre-
liminary experiments done with our approach, using 
the example system introduced in Section 3.1. All test 
runs were conducted with a fixed set of mutation prob-
abilities, found after extensive testing. The calculated 
fitness value is the average of 10 best fitnesses in each 
generation. In all test runs apart from the first one 
(shown in Figure 4), the actual y-value for the curve is 
achieved as the average value from five test runs.  

First, we tested that the development of fitness val-
ues was similar with each run of the algorithm. As can 
be seen in Figure 4, the fitness value curves are very 
similar in each of the five test runs, made with the 
same weights to all sub-fitnesses and having a popula-
tion size of 100 and 250 generations. 

After assuring that the populations did indeed de-
velop similarly, the effect of the population size and 
amount of generations could be tested. Figure 5 shows 
the fitness curves achieved with the same weight for all 
sub-fitnesses and 250 generations with population size 
p. As can be seen, the curve achieves higher values 
when the size of the population grows. This is ex-
pected, as in bigger populations there are better possi-
bilities to have more exceptionally good individuals 
when more options can be considered simultaneously.  

In addition to the population size, the amount of 
generations is another basic parameter to be adjusted to 
all genetic algorithms. Different generation numbers 
were tested to see for how long the fitness values con-
tinued to increase. These tests were made with a popu-
lation size of 100 and generation numbers of 250, 500 
and 1000. As can be seen in Figure 6, depicting the 
evolvement of fitness values over 1000 generations, 
the fitness values achieve their highpoint after around 
750 generations, and achieve quite high values already 
after 500 generations. The development with smaller 
generations was quite similar to the values that are 
achieved in this curve until 250 and 500 generations. 
However, the curves with smaller generations were 
slightly higher than here, as the dynamic mutation 
probabilities, discussed in Section 3.6, had a chance to 
enhance the development earlier in relation to 1000 
generations.  
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Figure 4. Fitness value development 

 
 

-10000

-8000

-6000

-4000

-2000

0

2000

4000

1 22 43 64 85 106 127 148 169 190 211 232

Generation

Fi
tn

es
s p=50

p=100
p=150

 
Figure 5. Different population sizes 

 
To analyze the effect of weighing one quality 

evaluator over another, we have extracted the separate 
sub-fitness curves for modifiability and efficiency in 
cases where they were heavily weighted. In the first 
test, depicted in Figure 7 and made with a population 
size 100 and 250 generations, the modifiability func-
tions were weighted 10 times higher than the efficiency 
functions. This results in the “normal” development of 
the modifiability curve, while the efficiency curve 



 

plummets quite rapidly, and continues to worsen 
throughout the generations.  
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Figure 6. 1000 generations 
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Figure 7. Heavily weighted modifiability 

 
In the second test, also made with a population size 

of 100 and 250 generations, the efficiency fitnesses 
were correspondingly weighted 10 times higher than 
the modifiability functions. Figure 8 shows the respec-
tive efficiency and modifiability fitness curves. In this 
case, the efficiency curve achieves very high values 
from the very beginning and does not develop as no-
ticeably as the modifiability fitness in the previous 
case. The modifiability fitness does not, however, 
reach high values or develop, as it stays close to its 
initial value around -500. The explanation for the poor 
development of the efficiency curve lies within the 
special cases inserted in the initial population. As the 
efficiency fitness values big classes, it would assign a 
high fitness value for the case where all responsibilities 
are in the same class. From this initial case, it is fairly 
easy to achieve individuals with very few classes, thus 
achieving high efficiency fitness values, which are 
hard to top, from the very beginning. 

Finally, to analyze the effect of dynamic mutation 
probabilities for the different design patterns, it was 
tested whether there actually is a difference in the fit-
ness curve if the mutation probabilities remained the 
same throughout the generations. In Figure 9, the 
curves for tests with dynamic and static pattern muta-

tion probabilities are shown. As can be seen, with 250 
generations and a population of 100, the fitness curve 
achieves its high point quite early when the mutations 
are static, but with the dynamic mutation probabilities, 
the fitness value continues to develop. At the middle 
part of the curves, tests with dynamic probabilities 
achieve lower values than tests with static probabili-
ties. This may result from the population “suffering” 
from the design decisions that were made “too early”, 
e.g., Strategy patterns, and it takes a while to achieve a 
level where the more refined design choices can be 
made so that they actually improve the system. Thus, it 
appears that dynamic mutation makes the basic struc-
ture of the architecture more amenable to fine-tuning in 
the later phases. 
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Figure 8. Heavily weighted efficiency 
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Figure 9. Pattern probability variation 

 
In this chapter we have shown that the quality of an 

architecture increases quite steadily with the selected 
evaluators related to modifiability, efficiency and com-
plexity. If some quality attribute is heavily weighted in 
the process, it may have significant negative effect on 
another. Using dynamic mutation probabilities seems 
to offer clear advantages in longer generation se-
quences. 



 

5. Discussion 
 
The best architecture of the last generation of each 

run is considered as the result of the architecture syn-
thesis. This choice is somewhat arbitrary, since (i) a 
better architecture might very well have appeared in 
previous generations, and (ii) small differences in the 
fitness values are not significant. However, the “best of 
the breed” is an appropriate candidate for analyzing the 
result of the process in general. 

Typically, the results contain 50-60 classes (or 
components) and interfaces. Recall that with 42 func-
tional responsibilities, the theoretical maximum for 
classes and interfaces would be 84, since each respon-
sibility can be both in a class and in an interface. This 
implies that the classes and interfaces are fairly small 
in the average. 

In our experiments, none of the results would have 
been considered fully satisfactory as such by an exper-
ienced architect. The reason is that although many of 
the results contained quite sensible solutions, there 
were always also some solutions that no human archi-
tect would have done. The most common “unwanted” 
features were small classes (with only one responsibil-
ity) and classes with unrelated responsibilities. Obvi-
ously, the “right” application of the decomposi-
tion/composition pattern is difficult for the genetic 
process. This is not surprising, given that there is no 
direct reward for having logically related responsibili-

ties in the same class. In contrast, design patterns and 
architectural styles (message dispatcher) usually appear 
in a sensible form. 

As an example of the flavor of the results, Figure 10 
depicts a part of the result of one run (made with 250 
generations, lasting for 120 s), taken directly from the 
output of our experimental tool (made with Java). The 
example shows how the resulting architecture suggests 
using a message dispatcher (in the middle) between the 
user interface (introduced in Figure 1, present in the 
topmost class), user management, and the device han-
dlers (below, e.g., Class87 contains drape control re-
sponsibilities introduced in Figure 1), with appropriate 
interfaces (each arrow represents a “call” of a certain 
responsibility). While this is a perfectly sensible solu-
tion, the architecture has in many cases separated logi-
cally related functionalities into one-responsibility 
classes or interfaces.        

6. Concluding remarks 
 
We have shown that regularly behaving software 

architecture synthesis is possible using genetic algo-
rithms, with a reasonable number of generations. Espe-
cially the use of higher level structuring patterns, like 
architectural styles and design patterns, seems to fit the 
genetic process quite well.  
 
 

 
 

Figure 10. A part of an architecture proposed by genetic synthesis 



 

Dynamic mutation probabilities of such patterns 
lead to improved development of the quality. Yet, fully 
satisfactory individual architecture proposals could not 
be produced.    

We see this work as a first step on a fairly long 
road. We are still far from a situation where the result 
produced by genetic architecture synthesis could be 
adopted as such for a system, without human interven-
tion. However, we feel strongly that reasonably high-
quality architectures can be produced by genetic syn-
thesis. This requires improved techniques for specify-
ing and evaluating quality requirements, more compre-
hensive formulation of the architectural laws and pat-
terns, and more fine-tuning of the genetic parameters, 
especially the fitness function. An attractive approach 
would be “guided” evolution, where the genetic proc-
ess would be combined with deterministic design deci-
sions in specific situations where a certain solution is 
known to work well. A dynamically changing fitness 
function to more correctly evaluate architectures at 
different stages of evolution is also a tempting direc-
tion to continue to. These topics are studied in our fu-
ture work. 
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