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Abstract

This paper describes some of the many-faceted technologiesthat are known as
the Grid. These technologies have been used create distributed applications and
data services in a secure manner.

With existing Grid software, several milestones have been reached. However,
most of the applications that run on production Grids are quite specialised and
require a lot of expertise to set up, run and maintain. In thispaper, we design and
implement an easy, generic framework for resource, serviceand data description
directory, and a present a user interface prototype for it.

In this framework, the user is not using “computer programs”in the traditional
way, there are only services and data that the services can manipulate for the user.

Keywords: Grid, Grid services, virtual organizations.

1 Introduction

As Foster et al. state in [FKNT04], “Grid systems and applications aim to integrate, vir-
tualize, and manage resources and services within distributed, heterogeneous, dynamic
’virtual organizations’.” Catlett in [Cat03] divides Gridsystems into three generations.
The first generation involved local ”metacomputers” with basic services such as dis-
tributed file systems and site-wide single sign-on. It was upto programmers to provide
distributed applications using these and custom communication protocols. The second
generation Grids such as I-WAY [DFP+96], Legion [GW97] and Condor [LLM88]
created software services and communications protocols that could be used as a ba-
sis for developing distributed applications and services.It is, however, obvious that
these new bundles of services and protocols (later called Grid middlewares) were mu-
tually incompatible. Catlett sees the third generation Grids to be based on compatible
technologies and architectures, featuring Open Grid Service Architecture (OGSA, see
[FKNT04]).

With second generation Grid Systems, the concept of job management is perva-
sive: the user designs a job description that declares the computing and data resources
needed, and a system known as the resource broker uses some heuristics to find an “end



Figure 1: A general architecture of a typical second generation Grid

point” where the job can be run. After a (hopefully) successful completion, the results
of the job are stored and the user is notified. As an example of asecond generation
Grid system, we consider Condor-G [F+02], a combination of Condor batch job man-
agement system and Globus Toolkit (see [FK97]). A simplifiedview of such a system
is shown in Figure 1. There, the resources (storage, computing power) register their
capabilities in a resource information directory. The userwho wants to utilize the re-
sources expresses his request (2) using a job description language. The resource broker
matches the resources and the request and the job is send to beexecuted in a “suitable”
location (3). The results are either recovered by the user (4) or “automatically” written
to the specified location.

However, the main focus of this paper are Grid technologies beyond job submis-
sions. The important concepts to build on are those of virtual organizations; secure
services; resource and service ontologies; and resource and service catalogs. As a
novel item of design, we present how to describe data in the Grid context and integrate
it with resources and services. Based on these, we present a design and a prototype
of a service oriented Grid system that emphasises the semantics of data, resources and
services. As far as we know, a coherent, ontological framework like this has not been
presented previously, though several of its components have been developed in Grid
projects (see below).

The rest of the paper is organized as follows. In Section 2, weprovide a back-
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ground to existing Grid systems and discuss how toaccessa known Grid resource and
service. This section can be read as a survey of basic Grid technologies. In Section 3
we present how todescriberesources, services and data; more specifically in Section
3.1 we provide an ontology-based description framework forresources, in 3.2 for Grid
services, and in 3.3 for data. The main contribution of this paper is presented in Sec-
tion 4, where a unified design of a resource, service and data directory is presented. In
Section 5 we discuss how a user could intuitively use such a platform of services and
resources.

2 Related work and background

Related work relevant in this context includes Foster and Kesselman’s seminal intro-
ductions to the Grid (and applications) in [FK98, FK03]. Specifically, Chapter 21,
[SNWN03a], in the latter, and Chapter 4 of [LB05] describe the state of the art of Grid
security technologies; they are used as the background of Section 2.1.

The Open Grid Service Architecture (OGSA) has been presented in [FKNT04,
KT05, FK03]. OGSA is based on Semantic Web technologies, discussed in [BLHL01,
AvH04]. Among these technologies, the Resource Description Framework (RDF)
[W3C04c] and Web Ontology Language (OWL) [B+04] are World Wide Web Consor-
tium recommendations for the Semantic Web and previously applied to Grid context
for instance in [PCS03]. Applying Semantic Web technologies to Grid environments
is commonly known as the Semantic Grid and discussed in e.g. [RJS05].

Grid resource descriptions have been an issue of many studies, e.g. [KBM02]. The
resource descriptions are matched with the requirements ofjobs by different brokering
approaches discussed in e.g. [YSL05, VBW05]. The concept ofGrid services in OGSA
embraces the management of resources as “Resource management services” and data
as “Data services” (see [PTF05]). Research related to discovering Grid resources and
services has been done in e.g. [HDH+04, LvS02, TDK03, BGG03]. However, a specif-
ically data oriented approach is seen in Open Grid Service Architecture - Data Access
and Integration OGSA-DAI [A+05b].

2.1 Authentication and authorisation in Grids

Authentication (i.e. user identity verification) and authorisation, i.e. deciding whether
the user can have an access to a certain resource are essential in distributed applications.

Authentication and authorisation in Grid relies on public key infrastructure (PKI).
The best-known example of its use is Grid security infrastructure (GSI) promoted by
the Globus Alliance (see [SNWN03b]).

PKI is a set of protocols, services and standards that facilitate the use of public
key cryptography by allowing the secure distribution of public keys between commu-
nicating parties, and thereby supporting the exchange of sensitive information over an
unsecured network such as the Internet [Nie02]. PKI uses twodigital keys mathe-
matically related: a public key and a corresponding and unique private key. Given a
message, an encryption function (that crypts the message) EK can be easily computed
from the public key X, and X is computed from the private key K.X is published, so
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that anyone can encrypt messages. If a decryption function DK cannot be easily com-
puted from X without knowledge of K, but readily with knowledge of K, then only the
person who generated K can decrypt messages (adapted from [cc04], for details, see
[MvOV96]).

In the scope of this paper we discuss PKI as related to digitalcertificates. In order
to do so, we need the concept of digital signature, that we describe following Galwin
and Murphy [GM95]:

“A digital signature for an object is created by hashing the object with a one-way
hash function and encrypting (signing) the hash value with the private key component
of a public/private key pair. The signature is verified by decrypting it with the public
key component to expose the hash value and comparing the exposed hash value to a
recomputed hash value. If the two hash values match the signature is [..] considered
valid.”

Currently, X.509 version 3 (recommended by the International Telecommunica-
tions Union (ITU) in [IT97]) is the most commonly used PKI standard.

A X.509 v3 certificate contains information referring to a public key, which has
been digitally signed by a Certification Authority (CA). It is represented by a document
where the public key is contained – as well as other useful identification information
such as the distinguished name (DN) of the entity it identifies, an expiration date and
the CA’s name (see [Nie02]). The certificate assures any relying party (using the public
key) that the associated private key is held by the ”correct”remote entity to whom the
certificate was created. An example of a X.509 v3 user certificate is shown in Figure
3. A host certificate that identifies for instance a computer is somewhat different; some
fields of such a certificate are shown in Figure 4. Some fields ofthe (self-signed)
NorduGrid CA certificate are shown in Figure 5.

A proxy credential allows entity A to grant to another entityB the right for B to
be authorised with others as if it were A (see [T+04, W+04]). In the context of GSI,
proxy credentials areproxy certificates; typically user proxies (created by the user) or
delegated proxies (created by services, using the user proxy). A user proxy contains
both a publicanda private key with a subject of “A/proxy”1, together with A’s public
key and it is signed by A. A service or other entity receiving the proxy can verify that it
is indeed signed by A. Moreover, through A’s public key, it can verify that it has been
signed by the CA it claims to be. However, since an interceptor can at least theoretically
steal the proxy, its validity is typically limited to 12 hours.2 The authentication process
is described in Figure 2, adopted from [The04a], [LB05] and Globus GSI source code.
Technically, the method of implementation for carrying outthe exchange of certificate
information is based on Secure Sockets Layer/Transport Layer Security (SSL/TLS)
[Tho00]. The negotiation takes places when the connection is established between the
client and the server.

As obvious in Figure 2, the identity of the host computer is based on its IP address
and host name. This can be seen as limitation; a novel approach called Host Identity

1More recent approaches use an unique identifier instead.
2In a typical Unix system case, user proxies are stored in the file system’s /tmp directory with a file name

indicating the user’s id, and they are readable by that user only. However, anyone with super user rights can
steal A’s proxy and thus claim to be A. Recent standards add restrictions in proxies and thus minimize the
possibility that they are abused (see [T+04]).
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• To start the authentication process, A gives B his proxy certificate filecontainingthe proxy private and public keys
and A’s public key.

• A’s public key is used to validate the signature on the proxy certificate.

• The CA’s public key is then used to validate the signature A’scertificate.

• Once B has checked out A’s certificate, B must make sure that A really is the person identified in the certificate:

– B generates a random message and sends it to A, asking A to encrypt it.

– A encrypts the message using his private key, and sends it back to B.

– B decrypts the message using A’s public key.

– If this results in the original random message, then B knows that A is who he says he is.

• The same operation takes place so that A verifies B’s identity. In this case B has a server certificate instead of a
proxy. Therefore:

– B sends A her certificate, A validates the certificate and sends a challenge message to be encrypted.

– B encrypts the message and sends it back to A, and A decrypts itand compares it with the original.

– If it matches, then A knows that B is who she says she is.

• Additionally, both parties check that the other party’s certificate is valid. Moreover, A checks that B’s canonical
name (likepcrship01.cern.ch) corresponds with the subject of B’s certificate.

Figure 2: A mutual authentication process using a proxy certificate of A and server
certificate of B.
Certificate:

Data:
Version: 3 (0x2)
Serial Number: 527 (0x20f)
Signature Algorithm: md5WithRSAEncryption
Issuer: O=Grid, O=NorduGrid, CN=NorduGrid Certification Authority
Validity

Not Before: Feb 11 15:53:21 2004 GMT
Not After : Feb 10 15:53:21 2005 GMT

Subject: O=Grid, O=NorduGrid, OU=hip.fi, CN=Marko Niinimaki
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

Netscape Cert Type:
SSL Client, S/MIME

X509v3 Key Usage:
Digital Signature, Non Repudiation, Key Encipherment

Netscape Comment:
OpenSSL Generated Certificate

X509v3 Subject Key Identifier:
34:52:66:B3:55:FD:65:79:E7:EA:59:A2:74:28:C0:1E:D7:DD:17:DB

X509v3 Authority Key Identifier:
keyid:18:05:C0:FC:0B:D1:B7:3A:F4:65:92:09:FB:59:A1:5F:C7:88:C4:F0
DirName:/O=Grid/O=NorduGrid/CN=NorduGrid Certification Authority
serial:00

X509v3 Subject Alternative Name:
email:marko.niinimaki@hip.fi

Signature Algorithm: md5WithRSAEncryption

Figure 3: An example of a X.509 user certificate (some fields and values omitted)
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Issuer: O=Grid, O=NorduGrid, CN=NorduGrid Certification Authority
Subject: O=Grid, O=NorduGrid, CN=host/pcrship01.cern.ch

Figure 4: Examples of fields and values in a X.509 host certificate

Issuer: O=Grid, O=NorduGrid, CN=NorduGrid Certification Authority
Subject: O=Grid, O=NorduGrid, CN=NorduGrid Certification Authority
X509v3 extensions:

X509v3 Basic Constraints:
CA:TRUE

Figure 5: Examples of fields and values in a X.509 CA certificate

Proxy public key

Proxy private key

Proxy creator’s public key

Issuer: O=Grid, O=NorduGrid, OU=hip.fi, CN=Marko Niinimaki
Validity
Not Before: Nov 18 07:56:23 2004 GMT
Not After : Nov 18 20:01:23 2004 GMT

Subject: O=Grid, O=NorduGrid, OU=hip.fi, CN=Marko Niinimaki, CN=proxy

Figure 6: The structure of a proxy certificate and some lines of a typical proxy

6



Limited proxy public key (signed by proxy public key)
Subject: O=Grid, O=NorduGrid, OU=hip.fi, CN=Marko Niinimaki, CN=proxy, CN=limited proxy

Limited proxy private key
Proxy public key (signed by proxy creator’s public key)
O=Grid, O=NorduGrid, OU=hip.fi, CN=Marko Niinimaki, CN=proxy

Proxy creator’s public key (signed by the CA)
O=Grid, O=NorduGrid, OU=hip.fi, CN=Marko Niinimaki
CA’s public key
O=Grid, O=NorduGrid, CN=NorduGrid Certification Authority

Figure 7: The structure of a delegated proxy certificate

Protocol is discussed in [KGN05, Kar05a] but to our knowledge it has not been applied
to Grid contexts.

When the client has been authenticated and authorized by theserver, aproxy del-
egationis performed. A delegated proxy file (representing the user)is created by the
server software. The structure of a delegated proxy is shownin Figure 7; for details,
see [W+04, The04a]. The benefit of the delegated proxy certificate isthat the original
(user’s) proxy, containing the proxy private key is verifiedbut not sent to the server.
However, in some approaches like Helsinki Institute of Physics’ OpenGrid portal (see
[WNN03]) the user’s proxy file is transfered quite liberallyto be used by grid services.
A same kind of proxy store is used by MyProxy software (see [NTW01]). The motiva-
tion there is that since data transmissions are encrypted itis unlikely that the proxy file
will be stolen by a third party during its transfer. This is the approach we shall use in
our implementation in Section 4, too.

The Grid computing field can be characterized as a collectionof heterogeneous
computing resources that are shared by many individuals andorganizations. This has
given rise to the concept of “virtual organizations”. A virtual organization (VO) is
a collection of people in some administrative domain. A user’s relationship with his
VO is defined by the organization’s internal hierarchy. The user can be a part of any
number of internal groups in their organization and have multiple roles in many orga-
nizations [ACC+03]. A user is authorised to perform tasks or access resources in the
Grid according to their VO affiliation and their role(s) within the VO. Virtual Organi-
zation Membership Service VOMS is an authentication and authorisation system that
allows the addition of VO information in the user’s proxy. A VOMS system consists
of a user server, a user client, an administration server andan administration client
(see [ACC+03]); here it is sufficient to note that a user executes a client “voms-proxy-
init” with a parameter specifying the VO (e.g. nordugrid). The client connects to the
server, and the server returns the user’s proxy with the appropriate VO information.
The extension as “raw data” and parsed by voms-proxy-info isshown in Figure 8.

These tools provide us with rather flexible means of authentication and authorisa-
tion. With the first versions of Globus middleware, the authentication and authorisation
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X509v3 extensions:
1.3.6.1.4.1.8005.100.100.5:
....Marko Niinimaki....
....nordugrid://hydra.ii.uib.no:15002
..../nordugrid/Role=NULL/

voms-proxy-info -all
subject : /O=Grid/O=NorduGrid/OU=hip.fi/CN=Marko Niinimaki/CN=proxy
issuer : /O=Grid/O=NorduGrid/OU=hip.fi/CN=Marko Niinimaki
identity : /O=Grid/O=NorduGrid/OU=hip.fi/CN=Marko Niinimaki
type : proxy
strength : 512 bits
path : /tmp/x509up_u1007
timeleft : 10:08:13
VO : nordugrid
subject : /O=Grid/O=NorduGrid/OU=hip.fi/CN=Marko Niinimaki
issuer : /O=Grid/O=NorduGrid/CN=host/hydra.ii.uib.no
attribute : /nordugrid/Role=NULL/Capability=NULL
timeleft : 10:08:12

Figure 8: Some features of a voms proxy

"/O=Grid/O=NorduGrid/OU=hip.fi/CN=Marko Niinimaki" marko

Figure 9: An entry in /etc/grid-security/grid-mapfile

process was quite limited; the middleware’s “gatekeeper” component gave the user the
right to execute programs as a local user based on entries in aspecific file in the local
(Unix) system, grid-mapfile (see [Theb]). An example of thatis shown in Figure 9.
There, using a client job submission program, the user whoseproxy issuer corresponds
to the given line is allowed to execute his program as user “marko”. Naturally, the
gatekeeper also verifies that the user’s CA is known.

A more fine-grained approach utilises access control lists (ACL’s). With GridSite
server software (see [McN05]), several access types (read,write, execute..) can be
defined, and the access to files is per-directory basis. An example in Figure 10 shows
a “.gacl” file that controls access to a directory in the server computer. The first entry
authorises a person for some access types. However, given dynamic communities, it
would become a burden to maintain such access control entries to all potential users.
Entries specifying access for VO members are easier to maintain; an entry shown below
would allow the users in VO nordugrid (their membership signed by VOMS server
hydra.ii.uib.no) to read write and list entries in this directory.

2.2 Grid middleware and other distributed computing approaches

In general, a distributed computing system can be defined (like Özsu and Valduriez in
[OV99]) as a number of autonomous processing elements that are interconnected by
a computer network and that cooperate in performing their assigned tasks. According
to Özsu and Valduriez, the issues that are distributed can be (i) processing logic (ii)
functions (iii) data, and (iv) control. Distributing the processing has been the focus of
several programming packages that allow the programmer to embed efficient paralleli-
sation in the software, e.g. Parallel Virtual Machine PVM (see [G+94]). Distribution
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<gacl>
<entry>
<person> <dn>/O=Grid/O=NorduGrid/OU=hip.fi/CN=Marko Niinimaki</dn> </person>
<allow><admin/> <write/> <list/> <exec/> <read/></allow>
</entry>
<entry>
<voms><voms>/O=Grid/O=NorduGrid/CN=host/hydra.ii.uib.no</voms>
<vo>nordugrid</vo></voms>
<allow><write/></allow>
<allow><list/></allow>
<allow><read/></allow>

</entry>
</gacl>

Figure 10: A Grid access control file

according to functions (or functionality) can be seen as assigning specialised tasks to
resources that are most suited to process them. Matching tasks and resources is gen-
erally seen as the task of abrokerand implemented for instance as a part of the JXTA
architecture (see [Gon01]), or in a more abstract way in the Common Object Request
Broker Architecture (CORBA, [Vin97]). Data distribution has been researched in the
context of distributed (or federated) database systems (see [OV99]). The distribution
of control by collaborating software agents has been addressed in e.g. [Lan98].

Given all these diverse technologies of distributed computing, one can ask what
is the role of Grid. This, however, can be seen as aninterfaceto distributed data, re-
sources, and services through Grid middleware; or as Grimshaw states in [Gri02], “the
objective of Grid middleware is to virtualize resources, provide access, and in general
deal with the physical characteristics of the Grid.” From the perspective of accessing
data, resources and services, we see that the defining feature of Grid middleware and
Grid software in general is the use of GSI, discussed in Section 2.1.

3 Grid resources and services

In the context of this paper we consider Grid resources simply as anything a Grid user
might be interested in. Grid services are standardized or atleast published ways of
accessing these resources in the Grid community in question. Thus, disk space is a
resource, but a Grid method of putting files or records on a disk, or recovering them,
is a service. In a similar manner, executing jobs remotely ina “suitable” computer is a
service.

As a simple second generation Grid example, we consider the GSIFTP [Thea,
The00] protocol and services that utilise it. GSIFTP is an implementation of FTP
(File Transfer Protocol, originally called Bulk Data Transfer Protocol , see [CLZ85])
such that GSI (see Section 2.1) is used for authentication and authorisation. In prac-
tice, GSIFTP works as a client-server program; the Globus project uses a modified
WU-FTP3 server and NCFTP4 client. In practice, the user creates a proxy certificate,

3WU-FTP was developed by the University of Washington, seehttp://www.wu-ftpd.org.
4Seehttp://www.ncftp.com/.
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grid-proxy-init
Your identity: /O=Grid/O=NorduGrid/OU=hip.fi/CN=Marko Niinimaki
Enter GRID pass phrase for this identity:
Creating proxy ..................................................... Done

gsincftp gsiftp://pcrship04.cern.ch
NcFTP 3.0.3 (April 15, 2001) by Mike Gleason (ncftp@ncftp.com).
Connecting to 137.138.250.35...
Server ready
Logging in...
No need for username
Logged in to pcrship04.cern.ch.
Current remote directory is /.
ncftp / > put compute.sh
compute.sh: 173.76 kB 51.74 kB/s

ngsub -c pcrship01.cern.ch -f test.job
Client middleware: nordugrid-0.5.33
Submitting xrsl: &(executable="/bin/echo")
(arguments="track1")(jobName="ngtest")(stdout="stdout")
(executables="compute.sh")(inputfiles=("compute.sh"
"gsiftp://pcrship04.cern.ch/compute.sh"))
Job submitted with jobid gsiftp://pcrship01.cern.ch:2811/jobs/2831111340415291997069207

Figure 11: File transfers and job submissions using ARC

initiates the connection to the server using thegsincftp client program. The mutual
authentication proceeds as in Figure 2.

The NorduGrid consortium’s Advance Resource Connector (ARC, see [E+06]) is a
second generation Grid middleware that uses the GSIFTP protocol for job submissions
in addition to file transfers. A file transfer and a job submission to a specific computer
running ARC is shown in Figure 11. There, a user transfers a file (compute.sh) in a
file server using GSIFTP, and, in another computer, starts a job that utilises the file.
In the latter case, the software component (called Grid Manager in ARC) collects the
input files, starts the job and supervises its execution. Itsability to recover input files
is naturally based on the fact that it can use the user’s delegated proxy, as explained in
Section 2.1.

For resource descriptions, ARC uses a system based on Lightweight Directory
Access Protocol LDAP [HS95] and Monitoring and Discovery System (MDS, origi-
nally called Metacomputing Directory Service in [F+97], see [Thec]). However, in
[NTN05b], we have outlined Grid resource description basedon Resource Description
Framework (RDF) ontologies. In Section 3.1, we provide a short summary. In Sec-
tion 3.2, we concentrate in (third generation) Grid services. We assume, naturally, that
access to services is controlled by GSI.

3.1 Grid Resource Descriptions

In [And04] DataTAG’s GLUE project’s goals are described as follows. “The Glue-
Schema activity aims to define a common conceptual data modelto be used for grid
resources monitoring and discovery.” GLUE 1.1 divides Gridinto computing (Comput-
ing Element, CE), storage (Storage Element, SE) and network. Slightly surprisingly,
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Figure 12: GLUE CE description

there is no separate concept of a “principal” (a user, a groupof users or a virtual orga-
nization).5 Figure 12 shows GLUE’s CE description in UML6 class diagram format.

GLUE is meticulously mapped into several implementationalresource presentation
formats, including an LDAP schema and a relational databaseschema.

In [NTN05b], we have created a formal ontological description of GLUE using
the World Wide Web Web Consortium’s Web Ontology Language OWL that is based
on RDF (see [B+04]). More specifically, with RDF, the most basic method of rep-
resentation is stating that something (a subject) has a ”property” (a predicate) whose
value is something (an object, see [W3C04a]). The subject - property - value triples
can express simple facts about individuals like “this document (object) has an author

5The current edition in [A+05a] adds a “Access Control Base” element for this purpose.
6UML stands for Unified Modelling Language, see [The03b].
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(property) whose value is N.N.”, but RDF introduces the use of Uniform Resource Iden-
tifiers (URIs) that are used as references in these descriptions to (i) network-accessible
things, such as an electronic document, an image, a service,or a group of other re-
sources; (ii) things that are not network-accessible, suchas human beings, corpora-
tions, and books in print; and (iii) abstract concepts that do not physically exist, such
as the concept of a “creator” (see [W3C04a]). Using URI references, the above expres-
sion could be paraphrased “documenthttp://wiki.hip.fi/xml/example has prop-
erty http://purl.org/dc/elements/1.1/creator whose value ishttp://www.
cs.uta.fi/henkilosto/henkilo.php?uid=csmani”. A set of URI references spec-
ified for a specific purpose (e.g. for expressing creators andcreation dates of docu-
ments) is commonly refered to as a vocabularium and technically often presented as
a XML namespace (for details, see [BHL99]). The RDF Schema language (RDFS,
see [W3C04b]) has been specifically designed for expressingvocabularies, and OWL
is an extension of the schema language. RDFS itself has a richset of data modelling
constructs like classes, their sub-classes and properties(relations with other classes),
but OWL further extends RDFS by adding restrictions (like cardinality constraints) to
these constructs; for details, see [B+04]. In general, we call a description that uses
OWL constructs anOWL ontologyor OWL schema.

The benefit of this presentation is that it allows search operations using high-level
query languages like RQL and RDQL [KAS+02, Sea04] instead of implementation
specific LDAP queries. Moreover, the form of expressing these resources can be
matched with service and data descriptions that are expressed using RDF, too. A part
of this OWL ontology is shown in Figure 13, where “glue” is a namespace designed
for presenting GLUE elements. An instance satisfying this schema in Figure 14.

The full ontology (the source of the excerpts) is available in http://wiki.hip.
fi/xml/ontology/glue.xml.

RDF/OWL descriptions can be queried using RQL, an SQL based query language
and can operate with concepts of RDF and OWL, i.e. classes, properties, etc. The
syntax of RQL reminds SQL with its SELECT, FROM, WHERE clauses. The example
query in Figure 16 returns all Unix computers. In practice this means that the user can
specify that he wants to execute the job in a computer with an Unix operating system,
his job description is appended with the query in Figure 16, and the answer will contain
computers with Linux OS’s since Linux is Unix (as specified inFigure 15).

3.2 Grid Service Descriptions

According to Baker et al. in [BAFB05], the most important Grid standard to emerge
recently is the Open Grid Services Architecture (OGSA), which “aims to define a com-
mon, standard, and open architecture for Grid-based applications.”

As shown in Figure 17, OGSA is a layered approach where “Grid Services” (OGSA
Services) make use of Web Services. These, in turn, have beendefined by [W3C04d]
as follows: “A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL)7. Other systems interact with the

7WSDL stands for Web Service Description Language.
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<?xml version="1.0"?>
<rdf:RDF

xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:glue="http://wiki.hip.fi/xml/ontology/glue.xml"
xmlns:base="http://wiki.hip.fi/xml/ontology/glue.xml"
xmlns="http://wiki.hip.fi/xml/ontology/glue.xml">

..

<owl:Class rdf:ID="OperatingSystem">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="version"/>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="name"/>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="release"/>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Figure 13: Excerpts of GLUE CE presented in OWL

<rdf:Description rdf:about="LinuxWoody">
<rdf:type rdf:resource="http://wiki.hip.fi/xml/ontology/glue.xml#OperatingSystem" />
<glue:version>"3.0"</glue:version>
<glue:name>"Linux"</glue:name>
<glue:release>"Debian"</glue:release>

</rdf:Description>

Figure 14: A part of an instance
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<owl:Class rdf:ID="Linux">
<rdfs:subClassOf>

<owl:Class rdf:ID="Unix" />
<rdfs:subClassOf>

</owl:Class>

Figure 15: Stating that Linux is Unix

SELECT ?x
WHERE (?x <rdf:type> <glue:OperatingSystem>),

(?x <glue:name> ?y) AND
(?y eq "Unix")

USING glue for <http://wiki.hip.fi/xml/ontology/glue.xml>,
rdf for <http://www.w3.org/1999/02/22-rdf-syntax-ns#>;

Figure 16: A query retrieving Unix computers

Applications

OGSA Services

Web Services

Figure 17: The upper layers of OGSA
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<wsdl:definitions targetNamespace="https://grid.cs.uta.fi:8443/Services"..
<wsdl:message name="rdfqueryRequest">
<wsdl:part name="proxy" type="xsd:string">
<wsdl:documentation>the secret parameter.. we need the proxy</wsdl:documentation>
</wsdl:part>
<wsdl:part name="rdffile" type="xsd:string">
<wsdl:documentation>The name of the rdf file to be used.</wsdl:documentation>
</wsdl:part>
<wsdl:part name="queryfile" type="xsd:string">
<wsdl:documentation>The name of the query file to be used.</wsdl:documentation>
</wsdl:part>
</wsdl:message>

<wsdl:message name="rdfqueryResponse">
<wsdl:part name="rdfqueryReturn" type="xsd:string">
<wsdl:documentation>an answer to your query</wsdl:documentation>
</wsdl:part>
</wsdl:message>

<wsdl:operation name="rdfquery" parameterOrder="proxy rdffile queryfile">
<wsdl:documentation>rdf query executes sesame and returns the response</wsdl:documentation>
<wsdl:input message="impl:rdfqueryRequest" name="rdfqueryRequest" />
<wsdl:output message="impl:rdfqueryResponse" name="rdfqueryResponse" />
</wsdl:operation>

Figure 18: Part of the wsdl for an RDF query service

Web service in a manner prescribed by its description using SOAP messages, typi-
cally conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards.” An example of a WSDL service is shown in Figure 18.

Web services, however, are built on http/https protocols that are stateless (see [FGM+99],
for a description about states and automata in general see e.g. [AU95]). Foster & al
emphasize in [FFG+04] that “Even those Web service implementations commonly de-
scribed as stateless frequently allow for the manipulationof state, i.e., data values that
persist across, and evolve because of, Web service interactions.” As an example, Foster
& al mention an online airline reservation system that must maintain a state concerning
flight status, reservations made by specific customers, and the system itself: its current
location, load, and performance. Web service interfaces that allow requestors to query
flight status, make reservations, change reservation status, and manage the reservation
system must provide access to this state. In order to standardize the access to systems,
Foster & al propose a Web Service Resource Framework (WSRF) approach. In prac-
tice this approach simply models the resource (like an airline reservation pool) in a way
that a web service can describe it. Consequently, the requestor (the user of the service)
can discover the resource and use standardised operations to query and manipulate the
states. This is the added value of Grid Services, expressed as follows in [The03a]:
“..while Web services successfully implement applications that manage state today, we
need to define conventions for managing state so that applications discover, inspect,
and interact with stateful resources in standard and interoperable ways.”

Standards for OGSA and WSRF are designed and promoted by the Global Grid
Forum (see e.g. [KT05], OGSA is a trademark of the Global GridForum).

In our prototype (see Section 4), the service description isquite primitive, mainly
because the services we have developed are so simple that they can be rather exhaus-
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<process:SimpleProcess rdf:ID="RdfProcess"/>
<grounding:WsdlInputMessageMap rdf:ID="wsdlinputrdf">
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>Rdf</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>
<profile:ServiceCategory rdf:ID="Queries">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>A simple category for queries</rdfs:comment>
<profile:categoryName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>queries</profile:categoryName>
<profile:code rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>1</profile:code>
</profile:ServiceCategory>
<grounding:WsdlInputMessageMap rdf:ID="wsdlinputproxy">
<grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
>PROXY</grounding:wsdlMessagePart>
..

Figure 19: Part of the OWL-S instance for an RDF query service

tively described by a category of a service (e.g. “Queries”)and the WSDL operation
description as in Figure 18. We have generated simple mappings from WSDL (and
their locations) to OWL-S Web Service ontology language (see [MBL+03]) to demon-
strate the possibility of using ontology descriptions in service directories (see Section
4). An example of the OWL-S instance corresponding with the WSDL is shown in
Figure 19.

3.3 Data Descriptions

As a missing link between resources and services, we presenthere an ontology-based
framework for describing data for distributed applications. This means that for struc-
tured data, the format of the data should be made explicit. In[NTN05a], we have
proposed the following design:

• The data can be distributed and provided by independent parties, but for a data
repository (an XML file or a data base with a query interface),a description of
the format is provided.

• There is an ontology that provides us with canonical names ormappings for each
data repository.

The “data ontology” can be specific or general. It seems feasible to assert that the
most general ontology for structured data expresses that there are (named) subjects,
predicates and object as with RDF (see Section 3.1 and [W3C04c]). On the other hand,
domain specific OWL ontologies determine the use of named entities (classes and sub-
classes) and their properties in a given domain; an ontologyof countries may define
that there is an entity named Country, with the attributes ISO-code (a string), and Geo-
graphicalLocation (an entity of type Geographical Location). Following this example,
each independent data provider can have a country database with almost any find of
structure they like, for as long there is a mapping from theirstructure to the domain
ontology. A part of a mapping file for a simple data set is shownin Figure 20. There,
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<ontologymap datasource="year1980.xml">
<tuple name="trade_data/FactRow">
<column name="value" mapclass="TradeFactRow" mapproperty="hasMeasure"/>
<column name="year" mapclass="TradeFactRow" mapproperty="hasYear"/>
<column name="product" mapclass="TradeFactRow" mapproperty="hasProduct"/>
<column name="orig" mapclass="TradeFactRow" mapproperty="hasExportCountry"/>
<column name="dest" mapclass="TradeFactRow" mapproperty="hasImportCountry"/>
</tuple>
</ontologymap>

Figure 20: An ontology mapping

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns="http://wiki.hip.fi/xml/data#"

xml:base="http://wiki.hip.fi/xml/data">
<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="Data">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>a simple class for data

</rdfs:comment>
</owl:Class>
<owl:DatatypeProperty rdf:ID="data_mapping">
<rdfs:domain rdf:resource="#Data"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="data_nickname">
<rdfs:domain rdf:resource="#Data"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="data_location">
<rdfs:domain rdf:resource="#Data"/>

</owl:DatatypeProperty>
</rdf:RDF>

Figure 21: Data ontology

the column namesvalue, year, product, orig, anddest are mapped into properties
hasMeasure, hasYear, hasProduct, hasExportCountry andhasImportCountry of
classTradeFactRow in our domain specific OLAP ontology (see [NTN05a]). A gram-
mar (expressed using XML Schema, see [W3C99]) for ontology maps is provided in
http://wiki.hip.fi/xml/ontology/ontomapping.xsd.8 Technically, transform-
ing the data into a domain specific ontology is carried out using the ontology maps and
the XSLT transformation language stylesheets (see [Cla99]).

In practice, a data source could be seen as a data producing service, and described
the same way as services in Section 3.2. However, given the special need of domain
ontology mapping, we have provided a simple data ontology format shown in Figure
21.

8It should be noted that the grammar allows a “conversion” attribute used for instance in converting Euros
to US dollars. This is not used in our case since all the currency values are expressed in USD.
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4 Application: Resource, Service and Data Directories

Interestingly, Baker et al. in [BAFB05] have little to say about finding services in
the Grid. However, there are several tools available for data and service directories.
For data directories, file replica catalogs like Globus Replica Catalog ([S+02]), Globus
Replica Location Service ([C+04]), European Data Grid’s Reptor ([GKL+02]) and
EGEE’s9 Fireman [EJ05] have been successfull in high energy physicsGrids. How-
ever, these directories typically allow only mappings between nicknames (“logical
filenames”) and several locations of the file (“physical filenames”). The OGSA-DAI
(Open Grid Service Architecture - Data Access Interfaces) project has worked for a
generic Grid database access (see e.g. [A+05b]).

Service directories include the Universal Description, Discovery, and Integration
protocol UDDI (see [Kre01]). As described in [LB05], UDDI isan industry standard
for service registration and publication. A service provider uses UDDI to advertise the
services (as WSDL description) that it makes available. A client uses UDDI to find
the appropriate services for its purposes. The “yellow pages” information in UDDI
allows organising the services in various categories. Given these properties, UDDI
would work well as a Grid service directory, but apparently Grid systems do not usually
employ UDDI (see, however [BBG+05]), nor do UDDI solutions normally use GSI
authentication and authorisation.

There are other, profoundly Grid style, approaches to the same problem, for in-
stance Globus’ Monitoring and Discovery System (MDS) and ARC’s Runtime Envi-
ronments (see [The04b]). In the latter framework, the service provider prepares an
environment for the application. These environments have standardized names, for in-
stance “APPS/GRAPH/POVRAY-3.6”. The service provider inserts the initialization
scripts of such an environment in a directory where the localinformation system dis-
covers it, and declares that it is available (for details, see [Kon04]). However, the user
is supposed to know (or to look up) the standartised name in order to request it for his
job.

In our design, the directory contains pointers to descriptions of resources, services
and data. They are currently not registered automatically to the directory; instead, a
user interface for their registration and use is provided.

The basic architecture for the system is shown in Figure 22. There, services in
a GSI-enabled server are expressed in WDSL as in Figure 18. They are registered
(1) in the Grid service directory as pairs of the operation (url, in this casehttps:
//grid.cs.uta.fi:8443/Services#rdfquery; the parameters, this case proxy, rdf-
file, queryfile) and the description of the operation. With the client, the user can store
files (or other data sources, described using the ontology ofFigure 21) in GSI-enabled
file storages and register tuples consisting of the file name,description and a nickname
in the directory (2). The user can, too, query files and services by nickname in the
directory. If the user wants to run a service, he queries the directory by the client
and receives a group of service names (3,4). He selects the service he wants and is
prompted for the parameters by the client. The service call with the parameters is sent
to the Grid server by the client (5). The server recovers the files given as parameters

9EGEE is a European Union funded Grid project. The acronym stands for Enabling Grids for E-science.
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Figure 22: Architecture

(6) and the results are returned to the user (7).
As an example, we consider therdfquery service of Figure 18. The implemen-

tation is related to on-demand OLAP10 cube construction methodology presented in
[NTN05a]. Our aim is to support the construction as efficiently as possible under some
limiting circumstances, namely that

• The data to be queried is divided into mutually exclusive files.

• The data in each of the files conforms with our RDF ontology.

• Each of the data files can be queried independently (a consequence of the pre-
vious items) and the results can be combined mechanically ina file that can be
further processed for loading into an OLAP database.

The data in question represents world trade of all types of products between all
countries during the 1980’s. Our example RDQL query (in Figure 24) recovers tuples
〈 value of trade, exporting country, importing country, product, the main group of
product, year〉 such that the importing country is France, the exporting country is
Finland and the product’s main group is wood industry related. We have implemented
the query facility using Sesame RDF engine [BKvH02]. Sesame’s performance is most
satisfactory, but complex queries with large input data arevery demanding. We were
unable to run the query using a data source that combines all the input (about 5 million
RDF-lines). However, using a source file representing one year of trade, the result
can be computed in about 30 minutes.11 Therdfquery operation is mainly a simple
wrapper for Sesame such that it transfers the query and inputfile into a local “staging

10OLAP stands for On-Line Analytic Processing.
11We utilized a double processor AMD Opteron at 1400 MHz, 2 GB RAM.
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universe = java
executable = x.class
arguments = x --query y --data z
output = job.out
error = job.err
transfer_input_files = x.class, y, z, ..
jar_files = ..
when_to_transfer_output = ON_EXIT
log = job.log
queue

Figure 23: A Condor job submission file

area” and executes the query by calling Sesame. In addition to just launching the
command the service software runs it in a local cluster. Condor software (see [LLM88])
has been used for local distributed computing inside the cluster. Figure 23 presents the
command file that the service launches for Java program “x” with parameters “–query
y –data z”.

Therdfquery service is declared in a service and data directory that has its own
interface for storing and retrieving information. All these operations are WSDL service
calls. For communication with the directory, the followingoperations are provided (we
omit the WSDL for brevity):

• send_and_register_file(string buffer, string filename, int part,
int allparts, string nickname, string description): sends a potentially
very large file in many pieces. The nickname must be unique.

• register_url(string url, string nick, string category, string description):
for registering and describing external files and services.

• get_url_by_nick(string nick): returns an url that matches the nickname.

• get_by_description(string searchstring): returns files or services that
match the description.

• get_by_category(string searchstring): returns services that match the
category.

• get_categories(): returns the categories of services.

The user uploads the data files, and defines their nick names, by using thesend_
and_register_file operation. In our example, each of the files representing one
year of trade between all countries has been uploaded with nick names “trade1980”,
“trade1981” etc. The query file, shown in Figure 24 is, likewise, uploaded with a nick
name “q6”. The user then proceeds to search the service and executes it as in Figure
25. There, the user’s proxy file is transfered automaticallyand it is used by the server
to transfer the files.12

12This implementation should be replaced by a proper proxy delegation (see Section 2.1) or a MyProxy
server [NTW01] in the future.
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select ?value, ?ecountry, ?icountry,
?product, ?maingroup, ?year

where (?product rdf:type schema:Product)
(?fr rdf:type schema:FactRow)
(?product schema:hasMainGroup ?maingroup)

(?ecountry rdf:type schema:Country)
(?icountry rdf:type schema:Country)
(?fr schema:hasExportCountry ?ecountry)
(?fr schema:hasImportCountry ?icountry)
(?fr schema:hasProduct ?product)
(?fr schema:hasYear ?year)
(?fr schema:hasValue ?value)

and (?ecountry eq schema:FI)
and (?icountry eq schema:FR)
and (?maingroup eq schema:P2)
using schema for
<http://wiki.hip.fi/xml/ontology/olap.owl#>

Figure 24: A query file

perl register.pl
1 - query by a description
2 - register a file
3 - query by nick
4 - register a service
5 - run a service
6 - get service categories
Please enter a number (1,2,3,4,5,6) and hit enter. Anything else to quit.
5
Please enter a string in the service description: rdf
1: service: http://grid.cs.uta.fi:8080/Services.wsdl#rdfquery(PROXY,rdf,query) description: rdf query
Please enter the number of the service:
1
Please select input for parameter rdf
Please enter a nick: trade1982
Please select input for parameter query
Please enter a nick: q6
If you want to save the response in a file, enter filename, otherwise enter.
trade1982res.xml

Figure 25: Client execution

By starting several client programs, the user can execute the queries for each year
in parallel. The results can be recovered and combined by theuser (or another Grid
service).

Several improvements are being planned in the system. Currently, the system does
not make a proper difference between a service (e.g.rdfquery) and a resource that
provides (e.g. computer grid.cs.uta.fi acting as a front endof a cluster). Implementing
this will provide a natural framework for a more intelligentresource broker that unifies
the technologies of resource and service description and discovery as follows:

• The user finds a service that he wants to execute (and has the rights to use) as in
Figure 25.

• There can be several instances of the service provided by different resources, or
the service can be “unbound”, i.e. a set of Java classes that can be executed in
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any resource providing a suitable Java environment, enoughprocessing capacity
and disk space etc.

• Based on the location or requirements of the service (expressed as an instance
of the service ontology), the resource information (expressed as instances of the
resource ontology) and the location of the data, the resource broker finds an
optimal place to run the service.

• The service is run and the results stored for further processing or returned to the
client.

The brokering mechanism should take into account that some services are data
intensive and it is profitable to carry out the computation asclose to the data source
as possible; this is the approach used, for example in GridBlocks (see [KNWN04]).
On the other hand, some services are CPU intensive and use only minimal amounts of
data. Broker designs in general are discussed in e.g. [YSL05, VBW05].

5 Conclusions and future work: A flexible client for se-
mantic Grid computing

In this paper we have discussed Grid technologies includingauthentication and autho-
risation; ontology-based Grid resource and service description; and designed a frame-
work and a prototype for finding and using services in the Grid.

The framework described here allows the possibility of creating user interfaces
where the user can interactively select the data and the service that operates the data.
The services utilize authentication and authorisation (discussed in Section 2.1) in two
ways. On one hand, the service directory can be customised toshow certain services to
authorised users only. On the other hand, the service implementations themselves are
accessible to users based on their Grid identities (proxy subject or virtual organization
membership).

The design is based on the client in Section 4 and the design ofGridBlocks software
in [KNWN04]. We find this approach very user friendly and easyto understand for
Grid newcomers, too. The Grid resources and services present themselves to the user
in a manner that would enable to user to ignore quite a many of the technical concepts
in conventional computing. For instance, the user would notneed to know where the
data and services are. Putting it even more radically, the user can forget the concept of
“computer program”; he can operate completely on the level of data and services that
process data.

Figure 26 shows the basic user interface, and its variant fora mobile phone (see
[Kar05b]). The basic user interface (in the process of development) can be used in the
following way:

• The user creates a proxy certificate using the buttons in the upper row.

• The editing area provides the user with basic word processing capabilities and
“placeholders” of Grid services and data. The data and services are accessible to
the user by pressing the right hand side mouse button.
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• With the click of the mouse button, a context menu of servicesis shown to the
user. There, the client contacts the service directory and recovers the services
that are accessible to the user. The services are grouped in categories.

• The user browses the services by category or searches them bykey words. Once
the user has located a service, he will be prompted for input –the data that the
service utilises. The user provides the data.

• The service with the appropriate data is started in a remote server. A placeholder
is created for the results or their visualisation.

• The user can either wait for the processing of the computation or save the current
document in a Grid storage server. Either way, once the processing is finished,
the results are shown in the place of the placeholder.

Figure 26: Agent user interface

GridSite software, that is the basis of our server implementation, also supports https
communication with a web browser. In order to enable this communication, the user
needs to import his certificate in the browser. It should be noticed that this is a plain
user certificate (in PKCS format, see [RSA99]) and cannot incorporate VOMS or other
proxy extensions. However, the user’s full proxy can be madeavailable to the server
using a MyProxy server (see [NTW01]) or by transfering the proxy to the server by
the client. We have written a client software for our serviceplatform using Mozilla
extensions and libraries (see [BKO+02]). The libraries enable the client to call WSDL
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functions in the servers, and to format the output for the browser. An example is shown
in Figure 27.

Figure 27: A Mozilla client
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