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Abstract

Probably the two best-known exact string matching algorithms are
the linear-time algorithm of Knuth, Morris and Pratt (KMP), and the
fast on average algorithm of Boyer and Moore (BM). The efficiency of
these algorithms is based on using a suitable failure function. When a
mismatch occurs in the currently inspected text position, the purpose of
a failure function is to tell how many positions the pattern can be shifted
forwards in the text without skipping over any occurrences. The BM al-
gorithm uses two failure functions: one is based on a bad character rule,
and the other on a good suffix rule. The classic linear-time preprocessing
algorithm for the good suffix rule has been viewed as somewhat obscure
[8]. A formal proof of the correctness of that algorithm was given recently
by Stomp [14]. That proof is based on linear time temporal logic, and
is fairly technical and a-posteriori in nature. In this paper we present a
constructive and somewhat simpler discussion about the correctness of the
classic preprocessing algorithm for the good suffix rule. We also highlight
the close relationship between this preprocessing algorithm and the exact
string matching algorithm of Morris and Pratt (a pre-version of KMP).
For these reasons we believe that the present paper gives a better under-
standing of the ideas behind the preprocessing algorithm than the proof
by Stomp. This paper is based on [9], and thus the discussion is originally
roughly as old as the proof by Stomp.

1 Introduction

The need to search for occurrences of some string within some other string
arises in countless applications. Exact string matching is a fundamental task in
computer science that has been studied extensively. Given a pattern string P
and a typically much longer text string T , the task of exact string matching is
to find all locations in T where P occurs. Let |s| denote the length of a string s.
Also let the notation xi refer to the ith character of a string x, counting from
the left, and let the notation xh..i denote the substring of x that is formed by
the characters of x from its hth position to the ith position. Here we require
that h ≤ i. If i > |x| or i < 1, we interpret the character xi to be a non-existing
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character that does not match with any character. A string y is a prefix of x if
y = x1..h for some h > 0. In similar fashion, y is a suffix of x if y = xh..|x| for
some h ≤ |x|. It is common to denote the length of the pattern string P by m
and the length of the text T by n. With this notation P = P1..m and T = T1..n,
and the task of exact string matching can be defined more formally as searching
for such indices j for which Tj−m+1..j = P .

A naive “Brute-Force” approach for exact string matching is to check each
possible text location separately for an occurrence of the pattern. This can be
done for example by sliding a window of length m over the text. Let us say that
the window is in position w when it overlaps the text substring Tw−m+1..w. The
position w is checked for a match of P by a sequential comparison between the
characters Pi and Tw−m+i in the order i = 1 . . .m. The comparison is stopped
as soon as Pi 6= Tw−m+i or all m character-pairs have matched (in which case
Tw−m+1..w = P ). After the window position w has been checked, the window is
shifted one step right to the position w+1, and a new comparison is started. As
there are n−m+ 1 possible window positions, and checking each location may
involve up to m character comparisons, the worst-case run time of the naive
method is O(mn).

Morris and Pratt have presented a linear O(n) algorithm for exact string
matching [11]. Let us call this algorithm MP. It improves the above-described
naive approach by using a suitable failure function, which utilizes the informa-
tion gained from previous character comparisons. The failure function enables
to move the window forward in a smart way after the window position w has
been checked. Later Knuth, Morris and Pratt presented an O(n) algorithm [10]
that uses a slightly improved version of the failure function.

Boyer and Moore have presented an algorithm that is fast in practice, but
O(mn) in the worst case. Let us call it BM. Subsequently also many variants
of BM have been proposed (e.g. [7, 2, 6]). The main innovation in BM is to
check the window in reverse order. That is, when the window is at position
w, the characters Pi and Tw−m+i are compared from right to left in the order
i = m. . . 1. This enables to use a failure function that can often skip over several
text characters. BM actually uses two different failure functions, δ1 and δ2. The
former is based on so-called bad character rule, and the latter on so-called good
suffix rule.

The failure function δ1 of BM is very simple to precompute. But the original
preprocessing algorithm given in [4] for the δ2 function has been viewed as
somewhat mysterious and incomprehensible [8]. Stomp even states that the
algorithm is known to be “notoriously difficult” [14]. An example of this is that
the algorithms shown in [4, 10] were slightly erroneous, and a corrected version
was given without any detailed explanations by Rytter [12]. A formal proof of
the correctness of the preprocessing algorithm was given recently by Stomp [14].
He analysed the particular version shown in [3, 1], and also found and corrected
a small error that concerns running out of bounds of an array. Stomp’s proof
is based on linear temporal logic and it is a-posteriori in nature: he first shows
the algorithm, and then proceeds to prove that that given algorithm computes
δ2 correctly. The proof is also fairly technical, and does not shed too much light
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on the intuitive foundations of the algorithm.
In this paper we present a constructive analysis about the original prepro-

cessing algorithm for δ2. In doing this our goal is to expose the ideas behind
the algorithm, and subsequently make it easier to understand. Our discussion
highlights the tight connection between the preprocessing algorithms for δ2 and
the failure function of the exact string matching algorithm of Morris and Pratt.
The latter is much more simple to understand, and we show how the original
preprocessing algorithm for δ2 can be derived from it in a fairly straightforward
manner. The present work is a modified conversion of a part in [9]. It is thus
originally roughly as old as the proof by Stomp.

2 Morris-Pratt

The O(n) exact string matching algorithm of Morris and Pratt [11], MP, is
based on using information about the borders of a string. A string y is a border
of the string x, if y is both a prefix and a suffix of x and |y| < |x|. The last
condition means that x is not a border of itself even though it is both a prefix
and a suffix of itself. Clearly each border of x can be uniquelly identified by the
ending position of the corresponding prefix of x. That is, the border of x with
an index i is the border y = x1..i = x|x|−|y|+1..|x|. An index 0 means that no
nonempty border exists. It is clear that such border-indices form a finite and
ordered set (we assume that the strings are finite). Let us define Bs(i) as a set
of the border-indices of the string s1..i.

Definition 2.1 Bs(i) = {k | (k = 0) ∨ ((0 < k < i) ∧ (s1..k = si−k+1..i))}.

It is clear that the conditions 0 ∈ Bs(i) and min(k | k ∈ Bs(i)) = 0 hold for all
nonempty strings s1..i. Under the convention that the first character of a string
x is x1, the index and the length of the border are the same. Thus for example
in [5] the borders are identified by their lengths.

Let us also define a separate function lbs(i) that gives the index of the longest
border of the string s1..i. It is clear that this corresponds to the maximum border
index of s1..i.

Definition 2.2 lbs(i) = max(k | k ∈ Bs(i)).

It is worth noting that the function lbs(i) can be used as a successor function to
enumerate the elements in the set Bs(i) in descending order. Let bs(i, k) denote
the kth-largest number in the set Bs(i) and let |Bs(i)| denote the cardinality of
Bs(i). For example bs(i, 1) = lbs(i) and bs(i, |B(s)|) = 0, and lbs(i) induces an
ordered version of Bs(i) = (bs(i, k) | k ∈ [1..|Bs(i)|]), where bs(i, k) < bs(i, k−1)
if k > 0. Also let lbks(i) denote applying the function lbs(i) k times. For example
lb2s(i) = lbs(lbs(i)) and lb0s(i) = i.

Lemma 2.3 If bs(i, k) > 0, then bs(i, k + 1) = lbs(bs(i, k)).
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Proof: Let us denote the value of bs(i, k) by p, the value of lbs(bs(i, k)) = lbs(p)
by q, and the value bs(i, k+ 1) by r. Then s1..p = si−p+1..i, and it is also known
that i > p and p > q ≥ 0. If q = 0, then q ∈ Bs(i). The other possibility is that
p > q > 0, in which case s1..q = sp−q+1..p. But from the equality s1..p = si−p+1..i

it also follows that s1..q = si−q+1..i, and again q ∈ Bs(i). Thus q ∈ Bs(i), and
since p = bs(i, k) > q, we have that q ≤ r = bs(i, k + 1).

Let us now use contraposition by assuming that q < r. Then q < r < p and
s1..r = si−r+1..i, and since s1..p = si−p+1..i, we also have that s1..r = sp−r+1..p.
This means that r ∈ Bs(p). This contradicts the assumption q < r because
q = lbs(p) is the maximal element in Bs(p).

From the previous we may conclude that q = r, that is, lbs(bs(i, k)) =
bs(i, k + 1). ¤
Fig. 1a shows an example of borders. Since lbs(i) is the maximal element in
Bs(i), the following is a direct consequence of Lemma 2.3.

Corollary 2.4 If 1 ≤ k ≤ |Bs(i)|, then bs(i, k), the kth-largest element in
Bs(i), is equal to lbks(i).

Consider now a situation where a length-m window is at position w in the
text (i.e., it overlaps the characters Tw−m+1..w), and the character-comparisons
in the current position found that P1..i−1 = Tj−i+1..j−1 and Pi 6= Tj , where
j = w − m + i. If an occurrence of the pattern begins at position j − r in
the text so that 1 ≤ r < i − 1 and Tj−r..j−r+m−1 = P1..m, then Tj−r..j−1 =
Pi−r..i−1 = P1..r. Thus any such r must belong to the set BP (i− 1). Moreover,
the next such possible position in the text corresponds to the maximal such
r, that is, lbP (i − 1). The algorithm of Morris and Pratt is based on this
information. In the depicted situation, MP shifts the length-m window forward
in the text according to the value r = lbP (i − 1). If r > 0, the matching
borders P1..r and Tj−r..j−1 are aligned with each other. This corresponds to
shifting the window forward by i− r− 1 positions. And since the equality P1..r

and Tj−r..j−1 is already known, the character-comparisons in the new window-
position can proceed by comparing Pr+1.. against Tj... Fig. 1b illustrates. If it
happens that r = lbP (i−1) = 0, then no pattern occurrence can begin inside the
text-segment Tw−m+2..w−m+i = Tj−i+2..j−1. In this case the window is shifted
to the position w + i − 1 = j + m − 1, so that Tj is the leftmost character it
overlaps, and the character-comparisons start from the beginning of the pattern
and the window.

Let us denote the failure function of MP as fP (i). When the character Pi is
involved in a mismatch with Tj , the value fP (i) gives the index of the pattern
character that will be compared next. From the preceding discussion it is seen
that if r = lbP (i − 1) > 0, the next pattern character to be compared is Pr+1,
and the next compared text character is the same as before, Tj . There are two
exceptions.

If the mismatch happens already at the first pattern character P1, the win-
dow should be moved one step forward and the character comparisons should
start again from the character P1. In this case also the next compared text

4



Text

Pattern

Naive shift

ww − m + 1

MP shift

i

r
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A AA A AA

A A AA AA

A A A A A AT T T T

T TT T

T T T T

C G

C G

a) b)
j

Figure 1: Figure a) shows the different borders within the string s = s1..12

= “ATATACGATATA”. The first row shows the longest borders of s, which
are s1..5 = s8..12 = “ATATA” (light gray shading) and correspond to the value
lbs(12) = 5. The second row shows the second-longest borders of s, which
correspond to lb2s(12) = 3 and are s1..3 = s10..12 = “ATA” (dark gray). In
similar fashion, the third row shows the third-longest borders lb3s(12) = 1 and
are s1 = s12 = “A” (black). To illustrate how the kth-longest border of s1..12 is
lbks(12), each border occurrence inside s1..12 is also shown with curly braces. For
example the third-longest border lb3s(12) = “A” is also a border of s1..lbs(12) =
s1..5 = “ATATA” and s1..lb2s(12) = s1..3 = “ATA”.
Figure b) compares the shifts made by the naive and the MP method.

character changes one position forward: it will now be Tj+1. This situation
will be signaled with a special value fP (1) = 0. In addition to this, the only
other situation when the comparison point in the text is incremented is after
succesfully matching a character-pair between the text and the pattern.

The second exception is how to shift the windows after a pattern occurrence
has been found. It is clear that we can use the value lbP (m) in order to shift the
window to align the next possible matching borders, if such exist. As we assume
that the non-existing character Pm+1 does not match with any character, we do
not need to handle this case separately (although in practice it might be a good
idea). After the occurrence has been found, we simply let the algorithm make
one further “comparison” that mismatches Pm+1 and the next text character
(possibly also non-existing), and an “extra” failure function value fP (m+ 1) is
then used in the usual way.

Definition 2.5 The failure function fP of the exact string matching algorithm
of Morris and Pratt:
fP (1) = 0
fP (i) = lbP (i− 1) + 1, for 2 ≤ i ≤ m+ 1.

It is useful to note that a straighforward relationship between fP (i) and lbP (i−1)
holds also when the functions are applied k times.

Lemma 2.6 The following holds for fP (i):
If 1 ≤ k ≤ |BP (i)| and 2 ≤ i ≤ m+ 1, then fkP (i) = lbkP (i− 1) + 1.
If k = |BP (i)|+ 1 and 2 ≤ i ≤ m+ 1, then fkP (i) = fP (1) = 0.
If i = 1 and k = 1, then fkP (i) = fP (1) = 0.
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Proof: Assume first that 1 ≤ k ≤ |BP (i)| and 2 ≤ i ≤ m + 1. Then, by
definition of fP , the proposition holds for k = 1. Now assume that it holds
when k = h, where h < |BP (i)|, and consider the value k = h + 1. Then
fh+1
P (i) = fP (fhP (i)) = fP (lbhP (i−1)+1) = lbP (lbhP (i−1))+1 = lbh+1

P (i−1)+1.
Here lbhP (i − 1) > 0 since i > 1 and h < |BP (i)|, and therefore the value
lbP (lbhP (i− 1)) = lbh+1

P (i− 1) exists.
Now consider the situation where k = |BP (i)| + 1 and 2 ≤ i ≤ m + 1. We

know from the previous case that fk−1
P (i) = lbk−1

P (i−1)+1. Now lbk−1
P (i−1) =

min(k | k ∈ BP (i−1)) = 0, because lbk−1
P (i−1) is the |BP (i)|-largest number in

BP (i−1) (i.e. the smallest). Thus fkP (i) = fP (fk−1
P (i)) = fP (lbk−1

P (i−1)+1) =
fP (1) = 0.

The last case of i = 1 and k = 1 is trivially true. We conclude by induction
that the proposition holds. ¤
The pseudocode shown in Fig. 2 basically follows the following procedure when
j denotes the index of the next compared text character and i the index of the
next compared pattern character, and initially j = 1 and i = 1.

Procedure MP

1 If Pi = Tj then goto step 3, else goto step 2.

2 Go through the values fkP (i) in the order k = 1.. until either PfkP (i) = Tj (and
thus P1..fkP (i) = Tj−fkP (i)+1..j), or fkP (i) = 0 (no prefix of P ends at Tj).

3 If i = m, declare a found pattern occurrence P1..m = Tj−m+1..j . Increment
both i and j by one. Goto step 1 if j − i ≤ n−m (the length-m window
is completely inside the text), and stop otherwise.

MPSearch(P, T )
1. i← 1, j ← 1
2. While j − i ≤ n−m Do
3. While i > 0 and Tj 6= Pi Do
4. i← fP (i)
5. If i = m Then
6. Report occurrence at Tj−m+1..j

7. i← i+ 1, j ← j + 1

Figure 2: The Morris-Pratt algorithm that corresponds to our exposition. This
differs slightly from typically shown versions in how the shift after finding a
pattern occurrence is handled. We do it after a mismatch of the non-existing
character Pm+1, but typically it is done explicitly at the same time as a pattern
occurrence is declared.

The run time of MP is O(n) because the number of times that the inner loop
is executed cannot be larger than the number of times that the outer loop is
executed: initially i = 1. The inner loop is executed only as long as i > 0,
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and each iteration decrements i by at least 1. On the other hand, the value of
i is incremented only in the outer loop, and in there only by one during each
iteration. Thus the total number of decrements cannot be larger than the total
time of increments, which is O(n).

The correctness of the MP algorithm can be derived in a straighforward
manner from Lemma 2.8. But before that we introduce the following auxiliary
Lemma.

Lemma 2.7 If h− 1 = max(k | (k = 0) ∨ (x1..k = yr−k..r−1)), then:
h = max(k | (k = 0) ∨ (x1..k = yr−k+1..r)), if xh = yr, and
h > max(k | (k = 0) ∨ (x1..k = yr−k+1..r)), if xh 6= yr.

Proof: Assume first that there is some q > h for which x1..q = yr−q+1..r. Here
we do not need to consider the option q = 0 in the max-clause since q > h > 0.
Now x1..q−1 = yr−q+1..r−1, and so max(k | (k = 0) ∨ (x1..k = yr−k..r−1)) ≥
q − 1 ≥ h > h − 1. This is a contradiction. Therefore h ≥ max(k | (k =
0) ∨ (x1..k = yr−k+1..r)).

If xh = yr, then x1..h = yr−h+1..r, and thus h ≤ max(k | (k = 0) ∨
(x1..k = yr−k+1..r)). Now the preceding observation leads to the equality
h = max(k | (k = 0) ∨ (x1..k = yr−k+1..r)).

If xh 6= yr, then clearly h 6= max(k | (k = 0) ∨ (x1..k = yr−k+1..r)). It
follows from the preceding observation that now h > max(k | (k = 0)∨ (x1..k =
yr−k+1..r)). ¤

Lemma 2.8 When the MP algorithm arrives at the text character Tj and the
next comparison is to be made with the character Pi, then
i− 1 = max(k | (k = 0) ∨ (P1..k = Tj−k..j−1)).

Proof: The proposition holds for the first text character T1, as then j = 1
and i = 1, and clearly i − 1 = 0 = max(k | (k = 0) ∨ (P1..k = T1−k..0)). Now
assume that i − 1 = max(k | (k = 0) ∨ (P1..k = Tj−k..j−1)) when MP arrives
at the position j, where j < n, and consider what happens before MP moves
to the next position j + 1. The proposition is obviously true if and only if
i = max(k | (k = 0) ∨ (P1..k = Tj−k+1..j)) right before i and j are incremented.
There are two cases to consider.

If Pi = Tj , then we have from Lemma 2.7 that i = max(k | (k = 0)∨(P1..k =
Tj−k+1..j)).

If Pi 6= Tj , MP will go through the values fkP (i) in the order k = 1.. until
either PfkP (i) = Tj or fkP (i) = 0. Thus after this stage, and before incrementing
i and j, the value i is determined by the condition i = max(k | (k = 0) ∨ ((1 ≤
h ≤ |BP (i − 1)|) ∧ (k = fhP (i)) ∧ (Pk = Tj))) = max(k | (k = 0) ∨ (((k − 1) ∈
BP (i− 1)) ∧ (Pk = Tj))). Here we used Corollary 2.4 and Lemma 2.6.

Let us first note that if i = 1, then MP will set i = fP (1) = 0. In this
case the Inductive Hypothesis states that i − 1 = 0 = max(k | (k = 0) ∨
(P1..k = Tj−k..j−1)). This makes it impossible for there to be any such k > 1
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that P1..k = Tj−k..j . And because in this case also P1 6= Tj , it follows that
max(k | (k = 0) ∨ (P1..k = Tj−k+1..j)) = 0. Thus the proposition holds.

Now we compare the values p = max(k | (k = 0) ∨ (((k − 1) ∈ BP (i− 1)) ∧
(Pk = Tj))) and q = max(k | (k = 0) ∨ (P1..k = Tj−k+1..j)) in the case where
i > 1. From the Inductive Hypothesis we know that now P1..i−1 = Tj−i+1..j−1.

Let us first assume that p > q. Now p > 0, and therefore p−1 ∈ BP (i−1) and
Pp = Tj . But this means either that p = 1 and B1 = Tj , or that p > 1, P1..p−1 =
Pi−p+1..i−1 = Tj−p+1..j−1 and Pp = Tj . In both cases P1..p = Tj−p+1..j , and so
p ≤ max(k | (k = 0) ∨ (P1..k = Tj−k+1..j)) = q. This is a contradiction, and so
p ≤ y.

Assume now that q > p. In this case q > 0 and P1..q = Tj−q+1..j , and from
Lemma 2.7 we know that q ≤ i− 1. Now q − 1 = 0 or P1..q−1 = Tj−q+1..j−1 =
Pi−q+1..i−1. In both of these cases q− 1 ∈ BP (i− 1). And because Pq = Tj , we
have that q ≤ max(k | (k = 0) ∨ (((k − 1) ∈ BP (i− 1)) ∧ (Pk = Tj))) = p. This
is a contradiction and thus q ≯ p. Therefore it must hold that p = q.

From the preceding we have that MP sets i = max(k | (k = 0) ∨ (P1..k =
Tj−k+1..j)) in all cases before incrementing i and j. Thus the condition i′− 1 =
max(k | (k = 0)∨(P1..k = Tj′−k..j′−1)) holds for the next pattern and text indices
i′ = i+ 1 and j′ = j + 1, and we conclude by induction that the proposition is
true.

¤
So far we have not discussed how to precompute the values fP (i). It is an
interesting fact that these values can be computed by using the MP algorithm
itself. Consider the scenario where we use MP to search for P in a text where
T1..m−1 = P2..m. From Lemma 2.8 we know that when MP arrives at the
character Tj , where j < m, then i−1 = max(k | (k = 0)∨(P1..k = Tj−k..j−1)) =
max(k | (k = 0)∨(P1..k = Pj−k+1..j)) = max(k | k ∈ BP (j)) = lbP (j). Thus, by
Definition 2.5 of fP , now i = 1 + lbP (j) = fP (j + 1) and the values fP (j) could
be computed in this way for j = 2 . . .m + 1. The “missing” value fP (1) = 0
is known beforehand, and poses no problem. The only delicate point here is
whether the value fP (i) is always computed before it is needed in the algorithm.
But since the value fP (i) can be recorded when arriving to the position j = i,
and clearly i ≤ j at all times in the MP algorithm, this indeed is the case. Fig.
3 shows the pseudocode for computing the values fP (i) for i = 1 . . .m + 1. It
goes through the “text pattern” with an index j+ = j + 1, which corresponds
to the fact that Pj+1 = Pj+ = Tj when T = P2..m. Further differences to the
MP algorithm in Fig. 2 are that no occurrence-checking is done, and the search
process is continued while j ≤ m. Note that we set initially i = 0 and j+ = 1,
which corresponds to j = 0, in order to assign the special value fP (1) = 0. The
value fP (m+1) is recorded after the main loop: the iterations are stopped once
j+ = m+ 1, and at that point the current value of i corresponds to fP (m+ 1).

8



ComputeF(P )
1. i← 0, j+ ← 1
2. While j+ ≤ m Do
3. fP (j+)← i
4. While i > 0 and Pj+ 6= Pi Do
5. i← fP (i)
6. i← i+ 1, j+ ← j+ + 1
7. fP (m+ 1)← i

Figure 3: Computing the MP failure function values fP (i).

3 Computing the Boyer-Moore δ2 function

When the pattern window is at position w in the text, the Boyer-Moore al-
gorithm (BM) compares the characters Pi and Tj in reverse order. That is, i
goes from m down towards 1, and j goes from w down towards w − m + 1.
BM does not remember previous matches between the text and the pattern,
and thus the comparisons always begin again from the last characters of the
window and the pattern. When Pi and Tj mismatch during this process, the
δ2 function of BM shifts the pattern forward in the text in order to align the
already matched suffix Pi+1..m = Tj+1..w with some earlier part of the pattern
Pi+1−k..m−k that is equal to Pi+1..m. The value δ2(i) gives the total shift of
the text comparison index j. For example if the shift aligns Pi+1..m = Tj+1..w

with Pi+1−k..m−k, the corresponding value of δ2(i) is k + (m − i). Here k cor-
responds to the amount by which the pattern window is shifted, and m − i
to shifting the comparison point i within the window back to its last position.
The version of δ2 that we discuss here uses the so-called strong good-suffix rule
[10]. If Pi+1−k..m−k = Pi+1..m = Tj+1..w, the strong good-suffix rule aligns
Pi+1..m = Tj+1..w with Pi+1−k..m−k only if Pi−k 6= Pi. This is reasonable, since
the characters Pi−k = Pi and Tj would be known to mismatch at the new po-
sition of the pattern window. There are also special cases to consider. Fig. 4
shows the different possibilities that arise when determining the values of the
δ2 function. The formal definition that encloses these cases is as follows.

Definition 3.1 The δ2 function of the exact string matching algorithm of Boyer
and Moore for i = 1 . . .m:
δ2(i) = m− i+

min




((0 < k < i) ∧ ((i = m) ∨ (Pi+1..m = Pi+1−k..m−k)) ∧ (Pi 6= Pi−k)) ∨
k ((i ≤ k < m) ∧ (Pk+1..m = P1..m−k)) ∨

(k = m)




The first line inside the min-clause of Definition 3.1 corresponds to the cases a)
and c), the second line to the case b), and the third line to the case d) in Fig.
4.

Let us now turn into the eventual goal of this paper: constructing an algo-
rithm that computes the values of the function δ2. The end result is an amended
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Figure 4: The four different shifting scenarios for δ2 when Pi 6= Tj . In each
case the window would be shifted right by k positions. Figure a) shows the case
where the suffix Pi+1..m matches with Tj+1..w, Pi+1..m = Pi+1−k..m−k (shown
in dark gray), and Pi 6= Pi−k. The window is shifted right in order to align
the matching segments Tj+1..w and Pi+1−k..m−k. Figure b) shows the case were
P1..m−k = Pk+1..m. Now the window is shifted right in order to align the
matching segments P1..m−k and Tw−m+k+1..w. Figure c) shows the case where
Pm and Tj = Tw mismatch, and Pi−k is the first different character backwards
from Pm (Pi−k 6= Pm). Now the window is shifted in order to align the possibly
matching characters Tw and Pi−k. Figure d) shows the case where none of the
preceding cases hold, and the window is shifted completely over the current
window position.

version of the original preprocessing algorithm from [10]. The incompleteness of
the original algorithm was shown and corrected in [12]. The correcting amend-
ment in our construct is similar to the versions shown for example in [13, 3, 1].
In order to simplify this task, we divide the min-clause of Definition 3.1 into the
following two components d1 and d2.

d1(i) = min(k | (k = m)∨ ((0 < k < i)∧ ((i = m)∨ (Pi+1..m = Pi+1−k..m−k))∧
(Pi 6= Pi−k))).

d2(i) = min(k | (i ≤ k < m) ∧ (Pk+1..m = P1..m−k)).

Here d1 corresponds to the first and third, and d2 to the second line of the min-
clause. We assume that when the value d2(i) is undefined, it cannot be chosen
by a min-clause. In this case it is clear that δ2(i) = m− i+ min(d1(i), d2(i)) =
min(m− i+ d1(i),m− i+ d2(i)).

Let us denote by sR the reverse string of s. This means that sRi = s|s|−i+1

for i = 1 . . . |s|. For example if s = “abc”, then sR = “cba”, sR1..2 = “cb” and
(s1..2)R = “ba”. Note the last two examples about how the parentheses can
be used in order to differentiate between “a substring of a reversed string” and
“the reverse of a substring”. By using this notation, we may transform the
definitions of d1(i) and d2(i) into a more convenient form.

The equality Pi+1..m = Pi+1−k..m−k can be written as PR1..m−i = PRk+1..m−i+k,
and the non-equality Pi 6= Pi−k as PRm−i+1 6= PRm−i+k+1. Since the condition
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i = m means that m− i = 0, and 0 ∈ BPR(m− i+ k) when 1 ≤ m− i+ k ≤ m,
the condition (i = m) ∨ (PR1..m−i = PRk+1..m−i+k) is equivalent to the condition
(m − i) ∈ BPR(m − i + k). The requirement 0 < k < i ≤ m guarantees that
the condition 1 ≤ m− i+ k ≤ m holds for this part of d1. So now we have that
d1(i) = min(k | (k = m)∨((0 < k < i)∧((m−i) ∈ BPR(m−i+k))∧(PRm−i+1 6=
PRm−i+k+1))).

By doing a similar transformation as above, we have that d2(i) = min(k | (i ≤
k < m) ∧ (Pk+1..m = P1..m−k)) = min(k | (i ≤ k < m) ∧ ((m− k) ∈ BPR(m))).

3.1 Computing d1

Let us now consider now how to compute the value d1(i) = min(k | (k =
m) ∨ ((0 < k < i) ∧ ((m − i) ∈ BPR(m − i + k)) ∧ (PRm−i+1 6= PRm−i+k+1))).
Clearly one way is to first set d1(i) = m for i = 1 . . .m, and then update the
value d1(i) whenever such h is found that h < d1(i) and (0 < h < i)∧ ((m− i) ∈
BPR(m − i + h)) ∧ (PRm−i+1 6= PRm−i+h+1). Here 1 ≤ m − i + h ≤ m − 1 since
0 < h < i ≤ m. Suppose we use the following exhaustive procedure to initialize
and then update the values.

Procedure d1-exhaustive

1 Set d1(i) = m for i = 1 . . .m, set q = 1, and goto step 2.

2 Inspect each element r ∈ BPR(q) in descending order, and set d1(m − r) =
min(d1(m− r), q − r) if PRr+1 6= PRq+1. Goto step 3.

3 Set q = q + 1. Goto step 2 if q < m, and stop otherwise.

Lemma 3.2 Procedure d1-exhaustive sets correctly the values d1(i) for i =
1 . . .m.

Proof: Consider any index i so that 1 ≤ i ≤ m. Initially the procedure has
set d1(i) = m. The correct value of d1(i) is h < m if and only if (0 < h <
i) ∧ ((m− i) ∈ BPR(m− i+ h)) ∧ (PRm−i+1 6= PRm−i+h+1).

Let us first assume that this is the case, that is, that the correct value is
d1(i) = h < m. Because in this case 1 ≤ m− i+ h ≤ m− 1 and the procedure
inspects all elements of the sets BPR(q) for q = 1 . . .m− 1, the scheme will also
inspect the set BPR(m− i+ h) and evaluate its element m− i. Let us use the
notation q′ = m − i + h and r′ = m − i in order to relate the situation to the
description of the inspection scheme. Now r′ ∈ BPR(q′) and PRr′+1 6= PRq′+1,
and the procedure thus sets d1(m − r′) = d1(i) = min(d1(m − r′), q′ − r′) =
min(d1(i), h) ≤ h. Therefore we know at this point that eventually d1(i) will
hold a value that is too large.

Consider now whether it is possible that d1(i) gets a too small value h′ < m.
Now denote q = m − i + h′ and r = m − i. The procedure may set d1(i) =
d1(m− r) = h′ = q− r only if r ∈ BPR(q) and PRr+1 6= PRq+1. But in this case h′

is a legal value for d1(i). Therefore the procedure cannot set a too small value
for d1(i).
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From the preceding we conclude that Procedure d1-exhaustive sets the cor-
rect value for each d1(i), i = 1 . . .m. ¤

Procedure d1(i) can be improved by noticing the following property in its
step 2.

Lemma 3.3 If step 2 of Procedure d1-exhaustive moves into step 3 after finding
the first r ∈ BPR(q) for which PRr+1 = PRq+1, the values d1(i) are still set correctly
for i = 1 . . .m.

Proof: The key here is that Procedure d1-exhaustive inspects the sets BPR(q)
in the order q = 1 . . .m − 1, and the elements r ∈ BPR(q) in the descending
order lbkPR(q) for k = 1 . . . |BPR(q)|.

First we note that BPR(1) = {0}, and thus the complete set BPR(1) will
always be inspected. Therefore the modification does not affect the correctness
for this part. Now assume that the sets BPR(q) have been correctly inspected
for q = 1 . . . q′ − 1, and consider the set BPR(q′). If the modified scheme does
not inspect the set BPR(q′) completely, then there must be some r ∈ BPR(q′)
so that q′ > r > 0 and PRr+1 = PRq+1. The value lbPR(r) belongs to the set
BPR(r), and from Lemma 2.3 we see that the values that are smaller than r
are identical in the sets BPR(r) and BPR(q′). Consider the case where there
is some r′ < r so that r′ ∈ BPR(q′) and PRr′+1 6= PRq+1. In this case the
exhaustive procedure would set d1(m− r′) = min(d1(m− r′), q′ − r′). But now
also r′ ∈ BPR(r) and PRr′+1 6= PRr + 1, and the inspection of the set BPR(r)
has been correct. Therefore the value of d1(m− r′) already holds a value that is
at most r−r′ < q′−r′, and the update d1(m−r′) = min(d1(m−r′), q′−r′) has
no effect. This means that no such value r′ needs to be considered anymore.

¤
From Lemma 2.6 we know that if 1 ≤ k ≤ |BPR(i)| and 2 ≤ i ≤ m + 1, then
fkPR(i) = lbkPR(i−1)+1. This enables us to use the Morris-Pratt failure function
in stepping through the border-sets in the inspection process: when inspecting
the kth largest element lbkPR(q) in the set BPR(q), where 1 ≤ q ≤ m−1, we can
use the value fkPR(q+ 1)− 1. The following procedure uses this way, and it also
incorporates the improvement stated by Lemma 3.3.

Procedure d1-pruned

1 Set d1(i) = m for i = 1 . . .m, set q = 1, and goto step 2.

2 Go through the elements r ∈ BPR(q) in descending order by computing r′ =
r + 1 = fkPR(q + 1) for k = 1 . . . |BPR(q)|. If PRr′ = PRq+1, interrupt the
process and goto step 3, and otherwise set d1(m− r′ + 1) = min(d1(m−
r′ + 1), q − r′ + 1). Goto step 3.

3 Set q = q + 1. Goto step 2 if q < m, and stop otherwise.

Now we note that i = fPR(j+ 1) = fPR(j+) when the algorithm for computing
the Morris-Pratt failure function for PR arrives to the “text pattern” character
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Tj = PRj+1 = PRj+ . We further note that after that algorithm has first set
fPR(j+) = i, it begins to further compute the values i = fkPR(j+) for k = 1 . . . as
long as either PRi 6= PRj+ = PRj+1 or i becomes zero after the value k = |BPR(q)|.
This is exactly what is done in step 2 of Procedure d1-pruned. Also, when the
algorithm goes through the values j+ = j + 1 = 1 . . .m, the sets BPR(q) will
be handled in the order 1 . . .m− 1. It does not matter that j+ begins from the
value 1, which would correspond to q = 0, since at that point i = 0 and the
inner loop is not yet activated.

We are eventually interested in the values m− i+ d1(i). The procedure for
computing d1 can directly redord these values by simply adding m − i to each
value (both to the recorded values as well as the new value-candidates). Fig. 5
shows the pseudocode for computing the values m−i+d1(i). When fkPR(j+) = i
and PRj+ 6= PRi , the recorded value for the index m − (i − 1) = m − i + 1 is
m − (m − i + 1) + (j+ − 1) − (i − 1) = j+ − 1. The shown algorithm is a
straightforward conversion from the algorithm in Fig. 3. The values are already
recorded into the array δ2.

ComputeD1(PR)
1. For i ∈ 1 . . .m Do
2. δ2(i)← 2m− i
3. i← 0, j+ ← 1
4. While j+ ≤ m Do
5. fPR(j+)← i
6. While i > 0 and PRj+ 6= PRi Do

7. δ2(m− i+ 1)← min(δ2(m− i+ 1), j+ − 1)
8. i← fPR(i)
9. i← i+ 1, j+ ← j+ + 1

Figure 5: Computing the values m− i+ d1(i).

3.2 Computing d2

Let us now consider how to compute the value d2 after the values d1 have been
processed. Since d2(i) = min(k | (i ≤ k < m) ∧ ((m − k) ∈ BPR(m))), d2 can
naturally be computed by inspecting all values in the set BPR(m). We may
transform the min-clause into the max-clause d2(i) = m−max(k | (i ≤ m−k <
m) ∧ (k ∈ BPR(m))). Now it is quite obvious that d2(i) = m − lbhPR(m) for
i = m − lbh−1

PR
(m) + 1 . . .m − lbhPR(m), where h = 1 . . . |BPR(m)| − 1. If we

would choose a k larger than lbhPR(m) in the max-clause, it would have to be
at least lbh−1

PR
(m). And then the values of i in the interval m − lbh−1

PR
(m) +

1 . . .m − lbhPR(m) would violate the rule i ≤ m − k. On the other hand the
value lbhPR(m) is valid for this interval. Therefore it is the largest such value,
and thus the correct one. Note also that we are not allowed to choose the value
lb
|BPR (m)|
PR

(m) = 0, hence the limit h ≤ |BPR(m)| − 1.
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By Lemma 2.6, we may use the rule fkPR(m + 1) = lbkPR(m) + 1 in order
to inspect the values in the set lbkPR(m) in descending order. The procedure is
simple, and its pseudocode is shown in Fig. 6. Here we update the array δ2 with
the values m − i + d2(i), when necessary, so that it then holds the final values
δ2(i) = min(m− i+ d1(i),m− i+ d2(i)). This part of the process corresponds
to the first published preprocessing algorithm for δ2. It was not complete as it
missed the values d2(i), but Rytter corrected this error in [12].

ComputeD2
1. j+ ← m− i+ 1
2. i← 1
3. While j+ < m Do
4. While i ≤ j+ Do
5. δ2(i)← min(δ2(i),m− i+ j+)
6. i← i+ 1
7. j+ ← m− fPR(m− j+ + 1) + 1

Figure 6: Computing the values m − i + d2(i). We assume that the algorithm
ComputeD1 in Fig. 6 has been executed right before executing ComputeD2, so
that the values fPR(i) are recorded for i = 1 . . .m, the initial value of i equals
fPR(m + 1), and the array δ2 already contains the values d1. Throughout the
computation the value j+ will hold the upper limit m−lbhPR(m) of the currently
handled interval m− lbh−1

PR
(m) + 1 . . .m− lbhPR(m). The lower limit of the first

interval is m− lb0PR(m) + 1 = m−m+ 1 = 1, and so i begins from the position
1.

3.3 Addressing P instead of PR

A difference between the algorithm we constructed and the usually shown al-
gorithms for computing δ2 is that we address the indices of PR instead of P .
We chose this way to make the exposition simpler. Let us now discuss what
needs to be changed if we wish to address the characters of P instead. The first
natural change is that each direct reference to a character PRi must be replaced
by a reference to PRm−i+1. The second is the interchange of the “end-points”. In
the set BP (i), the border index 0 represents an empty border that ends before
the character P1. So when we look at the situation in the case of BPR(i), this
kind of index points to the non-existing character before sR1 , which in terms
of P corresponds to the non-existing character Pm+1 after the character Pm.
A third change is that the directions forward and backward are interchanged.
Increment the position in P corresponds to decrementing it in PR, and vice
versa.

We now list the required changes into the algorithms in Figs. 5 and 6, and
then show the complete algorithm that addresses P .

In the function ComputeD1 we have to change the following.

- Replace PR by P .
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- Since PRi = Pm−i+1, initialize i with m−0+1 = m+1 and j+ with m−1+1 =
m.

- The character PRm corresponds to the character P1. Therefore change the
condition of the outer loop into “While j+ ≥ 1 Do”.

- Now the index 0, “the position before PR1 ”, corresponds to m−0+1 = m+1.
Therefore change the condition of the inner loop into “While i < m + 1
and Pj+ 6= Pi Do”.

- Since also the δ2 function addresses P , replace i by m− i+ 1 and j+ by m−
j+ + 1 in computing the function. That is, set δ2(i)← min(δ2(i),m− j+)
instead.

- Since going forward in PR corresponds to going backwards in P , change the
increments of i and j+ into decrements.

Note that if the preceding changes are made, the values of fPR still point to the
same characters as before. But now the characters are addressed with relation
to P instead of PR.

The function ComputeD2 requires less changing because it does not use P
(or PR), but only the already computed values d1(i) and fPR(i). And since we
have already originally addressed the values d1(i) in terms of P , the only change
concerns how the function fPR is used: instead of fPR(i), we should use the
value m−fPR(m−i+1)+1. The reason for using m−fPR(m−i+1)+1 instead
of simply fPR(m− i+ 1) is that now we assume that the values of the function
fPR address P instead of PR. The changes to ComputeD2 are as follows.

- Initialize j+ with m− (m− i+1)+1 = i on the first line. Note that now i has
the value fPR(m− (m+ 1) + 1) = fPR(0) after ComputeD1 is finished.

- Set j+ ← m − (m − fPR(m − (m − j+ + 1) + 1) + 1) + 1 = fPR(m − (m −
j+ + 1) + 1) = fPR(j+) on the last line.

Fig. 7 shows the complete algorithm for computing δ2 when P is addressed. It
is practically identical to the version shown in [13].

4 Conclusions

In this paper we analysed how to construct a correct version of the original
algorithm for computing the δ2 function of the very widely known Boyer-Moore
exact string matching algorithm. As noted for example by Gusfield [8] and
Stomp [14], the algorithm may seem quite mysterious and difficult. In fact, the
present discussion is the first that we know of that truly delves into exploring the
principles behind the algorithm. Our discussion also highlights the close rela-
tionship between the preprocessing algorithm for δ2 and the Morris-Pratt exact
string matching algorithm. Stomp [14] proved recently that the original (and
later amended) algorithm is in principle correct, but that proof is a-posteriori
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ComputeDelta2(P )
1. For i ∈ 1 . . .m Do
2. δ2(i)← 2m− i
3. i← m+ 1, j− ← m
4. While j− ≥ 1 Do

5. fP (j−)← i
6. While i < m+ 1 and Pj− 6= Pi Do
7. δ2(i)← min(δ2(i),m− j−)

8. i← fP (i)
9. i← i− 1, j− ← j− − 1
10. j− ← i
11. i← 1
12. While j− < m Do
13. While i ≤ j− Do
14. δ2(i)← min(δ2(i),m− i+ j−)
15. i← i+ 1

16. j− ← fP (j−)

Figure 7: Computing the values δ2(i) when P is addressed. We have renamed
the variable j+ into j−, since it now represents j− 1, and we also denote by fP
the array fPR that addresses P instead of PR.

and quite technical in nature, and does not give a very clear picture about why
the algorithm is like it is. The present work is adapted from a part of [9], and
therefore it is originally roughly as old as the work of Stomp. We hope that the
presented constructive analysis is helpful for anyone who wishes to understand
how the algorithm works, so that the thought “what a mysterious algorithm”
would be changed into “what a clever algorithm”.
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